Genus Retama: A review on traditional uses, phytochemistry, and pharmacological activities

León-González AJ.^{a, e}, Navarro I ^b , Acero, N.^{c[⊠]}, Muñoz Mingarro, D.^d & Martín-Cordero C.^e

^a Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain.

^b Department of Physical Chemistry, Faculty of Pharmacy, C/ P. García González s/n. 41012 Seville. Spain.

^{c™} Pharmaceutical and Health Sciences Department. San Pablo-CEU University. CEU Universities. Urb. Montepríncipe.

28668 Boadilla del Monte. Madrid. Spain. e-mail: nacemes@ceu.es. Phone: +34 913724798. Fax: +34 913510475

^d Chemical and Biochemical Department. San Pablo-CEU University. CEU Universities. Urb.

Montepríncipe. 28668 Boadilla del Monte. Madrid. Spain

^e Department of Pharmacology, Faculty of Pharmacy, C/ P. García González s/n. 41012 Seville.

Spain.

[™] Corresponding author

Abstract

Plants of the genus *Retama* (Fabaceae) are used in traditional medicine of the Mediterranean Basin as an emetic, purgative, and vermifuge. Certain *Retama* species are also employed to treat a multitude of disorders, including diabetes, hepatitis, jaundice, sore throat, skin diseases, joint pain, rheumatism, fever, and inflammation.

This review deals with updated information on the distribution, botanical characteristics, ethnopharmacology, phytochemistry, pharmacological activities, and toxicity of the *Retama* species in order to support their therapeutic potential and to provide an input for future research prospects.

The *Retama* species are mainly employed as ethnomedicinal remedies in Mediterranean countries, including Algeria, Egypt, Italy, Lebanon, Libya, Morocco, and Spain. Previous phytochemical studies show a complex composition, rich in carbohydrates (galactomannans), polyols (pinitol), fatty acids, phenolic compounds (genistein, daidzein) and alkaloids (retamine, lupanine). The pharmacological activity of their various extracts has been widely studied, revealing, among others, the anti-microbial, anti-inflammatory, and anti-diabetic effects of these species. The potential toxicity of these medicinal plants has also been discussed. Although recent experimental evidence confirms the pharmacological interest of this genus, further studies are necessary.

Key Words: R. monosperma, R. raetam, R. sphaerocarpa, quinolizidine alkaloids, isoflavones

Abbreviations:

GLC-MS: Gas Liquid Chromatography Mass	TAC: Total Antioxidant Capacity
Spectrometry	AGE: Advanced Glycation End Product
MIC: Minimum Inhibitory Concentration	SOD: Superoxide dismutase
RP-HPLC: Reversed Phase High Performance Liquid	GPx: Glutathione peroxidase
Chromatography	MDA: Malondialdehyde
HCMV: Human Cytomegalovirus	NSAID: Non-Steroidal Anti-inflammatory Drug
MSSA: Methicillin Sensitive Staphylococcus aureus	LOX: Lipoxygenase
MRSA: Methicillin Resistant Staphylococcus aureus	TNBS: Trinitrobenzene Sulfonic acid
ROS: Reactive Oxygen Species	TNF-α: Tumour Necrosis Factor alpha
DPPH: 1,1-Diphenyl-2-Picrylhydrazyl	COX: Cyclooxigenase
IC ₅₀ : 50 % Inhibitory Concentration	iNOS: Inducible Nitric Oxide Synthase

INTRODUCTION

Retama Raf. (Fabaceae) nomen conservandum, previously named Lygos Adanson, also known as rtem or ratam, constitutes a monophyletic taxon, and is comprised of four closely related endemic species of the Mediterranean Basin: *R. monosperma* (L.) Boiss., *R. raetam* (Forsk.) Webb., *R. sphaerocarpa* Boiss. and *R. dasycarpa* Coss. This genus is distributed over several climates and ecosystems including coastal dunes, maquis, and even deserts, since *Retama* species tolerate extreme drought conditions. The similarities between the phenotypic characteristics of those four species hinder their taxonomical determination. Species differ in banner colour, which is white in *R. monosperma* and R. *raetam* and yellow in *R. sphaerocarpa* and *R. dasycarpa* (Belmokhtar and Harche 2012; Boulila et al. 2009; Cardoso et al. 2013; Greuter et al. 1989).

Plants of the genus *Retama* are perennial and unarmed shrubs, with evergreen cladodes (photosynthetic stems), grow to between 2-4 m in height, and are many-branched, with simple and deciduous leaves, which fall rapidly after emergence. Flowers in racemes include those of calyx urceolate, campanulate or turbinate, bilabiate, with white to yellow corolla. Stamens are monadelphous and the style is filiform and incurved. The fruit is an ovoid to globose legume, indehiscent or finally incompletely dehiscent along the ventral suture with one or two seeds (Heywood 1968; Villar et al. 2013).

Retama raetam, grows in Israel, and is believed to be the juniper of the Bible: in Kings 19:4–5, it is called rotem in the Hebrew singular; and in Job 30:4, it is called retamim in the plural (Hehmeyer and Schönig 2012).

Plants from the genus *Retama* have shown great homogeneity regarding their medicinal use (Bellakhdar 1997). They have traditionally been used by local people to treat several ailments, such as diabetes, rheumatism, and inflammation (Ali-Shtayed et al. 1998; Abouri et al. 2012; Telli et al. 2016).

With the increasing interest in the exploration and exploitation of natural sources, a number of studies related to phytochemical and pharmacological aspects of *Retama* spp. have been conducted on *R. monosperma*, *R. raetam*, and *R. sphaerocarpa*. In roots, flowers, seeds and cladodes, the presence of carbohydrates, fatty acids, phenolic compounds as phenolic acids, flavonols, flavones, flavanones, chalcones, aurones, isoflavones and phenylpropanoids, terpenes, steroids and alkaloids has been described.

Indeed, most of the traditional uses of Retama spp. have been substantiated by pharmacological studies.

The literature reveals that *Retama* spp. shows several biological activities, including antibacterial (Hammouche-Mokrane et al. 2017), anti-inflammatory (González-Mauraza et al. 2014), antioxidant (El-Toumy et al. 2011), anti-proliferative (Belayachi et al. 2013) anti-ulcer (El-Toumy et al. 2011), anti-viral (Edziri et al. 2008), and hepatoprotective activities (Omara et al. 2009b; Korien et al. 2010).

In this review, the traditional uses, chemical constituents, pharmacological activities and toxicology of the *Retama* genus are highlighted. A critical evaluation of pharmacological studies in terms of their relation to ethnopharmacology is also provided.

ETHNOBOTANY of *Retama* spp.

Origin and geographic distribution

Fabaceae is a widely distributed family of flowering plants with 730 genera and 19,400 species divided into three subfamilies: namely Faboideae, Mimosoideae, and Caesalpinioideae (Kirkbride et al. 2003). The *Retama* genus belongs to the family Fabaceae, subfamily Faboideae, tribu Genisteae and comprises four species that are mainly distributed in the Mediterranean Basin (Greuter et al. 1989) (Table 1). *R. sphaerocarpa* is largely distributed throughout the Iberian Peninsula and North Africa. *R. monosperma* is native to the coastal sandy areas of SW Spain and NW of Africa. *R. dasycarpa* is restricted to the Atlas Mountains in Morocco. *R. raetam* has an amphi-Mediterranean distribution. *R. raetam* subsp. *gussonei* is endemic to Sicily.

Studies on genetic diversity and relationships among and within three populations of *R. raetam* collected in different habitats in southern Tunisia were conducted by Abdellaoui et al. (2014). Research indicates that most variation occurred within populations and that genetic differentiation had occurred between populations. These findings are crucial for a better understanding of the adaptive strategy of this plant in this geographical area and to help in the creation of an effective strategy to protect this important species.

Economic relevance

The most commonly used species in North Africa is *R. raetam*, and thus the one with major economic relevance. This specie is widely utilized by local population for construction and ornamental purposes, and for healing or ameliorating several diseases (Barakat et al., 2013). *Retama* plant species are also used in pastures to provide shade and shelter for animals, especially on hot dry days (Obón et al. 2011, Barakat et al. 2013).

Agro-climatic preference

The *Retama* genus occupies a wide range of habitats. The plants of this genus grow preferably in coastal areas and deserts. They are plants that resist winter low temperatures and summer extreme hot. *Retama* spp. could grow up in low fertility and drought soils (Muñoz Valles et al. 2013; Barakat et al., 2013).

Ethnopharmacological uses

Plants belonging to *Retama* genus have been used traditionally for the treatment of different diseases in many parts of Mediterranean Basin, especially in North Africa and the Middle East (Table 2). Literature revealed that *R. raetam* is the most widely used species.

R. raetam has a long history of use by desert Berbers and in Jewish traditional medicine, where it is used as a treatment for several diseases. Plant parts such as cladodes, fruits, seeds and roots are involved in different traditional remedies.

R. raetam (Forsk.) Webb. (commonly known in English as white broom or white weeping broom) grows in countries of North Africa such as Morocco, Algeria, Tunisia, Libya, and Egypt, and in certain Middle Eastern countries, such as Lebanon, Palestine, Jordan and Israel. The cladodes (photosynthetic stems), flowers, seeds and roots are employed such a powder, in an infusion or decoction for external use such as a cataplasm or poultice, as a bath, or in oral use.

The Moroccan pharmacopoeia has been developed and enriched by knowledge from several ethnic groups that migrated to Morocco from many areas, including Arabs from the Middle East, Andalusians from Spain, and Jews from Europe (Tahraoui et al. 2007). In Morocco, powdered cladodes from R. raetam, R. monosperma and R. sphaerocarpa, mixed with honey, are orally administered as an emetic, and a decoction of cladodes constitutes a useful enema utilized as purgative and vermifuge. In Tissint, powdered cladodes and flowers of R. raetam are employed for their healing properties in circumcision, and as a vulnerary, antiseptic and sedative in local wound care, skin ulcers and infected pimples. In Marrakech, R. raetam crushed with milk or butter is used with the same indications, while decoctions are applied in frictions to relieve pruritus, and human and animal scabies (Bellakhdar et al. 1991; Bellakhdar 1997). Roots are employed as enemas or as an abortifacient by fumigation. An infusion of cladodes and flowers taken orally is also used as an abortive medicine, however it is widely known that a considerable risk of poisoning exists. In Sahara, roots are employed in diphtheria and cladodes as fire spikes in neuralgias such as sciatica neuralgia. In Tata, a south-eastern Moroccan province that borders Algeria, this plant is commonly used for the treatment of scorpion bites, skin diseases, wounds healing, and rheumatism. In Algeria it is prescribed to relieve inflamed eyes, fever, stomach-ache, back pain and diarrhoea (Abouri et al. 2012; Mouhajir 2002; Bellakhdar 1997). The Ouargla region includes the most popular oasis in the Algerian Sahara in south-eastern Algeria where a decoction or infusion of fruits and seeds from R. raetam is used for the treatment of diabetes (Telli et al. 2016). In the Al-Jabal Al-Akhdar region of Libya, it is also recommended for the treatment of diabetes and sinusitis (El-Mokasabi 2014). In Tunisia, this is externally dispensed in scabies as a poultice (Viegi and Ghedira 2014). In the Middle East, a decoction of cladodes and flowers of R. raetam is used to treat syphilis and female infertility (Yaniv and Dudai 2014). In Israel, a decoction of cladodes is employed as a bath for joint pain, back pain and skin bruising (Said et al. 2002). Jordan is a relatively small country, and it is characterized by a weak biodiversity. The inhabitants of the Mujib area use *R. raetam* on fractures and burns as a poultice, mainly for animals. A decoction of cladodes is made to treat burns (Hudaib et al. 2008). In Lebanon, this plant is also employed for joint pain (El Beyrouthy et al. 2008). In Palestine, it is prescribed against eye inflammation, sore throat, rheumatism, infertility, paralysis, and stomach ache (Ali-Shtayeh et al. 1998). In Yemen, traditional medicinal uses of this plant have been introduced from Israeli and Yemenite Jews; these populations use an infusion as a remedy for hepatitis and jaundice (Hehmeyer and Schönig 2012).

R. monosperma (in Spanish known as *Retama de olor*, *Retama blanca* and in English as *White bridal broom*) is native to the coastal sandy areas of SW Spain, NW Morocco, Algeria and Egypt. The Algerian Berbers use an extract from cladodes for the prevention of hydrophobia (rabies) (Helmstädter 2016).

A decoction of *R. sphaerocarpa* roots is used in the Errachidia province of Morocco, in the treatment of diabetes (Tahraoui et al. 2007). In the Sahara, roots are employed as a diphtheria remedy (Mouhajir 2002). In Algeria, it is used to cure rabies (Louaar et al. 2005). In the western part of the province of Granada (Andalusia, southern Spain), an infusion or decoction of cladodes and flowers is applied as a poultice or cataplasm to relieve joint pains, contusions, and luxations, and the for the healing of skin wounds and warts. Moreover, in oral administration, a decoction of cladodes and flowers is used in the treatment of diabetes and fever; the fresh ingestion of fruits is employed to stem diarrhoea; and an infusion of flowers to treat liver diseases (Benitez Cruz 2007; Benitez Cruz et al. 2010).

R. dasycarpa is an endemic plant of the high Atlas Mountains used by the Ishelhin people, a southern Moroccan Amazigh (Berber) ethnic group, in urological and nephrological diseases (Teixidor-Toneu et al. 2016).

CHEMICAL CONSTITUENTS of Retama spp.

Alcohols and aldehydes

The main component of the essential oil from *R. raetam* flowers is nonanal or pelargonaldehyde. Aldehydes are highly aromatic compounds: octanal (caprylic aldehyde), dodecanal (lauraldehyde) and undecanal have also been identified (Touati et al. 2015).

Cyclitols

Pinitol has been isolated from cladodes and quantified in *R. raetam* (1.8%), *R. sphaerocarpa* (1.9%) and *R. monosperma*, which has the highest concentration (2.3%) of this compound (González-Mauraza et al. 2016). Quinic acid was identified as one the main components in seeds and cladodes of *R. sphaerocarpa* (Touati et al. 2017)

Polysaccharides

Two homogeneous galactomannans were isolated from seeds of Libyan R. raetam (Ishurd et al. 2004)

Fatty acids

The chemical analysis of seeds and cladodes from *R. monosperma* led to the identification of 11 saturated (2.3 % w/w) and 5 unsaturated fatty acids (EI Hamdani and Fdil 2015). Similarly, Touati et al. (2015) identified 14 fatty acids and quantified 2.3 % w/w of saturated fatty acids and 14 % of unsaturated fatty acids from *R. sphaerocarpa* seeds and cladodes (Table 3).

Phenolic Compounds

Isoflavones

In *R. sphaerocarpa*, *R. monosperma*, and *R. raetam*, isoflavones, such as genistein, genistin, daidzin, and daidzein and other isoflavones, such as biochanin A, 6'-methoxypseudobaptegenin and puerarin, have been isolated and identified (Lopez-Lázaro et al. 1998; Djeddi et al. 2013; Abdalla and Saleh 1983). Two new furanoisoflavones have been isolated from *R. raetam* cladodes derrone and 5" hydroxyl-derrone (Xu et al. 2015).

Dihydrochalcones and aurones

Phloretin belongs to the chemical group of dihydrochalcones, found in apple trees and pear trees (Huang et al. 2016). Hispidol has been isolated for the first time in soybean seedlings (*Soja hispida*) and could originate from the oxidative cyclization of chalcone, which is an intermediate step in aurone biosynthesis (Wong 1966).

Terpenoids

Monoterpenes

The essential oil of *R. monosperma* cladodes is rich in hydrocarbons, mainly: alkanes (31.8 %), norisoprenoids (25.4 %) oxygenated diterpenes (11.6 %) and oxygenated sesquiterpenes (10.5 %). Flower oil revealed the presence of alkanes (25.8 %), fatty acids (56.7 %) and norisoprenoids (3.1 %) as the main subclasses. Hexadecanoic acid was the main compound in the essential oil of flowers (0 - 30.6 %) while heptacosane was in the essential oil of cladodes (13 %). The ionones and damascones showed low presence in flower oil in contrast to branch oil. The pleasant aroma of *R. monosperma* during full flowering is due to the presence at significant levels of norterpenoids. The main components in the essential oil of *R. raetam* flowers are β -linalool, nonanal and α -humulene (Edziri et al. 2010).

Triterpenes

Touati et al. (2015) reported the identification and quantification from cladodes of triterpene β -amyrin (0.06 %).

Steroids

Belayachi et al. (2014) and Touati et al. (2015) identified β -sitosterol, stigmasterol and campesterol from the cladodes and seeds of *R. monosperma* and *R. sphaerocarpa*. Touati et al. (2015) quantified total phytosterols in *R. sphaerocarpa* (2.5 %). El-Sherbeiny et al. (1978) identified β -sitosterol, a phytosterol in *R. raetam*.

Alkaloids

El-Shazly et al. (1996) reported the presence of 31 bipiperydine and quinolizidine alkaloids by GLC-MS in different plant parts (cladodes, roots, fruit, and seeds) of three *Retama* species: *R. monosperma, R. sphaerocarpa,* and *R. raetam* (Table 3). The bipiperydine alkaloid ammodendrine, which shares part of the biosynthetic pathway with quinolizidine alkaloids, was detected in the three species. Alkaloidal profiles of these *Retama* species are rather similar; typical for *Retama* is the occurrence of retamine, which is uncommon in other Fabaceae, although it appears in relatively higher concentrations in *R. sphaerocarpa* and *R. raetam* than in *R. monosperma.* The tetracyclic quinolizidine alkaloids (sparteine, lupanine and retamine) represent the major components of roots and cladodes. The α -pyridone alkaloids, such as cytisine, methylcytisine and anagyrine, derive from the tetracyclic alkaloid lupanine and were detected in high concentrations in flowers and seeds. These results have been confirmed by various authors (Table 3).

PHARMACOLOGICAL ACTIVITY

Antibacterial and antifungal activity

Many studies have focused on the antibacterial activity of *Retama* spp. extracts; in the majority of instances this activity was evaluated by means of the disc diffusion method, measuring the diameter of inhibition zones, or by determining the Minimum Inhibitory Concentration (MIC).

The methanol-water (50:50) polyphenol-rich extract of *R. sphaerocarpa* stems exerted a significant antibacterial activity against *Staphylococcus aureus* and *Pseudomonas aeruginosa* bacterial strains. The major components of this polyphenol-rich extract were piscidic and quinic acids and the flavonoid morin (Touati et al. 2017).

The alkaloid extracts obtained from seeds, leaves and stems of *R. monosperma* were tested against *Aspergillus niger*, *Candida albicans* and *Candida tropicalis*. The antifungal activity of the leaves and stems was related to their higher content of sparteine, ammodendrine and anagyrine, whereas no activity was observed on seed extract, with a major content of cytisine and its derivatives (El-Hamdani et al. 2016).

The aqueous and ethanolic extracts of the aerial parts of Palestinian *R. raetam* did not affect the viability of *Staphylococcus* aureus, Escherichia coli, Klebsiella pneumoniae, Proteus vulgaris, Pseudomonas aeruginosa or the yeast Candida albicans (Ali-Shteveh et al. 1998). However, the ethyl acetate extract of aerial parts of *R. raetam* from Tunisia, rich in

flavonoids, tannins and alkaloids, showed significant antibacterial activity against Gram-positive microorganisms, especially methicillin-sensitive and methicillin-resistant *Staphylococcus aureus* (MSSA, MRSA), thereby suggesting that the use of intermediary polarity solvents is necessary for the extraction of bioactive components with antibacterial activity (Edziri et al. 2007). This hypothesis is also supported by Mariem et al. (2014), who observed that the moderately polar fraction of Tunisian *R. raetam* shoots, obtained after ethyl acetate extraction, not only exerted the highest antibacterial activity, especially against *E. coli* and *B. cereus*, but also presented the highest polyphenol content, whereby syringic acid and coumarin were the most abundant compounds detected by RP-HPLC.

The results obtained with extracts from the flowers of *R. raetam* are along the same lines, since the most active extracts from the flowers of Tunisian *R. raetam* were those obtained with ethyl acetate and butanol, rather than with methanol and chloroform. Butanol extract exerts high activity, with MICs in the range of 0.256–0.512 mg ml⁻¹ against Gram-positive bacteria, including *Bacillus subtilis, Enterococcus faecium, Streptococcus* spp., *Corynebacterium* spp., MSSA, and MRSA. This capacity of the extracts was correlated with a higher content on total polyphenols and flavonoids; whereas the ethyl acetate extract of the flowers, with appreciable activity against Gram-positive bacteria and the ability to inhibit the cytopathic effect of human cytomegalovirus (HCMV) strain, presented the highest tannin content (Edziri et al. 2008). Two isolated flavonoids from the ethyl acetate extract of *R. raetam* flowers, namely licoflavone C and derrone, exerted good antibacterial activity against *E. coli* and *Pseudomonas aeruginosa* and significant antifungal activity against *Candida* species (Edziri et al. 2012).

Two separate studies focused on the chemical composition and antimicrobial activity of the essential oils obtained by the Clevenger apparatus from the flowers of *R. raetam* collected in Tunisia and Libya, respectively. The Tunisian essential oil was rich in oxygenated monoterpenes (59.73 %) and sesquiterpene hydrocarbons (32.39 %), whereby the major detected components were nonanal, α-humulene, acetaldehyde, and linalool, and this oil exerted a moderate antibacterial and antifungal activity, with MICs in the range between 0.625 and 5 mg ml⁻¹ (Edziri et al. 2010). The Libyan essential oil presented a similar composition in oxygenated monoterpenes (62.0 %) and a MIC of 3 and 6 mg ml⁻¹ against *S. aureus* and *S. pyogenes*, respectively, whereas the isolated compound linalool presented MICs of 250 and 375 µg ml⁻¹, respectively (Awen et al. 2011).

Taken together, the studies focused on the antibacterial activity of *Retama* spp., mainly *R. raetam*, support the ethnopharmacological use of this plant in the treatment of infectious diseases. Notably, the studied extracts exerted significant activity against pathogens responsible for skin and soft-tissue infections, such as *S. aureus* and *S. pyogenes*. These results justify the use of this plant in traditional medicine, which is included in the special medicinal herbal powder

9

(locally named rshush, rishush, or dhrur) used in Bedouin indigenous medicine in the Middle East for the healing of the skin after circumcision (Abu-Rabia 2015). The antibacterial activity of *Retama* spp. has been related to the presence of polyphenols, alkaloids and essential oils; however, further research is necessary in order to determine the main active principles and their mechanism of action, as well as the optimization of the extraction methods in order to obtain extracts of a more standardized nature.

Antioxidant and chemoprotective activity

High levels of reactive oxygen species (ROS) are involved in the development of the majority of chronic diseases, including cancer and neurodegenerative and cardiovascular diseases, due to their ability to damage biomolecules by inducing lipid peroxidation or DNA oxidation, and to modulate redox-sensitive pathways involved in the pathogenesis of these diseases (Valko et al. 2007). Natural products, including polyphenols, are known to exert antioxidant properties, by means of ROS scavenging, chelating transition metals, or modulating the activity of redox-sensitive enzymes (León-González et al. 2015). Numerous studies have evaluated the antioxidant activity of *Retama spp.* extract, as summarized in Table 4. Most of these studies determined the anti-radical activity *in vitro* against the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical via a spectrophotometric method and expressed it as IC_{50} values, thereby indicating the concentration of extract required to scavenge 50 % of the DPPH radical. The IC_{50} results ranged between 25 and >1000 µg ml⁻¹, which correspond to the methanol extract of *R. raetam* seeds (Tilii et al. 2015) and the aqueous extracts of *R. raetam* (Djeddi et al. 2013), respectively. This variability could be correlated with the alternative extraction methods and/or the part of the plant or species employed in each study. The lower antioxidant activity of aqueous extracts suggests that the use of more intermediate polarity solvents, such as hydro-alcoholic mixtures or ethyl acetate, is more effective for the extraction of *Retarma spp.* antioxidant molecules.

Belmokhatar and Harche (2014) determined the antioxidant capacity of the *R. monosperma* 70 % aqueous methanol extracts of seeds, stems and flowers and of their fractions (toluene, chloroform, ethyl acetate, and butanol) by means of the DPPH and the phosphomolybdenum total antioxidant capacity (TAC) assays. Results showed that the ethyl acetate fractions were the most active for each part and that the extract from the ethyl acetate seeds presented the highest antioxidant capacity from among all the plant parts (DPPH IC₅₀, 150 µg ml⁻¹). A linear regression analysis showed a significant Pearson's coefficient of correlation between flavonoid content and the DPPH and TAC values, which suggests they are major contributors to the antioxidant activities (Belmokhtar and Harche 2014).

In another study, Boussahel et al. (2017) reported the antioxidant and antiglycative properties of methanol and aqueous *R. sphaerocarpa* fruit extracts. The methanol extract presented a higher content on flavonoids, including the isoflavones

daidzein and genistein. This extract exerted a noticeable antioxidant activity in the chemical assays performed, especially in the oxygen radical-absorbance capacity assay (ORAC), which suggests that the antioxidants of *R. sphaerocarpa* fruit are more soluble in organic solvents than in water, and that they predominantly act as hydrogen atom transfers. The methanol extract also induced a major decrease in the formation of advanced glycation end products (AGE), which are related with oxidative stress, inflammation and insulin resistance, which suggests that this flavonoid-rich extract is able to prevent the reactions between reducing sugars and proteins that lead to non-enzymatic glycation or browning.

The chemoprotective effect of the aqueous methanol extract of *R. raetam* seeds against the damage induced by formalin, indomethacin and cadmium chloride has been studied in various *in vivo* models. Formalin is a mixture of formaldehyde and methanol that mimics the effects of pollutants on humans. Formalin induced blood, liver and kidney toxicity in Sprague Dawley albino rats, by inducing a high increase in serum glucose, transaminases, bilirubin, urea, creatinin, red blood cells, and hemoglobin, an increase in white blood cells, and in liver and kidney dysfunction. The administration of *R. raetam* seed extract restored liver and kidney injuries and blood parameters to the normal levels, also increasing the blood levels of antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx) and lowering lipid peroxidation (malondialdhyde (MDA)) in serum (Koriem et al. 2010). Similar results were obtained by this extract against the kidney and liver toxicity induced by cadmium chloride (Koriem et al. 2009). Furthermore, treatment with 25 mg kg⁻¹ indomethacin, a non-steroidal anti-inflammatory drug (NSAID), induced severe gastric damage to male albino rats due to the lipid peroxidation of the membranes. The administration of 25 mg kg⁻¹ *R. raetam* seed extract significantly reduced the ulcer area and the gastric MDA levels, whereas it increased the levels of antioxidant enzymes SOD and GPx, thereby exerting a gastroprotective effect comparable to the histamine-2 (H₂) blocker ranitidine (EI-Toumy et al. 2009).

Analgesic and anti-inflammatory activity

Although there is no a specific ethnobotanical use of *Retama* spp. as an anti-inflammatory, they are used in the treatment of ailments that involved inflammation. For example, *R. sphaerocarpa* crushed shoots, are traditionally applied as a poultice to the skin to treat rheumatism or as analgesic for menstrual pain in Southern regions of Spain (Obón et al. 2011; Martínez-Lirola et al. 1997; Rivera et al. 1994). The anti-inflammatory activity was confirmed *in vitro*, as pre-incubation of human monocytes with different *R. sphaerocarpa* extract fractions for 30 mins before stimulation with LPS (10 ng ml⁻¹) significantly prevented the release of the inflammatory cytokine tumour necrosis factor-alpha (TNF- α) (Bremner et al. 2009). The methanol and ethyl acetate fractions were the most active.

Lipoxygenase (LOX) is an enzyme that catalyses the reaction of fatty acids to hydroperoxides, which can be converted into other products that play a key role in the inflammatory process; the molecules that inhibit LOX are thus considered to have anti-oxidant and anti-inflammatory properties (Steinhilber 1999). Miguel et al. (2014) studied the capacity of various medicinal plants to inhibit LOX, showing that *R. raetam* extract significantly inhibited this enzyme and that this anti-inflammatory activity was correlated with the free radical scavenging capacity (Miguel et al. 2014).

The anti-inflammatory activity of *R. monosperma* was evaluated *in vivo* in a murine Crohn's disease model, by intra-colonic administration of trinitrobenzene sulfonic acid (TNBS) in rats. Oral administration of this extract significantly prevented the TNBS-induced intestinal damage and increased the production of colonic mucus. This action was due, at least in part, to a decreased neutrophil infiltration and cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) overexpression. The mechanism of action probably involves a reduction of p38 mitogen-activated protein kinase activation, thus preventing the inhibitory protein IkB degradation in colonic mucosa (González-Mauraza et al. 2014).

The anti-inflammatory effect of *R. raetam* extracts must be mediated by the presence of the isoflavones, including genistein, 6-hydroxygenistein, 3'-O-methylorobol, pratensein, and biochanin, since Djeddi et al. (2013) showed that 1 mg kg⁻¹ of these isolated compounds significantly reduced the amount of abdominal writhing induced by intra-peritoneal acetic acid injection. They suggested that these active components might inhibit the cyclo-oxygenase or other enzymes involved in the synthesis or release of inflammatory prostaglandins (Djeddi et al. 2013).

Anticancer activity

Even though no species of the genus *Retama* are traditionally used to treat cancer, several studies have tested the cytotoxic activity of crude extracts, fractions and isolated compounds.

In a screening of anticancer plant materials from Moroccan folk medicine, the methanol extract of *R. monosperma* aerial parts exerted an IC₅₀ of almost 100 µg ml⁻¹ against both SiHa and HeLa cell lines, from human cervical cancer (Merghoub et al. 2009). This crude extract was further fractionated, whereby the dichloromethane fraction was the most active, and presented an IC₅₀ of 14.57±4.15 µg ml⁻¹ and 21.33±7.88 µg ml⁻¹ against SiHa and HeLa cell lines, respectively. The cytotoxic activity was mediated by the induction of caspase-dependent apoptosis, which involved an increase in ROS production and depolarization of mitochondrial membrane potential (Benbacer et al. 2012). The dichloromethane fraction also exerted significant activity against Jurkat (acute T cell leukemia) and JeKo-1 (non-Hodgkin lymphoma) (Belayachi et al. 2013). This activity was correlated to the presence of alkaloids, quantified by GC/MS (Benbacer et al. 2012). Furthermore, the hexane extract obtained by Sohxlet of *R. monosperma* aerial parts was tested against a panel of cancer and non-transformed cell lines and exerted a dramatic decrease in the cell viability of Jurkat cells, with almost no effect in

12

the other tested cell lines. Induction of apoptosis was observed, accompanied by cell-cycle arrest, DNA damage induction, and the activation of the JNK/Fas-L/caspase 8/caspase 3 pathway. However, in this study, the chemical analysis by GC/MS revealed a major composition in α -linoleic acid (13.97 %), stigmasterol (10.34 %), β -sitosteryl (7.92 %) and campesterol (11.09 %) (Belayachi et al. 2014).

The methanol extract from the Italian endemism *R. raetam* subsp. *gussonei* exerted a cytotoxic activity against large lung carcinoma cell (COR-L23, IC₅₀: 40 μg ml⁻¹), along with antioxidant activity (Conforti et al. 2004).

Genistin, daidzin and 6'-methoxypseudobaptigenin-7-O- β -glucoside, are glucosylated isoflavons isolated from *R*. *sphaerocarpa* cladodes that have the ability to stabilize topoisomerase II-DNA cleavage complex, by acting as topoisomerase II poisons (Martín-Cordero et al. 2000b). Even though genistin is not a potent topoisomerase II poison, this ability could explain, at least in part, this flavonoid cytotoxic activity over the TK-10 cell line (IC₅₀ 27 μ M) (López-Lázaro et al. 2000).

Effect on the cardiovascular system

Aqueous extracts of *R. raetam* leaves exhibit antihypertensive and diuretic effects on hypertensive rats, by increasing sodium, potassium and chloride excretion, as well as acting as an enhancement of the glomerular filtration rate. On the other hand, the diuretic action in normotensive rats induces a significant increase on urinary potassium elimination (Eddouks et al. 2007).

Along the same lines, the intravenous administration of aqueous extracts of aerial parts of the same species showed a diuretic effect in normal rats. Again, a rise in the glomerular rate was detected, but in this case a significant decrease of urinary osmolality was found. The authors suggest that *R. raetam* metabolites could act synergistically or individually as angiotensin-converting enzyme inhibitors. This enzyme converts angiotensin I into angiotensin II. Angiotensin II is a powerful vasoconstrictor which causes an elevation of blood pressure. Thus, inhibition of this enzyme is a key way to reduce hypertension (Maghrani et al. 2005a; Patten et al. 2016).

Hypoglycemic activity

Aqueous leaf extract of *R. raetam* was able to reduce blood glucose levels with an extra-pancreatic mechanism, since plasma insulin levels remained unaffected. It is suggested that the extract inhibited renal glucose reabsorption as evidenced by the increased glycosuria. The inhibition of sodium-glucose symporters located in the proximal renal tubule should be involved in the mechanism of action. However, other mechanisms could explain these results, such as the stimulation of glucose uptake by muscle or adipose tissues, correction of insulin resistance, inhibition of endogenous

glucose production, and a rise in glucogenogenesis (Maghrani et al. 2003). The same results have been found with the intravenous administration of a decoction of the whole plant (Maghrani et al. 2005b). In addition, orally administrated aqueous extract exhibits lipid (cholesterol and triglycerids) and body-weight lowering activities in both normal and severe hyperglycemic rats (Maghrani et al. 2004); this fact links with an interesting application of the extract in atherosclerosis and cardiac disease.

These results are not in accordance with those of Algandaby et al. (2010), who orally administrated a methanolic extract of *R. raetam* fruit. Results showed a significant extract capacity to reduce blood glucose levels. However, in this case, an increase in serum insulin levels was detected. Furthermore, *in vitro* studies demonstrated that the extract was capable of inhibiting glucose absorption by rat isolated intestine. No effect was detected *in vitro* over gluconeogenesis or glycogenolysis or on skeletal muscle glucose uptake (Algandaby et al. 2010).

The antidiabetic effect of these extracts is attributed to quinolizidine alkaloids such as methylcytisine, lupanine and sparteine (Abdel Halim et al. 1997), but also to flavonoids such as chrysin and, mainly, quercetin (Lukačínová et al. 2008). The antioxidant ability of flavonoids as free radical scavengers or metal chelators could help to preserve β -cells from ROS deleterious effects in islet of Langerhans. On the other hand, alkaloids block ATP-sensitive potassium channels present in β -cells, with subsequent insulin release. Differences in the mechanisms of action between alkaloids and flavonoids should explain the discrepancies between the aforementioned studies, since they use different extraction procedures. It should also be borne in mind that *Retama* spp. is rich in pinitol (González-Mauraza et al. 2016). This compound has

been reported to possess insulin-like properties since it is able to regulate the insulin-mediated glucose uptake in liver through translocation and activation of the PI3K/Akt signalling pathway (Gao et al. 2015).

Effect on the nervous system

The methanol extract of aerial parts of *R. raetam* affects ambulatory and non-ambulatory movements in a dose-dependent way: no effect is detected with a dose of 125 mg kg⁻¹ body weight; an increment-only ambulatory movement is detected with a dose of 250 mg kg⁻¹ body weight; and a decrease in both movements is detected in mice after treatment with a dose of 375 mg kg⁻¹ body weight. These results could be explained by the fact that certain alkaloids, in small doses, stimulateliver the brain, as does, for example cytisine, although in high doses, it can cause the inhibition of locomotor activity. In addition, high concentrations of methylcytisine produce a sedative effect (Al-Tubuly et al. 2011). Depending on the dose, the extract is anxiolytic at lower doses, has no effect at moderate doses, and is anxiogenic at higher doses, whereby an activity pattern similar to that triggered by nicotine is presented, which points to alkaloids as the metabolites

responsible for the extract effect over central nervous system. Finally, different doses affect the onset of sleep and sleep duration in different ways (Al-Tubuly et al. 2011).

Effect on bone metabolism

A methanol:water (7:3) extract of *R. raetam* seeds had demonstrated efficacy in the protection and treatment of osteoporosis. This extract, probably due to phenolic compounds such as genistein, improved bone-tissue architecture in the form of regularity of inner and outer bone-tissue surfaces. With the increase in *R. raetam* treatment, the number and activity of the osteocytes also rise, as does the bone-tissue regeneration, due to an improved imbalance between bone formation and resorption. Omara et al. (2009a) concluded that this plant could be useful in the prevention of bone loss in postmenopausal women as an alternative to hormone replacement therapy.

Hepatoprotective effect

Aqueous seed extract of *R. raetam* is also active as a hepatoprotective agent in reducing histopathological alterations induced by CCl₄ in the liver. This extract could also reverse increased pathological serum levels of aspartate and alanine aminotransferases and alkaline phosphatase (Omara et al. 2009b). Korien et al. (2010) found similar results for formalin - induced liver, blood and kidney toxicity. This study is particularly interesting since the effects of formalin in rats are similar to those of several environmental pollutants in humans. The capability of the extract to increase diuresis, to decrease serum cholesterol and the hyperglucemia caused by formalin, its antioxidant and chelating activities, as well as its ability to restore serum levels of liver enzymes, and to reverse histopathological alterations, make this extract a promising treatment of environmental toxicity in humans (Koriem et al. 2010).

CONCLUSION

Retama spp. is a plant that grows almost exclusively in the Mediterranean Basin. Its ability to grow on dry soil and to withstand extreme temperatures facilitates its cultivation. Throughout history, these species have been used in traditional medicine by several cultures from the Mediterranean area and many of these activities have been demonstrated to be in use today. Their hypoglycemic effect and their antioxidant capacity are worthy of note, as is their diuretic activity associated with blood-pressure-lowering bioactivity. For this reason, these plants, especially *R. raetam*, the most commonly studied species, represent a major source of active principles. In this regard, the presence at *Retama* spp. of high concentrations of pinitol, quinolizidine alkaloids and isoflavones should be highlighted. These compounds are responsible for the majority of the pharmacological activities of the plant. However, the existence of toxic effects of the plant, such as respiratory failure and depression of the central nervous system, has been detected (Schmid et al. 2006). Repeated administration of the methanolic extract of *R. raetam* has a low nephrotoxic subacute toxicity potential, while it might have hepatotoxic,

nephrotoxic, and mutagenic effects at higher doses (Algandaby 2015). Certain flavonoids have been pointed out as being responsible for the poisoning of livestock by ingestion of *R. raetam* (El Bahri et al. 1999). For this reason, toxicological research is needed to study the adverse effects of these plants before they can be recommended for clinical use. In addition, certain molecular and cellular mechanisms of action must first be thoroughly investigated and elucidated.

REFERENCES

Abdalla MF, Saleh NAM (1983) Flavonoids of Retama raetam. J Nat Prod 46:755-756

- Abdel Halim OB, Abdel Fattah H, Halim AF et al (1997) Comparative chemical and biological studies of the alkaloidal content of *Lygos* species and varieties growing in Egypt.. Acta Pharm Hung 67(6):241-7
- Abdel-Halim OB (1995) (-)-6α-Hydroxylupanine, a lupin alkaloids from *Lygos raetam* var. *sarcocarpa*. Phytochemistry 40:1323-1325
- Abdel-Halim OB, Sekine T, Saito K et al (1992) (+)- 12 Hydroxylupanine, a lupin alkaloids from *Lygos raetam*. Phytochemistry 31(9):3251-3253
- Abdellaoui R, Yahyaoui F, Neffati M (2014) Population Structure and Genetic Diversity of a Medicinal Plant Species *Retama raetam* in Southern Tunisia. Pak J Biol Sci 17:182
- Abouri M, El Mousadik A, Msanda F et al (2012) An ethnobotanical survey of medicinal plants used in the Tata Province, Morocco. Int J Med Plant Res 1:99-123
- Abu-Rabia A (2015) Indigenous medicine among the Bedouin in the Middle East. Berghahn Books, Oxford
- Akkal S, Louaar S, Benahmed M et al (2010) A new isoflavone glycoside from the aerial parts of *Retama sphaerocarpa*. Chem Nat Compd 46:719-721
- Al-Tubuly Rida A, Auzi Abdurazag A, Al-Etri-Endi Amna A et al (2011) Effects of *Retama raetam* (Forssk.) Webb & Berthel. (Fabaceae) on the central nervous system in experimental animals. Arch Biol Sci 63(4):1015-1021
- Algandaby MM (2015) Assessment of acute and subacute toxic effects of the Saudi folk herb *Retama raetam* in rats. J Chin Med Assoc 78(12):691-701
- Algandaby MM, Alghamdi HA, Ashour OM, et al (2010) Mechanisms of the antihyperglycemic activity of *Retama raetam* in streptozotocin-induced diabetic rats. Food Chem Toxicol 48(8-9):2448-53
- Alghazeer R, El-Saltani H, Saleh N et al (2012) Antioxidant and antimicrobial properties of five medicinal Libyan plants extracts. Natural Sci 4:324.

- Ali-Shtayeh MS, Yaghmour RM, Faidi YR et al (1998) Antimicrobial activity of 20 plants used in folkloric medicine in the Palestinian area. J Ethnopharmacol 60(3):265-71
- Awen BZS, Unnithan CR, Ravi S et al (2011) Essential oils of *Retama raetam* from Libya: chemical composition and antimicrobial activity. Nat Prod Res 25(9):927-933
- Barakat N, Laudadio V, Cazzato E et al 2013. Potential Contribution of *Retama raetam* (Forssk.) Webb & Berthel as a Forage Shrub in Sinai, Egypt. Arid Land Res and Man 27:257–271
- Belayachi L, Aceves-Luquero C, Merghoub N et al (2013) Screening of North African medicinal plant extracts for cytotoxic activity against tumor cell lines. European J Med Plants 3:310-332
- Belayachi, L, Aceves-Luquero C, Merghoub N et al (2014) *Retama monosperma* n-hexane extract induces cell cycle arrest and extrinsic pathway-dependent apoptosis in Jurkat cells. BMC Complement Altern Med 14:38
- Bellakhdar J (1997) Contribution à l'étude de la pharmacopée traditionnelle au Maroc: la situation actuelle, les produits, les sources du savoir. Enquête ethnopharmacologique de terrain réalisée de 1969 à 1992. Doctoral dissertation, University of Metz
- Bellakhdar J, Claisse R, Fleurentin J et al. (1991) Repertory of standard herbal drugs in the Moroccan pharmacopoea. J Ethnopharmacol 35:123-143
- Belmokhtar Z, Harche MK (2014) In vitro antioxidant activity of Retama monosperma (L.) Boiss. Nat Prod Res 28:2324-2329
- Belmokhtar Z, Harche MK (2012) Evaluation of genetic diversity in three species of *Retama* genus: *R. monosperma* (L) Boiss, *R. raetam* (Forssk) Webb and *R. sphaerocarpa* (L) Boiss. (Fabaceae) based on SDS-PAGE. Curr Res J Biol Sci 4:202-205
- Benbacer L, Merghoub N, El Btaouri H et al (2012) Antiproliferative Effect and induction of apoptosis by *Inula viscosa* L. and *Retama monosperma* L. extracts in human cervical cancer cells. In: Rajamanicjam R (ed) Topics on Cervical Cancer with an Advocacy for Prevention. InTech, London
- Benítez Cruz G (2007) El uso de las plantas a través de la cultura tradicional Lojeña. Fundación Ibn al-Jatib de Estudios de Cooperación Cultural. Granada: 244-245
- Benítez G, González-Tejero MR, Molero-Mesa J (2010) Pharmaceutical ethnobotany in the western part of Granada province (southern Spain): ethnopharmacological synthesis. J Ethnopharmacol 129:87-105
- Boudjelal A, Henchiri C, Sari M et al (2013) Herbalists and wild medicinal plants in M'Sila (North Algeria): an ethnopharmacology survey. J Ethnopharmacol 148(2):395-402

- Boulila F, Depret G, Boulila A et al (2009) *Retama* species growing in different ecological-climatic areas of northeastern Algeria have a narrow range of rhizobia that form a novel phylogenetic clade within the *Bradyrhizobium* genus. Syst Appl Microbiol. 2009 Jul;32(4):245-55
- Boussahel S, Cacciola F, Dahamna S et al (2017) Flavonoid profile, antioxidant and antiglycation properties of Retama sphaerocarpa fruits extracts. Nat Prod Res 24:1-9
- Bremner P, Rivera D, Calzado MA et al (2009) Assessing medicinal plants from South-Eastern Spain for potential antiinflammatory effects targeting nuclear factor-Kappa B and other pro-inflammatory mediators. J Ethnopharmacol 124(2):295-305
- Cardoso D, Pennington RT, Queiroz LP et al (2013) Reconstructing the deep-branching relationships of the papilionoid legumes. S African J Bot 89:58-75
- Conforti F, Statti G, Tundis R et al (2004) Antioxidant and cytotoxic activities of *Retama raetam* subsp. gussonei. Phytother Res 18:585-587
- Derhali S, El Hamdani N, Fdil R et al (2016) Chemical Composition of Essential Oils of *Retama monosperma* (L.) Boiss. from Morocco. Res J Pharm Biol Chem Sci 7(4):2102-2106
- Djeddi S, Karioti A, Yannakopoulou E et al (2013) Analgesic and antioxidant activities of Algerian *Retama raetam* (Forssk.) Webb & Berthel extracts. Rec Nat Prod 7(3):169-176
- Eddouks M, Maghrani M, Louedec L et al (2007) Antihypertensive activity of the aqueous extract of *Retama raetam* Forssk. leaves in spontaneously hypertensive rats. J Herb Pharmacother 7(2):65-77
- Edziri H, Ammar S, Groh P et al (2007) Antimicrobial and cytotoxic activity of *Marrubium alysson* and *Retama raetam* grown in Tunisia. Pak J Biol Sci 10(10):1759-62
- Edziri H, Mastouri M, Ammar S et al (2008) Antimicrobial, antioxidant, and antiviral activities of *Retama raetam* (Forssk.) Webb flowers growing in Tunisia. World J Microbiol and Biotech 24:2933-2940
- Edziri H, Mastouri M, Chéraif I et al. (2010) Chemical composition and antibacterial, antifungal and antioxidant activities of the flower oil of *Retama raetam* (Forssk.) Webb from Tunisia. Nat Prod Res 24:789-796
- Edziri H, Mastouri M, Mahjoub MA et al. (2012) Antibacterial, antifungal and cytotoxic activities of two flavonoids from *Retama raetam* flowers. Molecules 17:7284-7293.
- El-Bahri L, Djegham M, Bellil H (1999) Retama raetam W: a poisonous plant of North Africa. Vet Hum Toxicol 41(1):33-5
- El-Beyrouthy M, Arnold N, Deleis –Dusollier A et al (2008) Plants used as remedies antirheumatic and antineuralgic in the traditional medicine of Lebanon. J Ethnopharmacol 120:315-334

- El-Hamdani N, Fdil R (2015) Evaluation of fatty acids profile and mineral content of *Retama monosperma* (L.) Boiss. of Morocco. J Mater Environ Sci 6:538-545
- El-Hamdani N; Filali-Ansari N, El Abbouyi A et al (2016) Antifungal activity of the alkaloids extracts from aerial parts of *Retama monosperma*. Re J Pharm, Biol and Chem Sci 7(2):965-971
- El-Hilaly J, Hmammouchi M, Lyoussi B (2003) Ethnobotanical studies and economic evaluation of medicinal plants in Taounate province (Northern Morocco). J Ethnopharmacol 86:149-158
- El-Mokasabi FM (2014) Floristic Composition and Traditional Uses of Plant Species at Wadi Alkuf, Al-Jabal Al-Akhder, Libya. American-Eurasian J Agric Environ Sci 14:685-697
- El-Shazly A, Ateya AM, Witte L et al(1996) Quinolizidine alkaloid profiles of *Retama raetam*, *R. sphaerocarpa* and *R. monosperma*. Z Naturforsch C 51:301–308
- El Sherbeiny AEA, El Sissi HI, Nawar MA et al (1978) The flavonoids of seeds of Lygos raetam. Planta Med 34:335-336
- El-Toumy SA, Farrag AH, Ellithey MM et al (2009) Effect of plant derived-phenolic extracts on antioxidant enzyme activity and mucosal damage caused by indomethacin in rats. Planta Med 75, PH11
- El-Toumy SA, Farrag AH, Ellithey MM et al (2011) Effect of plant derived-phenolic extracts on antioxidant enzyme activity and mucosal damage caused by indomethacin in rats. Journal of Pharmacy Research 4(1):189-192
- Fdil R, El Hamdani N, El Kihel A et al. (2012) Distribution des alcaloïdes dans les parties aériennes de *Retama monosperma*(L) Boiss. du Maroc. Ann Toxicol Anal 24:139–143
- Gao Y, Zhang M, Wu T et al (2015) Effects of D-Pinitol on Insulin Resistance through the PI3K/Akt Signaling Pathway in Type 2 Diabetes Mellitus Rats. J Agric Food Chem 3(26):6019-26
- GBIF Backbone Taxonomy. GBIF Secretariat. Checklist Dataset https://doi.org/10.15468/39omei accessed via GBIF.org. Cited 11 Oct 2017
- González-Mauraza H, Martín-Cordero C, Alarcón-de-la-Lastra C et al (2014) Anti-inflammatory effects of *Retama monosperma* in acute ulcerative colitis in rats. J. Physiol Biochem 70:163-172
- González-Mauraza NH, León-González AJ, Espartero JL et al (2016) Isolation and Quantification of Pinitol, a Bioactive Cyclitol, in *Retama* spp. Nat Prod Commun 11:405-406
- Greuter W, Burdet HM, Long G (1989) Med-Checklist: A critical inventory of vascular plants of the circum-mediterranean countries. Vol. *4*, Conservatoire et Jardins botaniques de la Ville de Gèneve, Switzerland
- Hammouche-Mokrane N, León- González AJ, Navarro I et al. (2017) Phytochemical profile and antibacterial activity of *Retama raetam* and *R. sphaerocarpa* cladodes from Algeria. Nat Prod Commun 12:1857-1860

- Harborne JB (1969) Chemosystematics of the Leguminosae. Flavonoid and isoflavonoid patterns in the tribe *Genisteae*. Phytochemistry 8:1449 -1456
- Hehmeyer I, Schönig H (2012) Herbal medicine in Yemen: traditional knowledge and practice, and their value for today's world. Brill, Leiden Boston
- Helmstädter A (2016) Ethnopharmacology in the work of Melville William Hilton-Simpson (1881-1938) historical analysis and current research opportunities. Pharmazie 71:352-360
- Heywood VH (1968) *Lygos* Adanson. In: Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (eds) Flora Europaea, vol 2. Cambridge University Press, Cambridge England
- Huang WC, Lai CL, Liang YT et al (2016) Phloretin attenuates LPS-induced acute lung injury in mice via modulation of the NF-κB and MAPK pathways. Int Immunopharmacol 40:98-105
- Hudaib M, Mohammad M, Bustanji Y et al (2008) Ethnopharmacological survey of medicinal plants in Jordan, Mujib Nature Reserve and surrounding area. J Ethnopharmacol 120:63-71
- Ishurd O, Kermagi A, Zgheel F (2004) Structural aspects of water-soluble galactomannans isolated from the seeds of *Retama raetam*. Carbohydr Polym 58:41-44

Kassem M, Mosharrafa SA, Saleh NA et al (2000) Two new flavonoids from Retama raetam. Fitoterapia 71:649-54

- Kirkbride JH, Gunn CR, Weitzman AL (2003) Fruits and seeds of genera in the subfamily Faboideae (Fabaceae). Vol 1. United States Department of Agriculture, Beltsville
- Koriem KM, Farrag AR, El-Toumy SA (2010) Beneficial effects of two Mediterranean medicinal plants on blood, liver, and kidney toxicity induced by formalin in rats. Biohealth Sci Bull 2(1):8-14
- Koriem KM, Farrag AR, Badawy MA et al (2009) Role of some Egyptian medicinal plants against liver and kidney toxicity induced by cadmium chloride. Toxicology Mech Met 19(8):524-534
- León-González A J (2012) Actividad antitumoral de plantas de Andalucía: Aislamiento de principios activos de *Corema album* (L.) D. Don. Thesis. Seville University
- León-González AJ, Auger C, Schini-Kerth VB (2015) Pro-oxidant activity of polyphenols and its implication on cancer chemoprevention and chemotherapy. Biochem Pharmacol 98(3):371-80
- López-Lázaro M, Martín-Cordero C, Cortés F, et al (2000) Cytotoxic activity of flavonoids and extracts from *Retama sphaerocarpa* Boissier. Z Naturforsch C 55:40-43.
- López-Lázaro M, Martín-Cordero C, Iglesias-Guerra F et al (1998) An isoflavone glucoside from *Retama sphaerocarpa* Boissier. Phytochemistry 48:401-402

López-Lázaro M, Martín-Cordero C, Ayuso MJ (1999) Flavonoids of Retama sphaerocarpa. Planta Med 65:777-778

Louaar S, Akkal S, Bousetla A et al (2005) Phytochemical study of Retama sphaerocarpa. Chem Nat Compd 41:107-108

- Louaar S, Akkal S, Laouer H, Guile D (2007) Flavonoids of *Retama sphaerocarpa* leaves and their antimicrobial activities. Chem Nat Compd 43:616-617
- Lukačínová A, Mojžiš J, Beňačka R et al. (2008) Structure-activity relationships of preventive effects of flavonoids in alloxaninduced diabetes mellitus. J An Feed Sci 17:411-421
- Maghrani M, Lemhadri A, Jouad H, et al (2003) Effect of the desert plant *Retama raetam* on glycaemia in normal and streptozotocin-induced diabetic rats. J Ethnopharmacol 87(1):21-5
- Maghrani M, Lemhadri A, Zeggwagh NA et al (2004) Effect of *Retama raetam* on lipid metabolism in normal and recent-onset diabetic rats. J Ethnopharmacol 90(2-3):323-9

Maghrani M, Michel JB, Eddouks M (2005a) Hypoglycaemic activity of Retama raetam in rats. Phytother Res 19(2):125-8

- Maghrani M, Zeggwagh NA, Haloui M et al (2005b) Acute diuretic effect of aqueous extract of *Retama raetam* in normal rats. J Ethnopharmacol 99(1):31-5
- Mariem S, Hanen F, Inès J et al (2014) Phenolic profile, biological activities and fraction analysis of the medicinal halophyte. S. African J. Bot. 94: 114-121
- Martín-Cordero C, López-Lazaro M, Piñero J et al (2000b) Glucosylated isoflavones as DNA topoisomerase II poisons. J Enzyme Inhib 15(5):455-60
- Martín-Cordero C, López-Lázaro M, Espartero JL et al (2000a) Retamatrioside, a new flavonol triglycoside from *Retama sphaerocarpa*. J Nat Prod 63:248-250
- Martín-Cordero C, López Lázaro M, Gil-Serrano AM, et al (1999) Novel flavonol glycoside from *Retama sphaerocarpa* Boissier. Phytochemistry 51:1129-1131
- Martín-Cordero C, Gil Serrano AM, Ayuso González MJ (1991) Variations des alcaloides de *Retama sphaerocarpa* Boissier. Plantes méd et phytoyher 25:157-160
- Martínez-Lirola MJ, González-Tejero MR, Molero J (1997) Investigaciones etnobotánicas en el Parque Natural de Cabo de Gata-Níjar (Almería). Sociedad Almeriense de Historia Natural y Junta de Andalucía, Almería.
- Merghoub N, Benbacer L, El Btaouri H et al (2011) *In vitro* antiproliferative effect and induction of apoptosis by *Retama monosperma* L. extract in human cervical cancer cells. Cell Mol Biol 57 Suppl OL15: 81-91
- Merghoub N, Benbacer L, Amzazi S et al (2009) Cytotoxic effect of some Moroccan medicinal plant extracts on human cervical cell lines. J Med Plants Res 3: 1045–1050

- Miguel M, Bouchmaaa N, Aazza S (2014) Antioxidant, anti-inflammatory and anti-acetylcholinesterase activities of eleven extracts of Moroccan plants. Fresenius Envir Bull 23(6): 1-14 Fresenius Envir. Bull
- Mouhajir F (2002) Medicinal plants used by Berber and Arab peoples of Morocco: ethnopharmacology and phytochemistry. Thesis. British Columbia University.
- Muñoz Vallés S, Gallego Fernández JB, Cambrollé J (2013) The Biological Flora of Coastal Dunes and Wetlands: *Retama monosperma* (L.) Boiss. J Coastal Res 29(5):1101-1110
- Obón C, Rivera D, Verde A (2011) Plantas Medicinales en la Provincia de Albacete. Usos, creencias y leyendas. Zahora 28: 1–119
- Omara EA, Nada SA, El-Toumy SA (2009b) Evaluation of hepatoprotective activity of the *Retama raetam* seeds on carbon tetrachloride-induced liver damage in rats. 57th International Congress and Annual Meeting of the Society for Medicinal Plant and Natural Product Research Abstracts. Planta Med 75 PH 29
- Omara EA, Shaffie NM, Et-Toumy SA, Aal WA (2009a) Histomorphometric evaluation of bone tissue exposed to experimental osteoporosis and treated with *Retama raetam* extract. J Appl Sci Res 5(7):706-716
- Ould El Hadj M, Hadj-Mahammed M, Zabeirou H (2003) Place des plantes spontanées dans la médicine traditionnelle de la région de Ouargla (Sahara septentrional est). Cds 3 :47-51
- Patten GS, Abeywardena MY, Bennett LE (2016) Inhibition of Angiotensin Converting Enzyme, Angiotensin II Receptor Blocking, and Blood Pressure Lowering Bioactivity across Plant Families. Crit Rev Food Sci Nutr 56(2):181-214
- Rebbas K, Bounar R, Gharzouli R et al (2012) Plantes d'intérêt médicinale et écologique dans la région d'Ouanougha (M'sila, Algérie). Phytothérapie 10:131-142
- Rivera D, Obón, C, Cano F, Robledo A (1994) Introducción al mundo de las plantas medicinales de Murcia. Ayuntamiento de Murcia, Murcia.
- Said O, Khalil K, Fulder S, Azaizeh H (2002) Ethnopharmacological survey of medicinal herbs in Israel, the Golan Heights and the West Bank region. J Ethnopharmacol 83:251-265
- Schmid T, Turner D, Oberbaum M et al (2006) Respiratory failure in a neonate after folk treatment with broom bush (*Retama raetam*) extract. Pediatr Emerg Care 2(2):124-6
- Sequeira M, Espírito-Santo MD, Aguiar C et al (2011) Checklist da Flora de Portugal (Continental, Açores e Madeira). Associação Lusitana de Fitossociologia, Lisboa
- Steinhilber D (1999) 5-Lipoxygenase: a target for anti-inflammatory drugs revisited. Curr Med Chem 6:71-85

- Tahraoui A, El-Hilaly J, Israili ZH et al (2007) Ethnopharmacological survey of plants used in the traditional treatment of hypertension and diabetes in south-eastern Morocco (Errachidia province). J Ethnopharmacol 110:105-117
- Teixidor-Toneu I, Martin GJ, Ouhammou A (2016) An ethnomedicinal survey of a Tashelhit-speaking community in the High Atlas, Morocco. J Ethnopharmacol 188:96-110
- Telli A, Esnault MA, Khelil AO (2016) An ethnopharmacological survey of plants used in traditional diabetes treatment in southeastern Algeria (Ouargla province). J Arid Environ 127:82-92
- The Plant List, Version 1.1, 2013. URL http://www.theplantlist.org. Cited 11 July 2017
- Tlili N, Mejri H, Lajnef HB et al (2015) Unexploited *Thapsia garganica*, *Orlaya maritima*, and *Retama raetam* seeds: potential sources of unsaturated fatty acid and natural antioxidants J Am Oil Chem Soc 92: 1175-1181
- Touati R, Santos SA, Rocha SM, et al (2015) *Retama sphaerocarpa*: an unexploited and rich source of alkaloids, unsaturated fatty acids and other valuable phytochemicals. Ind Crop Prod 69:238-243
- Touati R, Santos SA, Rocha S M et al (2017) Phenolic composition and biological prospecting of grains and stems of *Retama sphaerocarpa*. Ind Crop Prod 95:244-255
- Valko M, Leibfritz D, Moncol J et al (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 39:44-84
- Viegi L, Ghedira K (2014) Preliminary study of plants used in ethnoveterinary medicine in Tunisia and in Italy. Afr J Tradit Complement Altern Med 11:189-199
- Villar P, Cuesta B, Benito LF (2013) Retama monosperma (L.) Boiss y Retama sphaerocarpa (L.) Bois. In: Producción y manejo de semillas y plantas forestales. Tomo II. Peman J, Navarro Carrillo RM, Nicolas JL, Pradad MA, Serrada R (eds) Organismo Autónomo Parques Naturales, pp 342-355
- Wong E (1966) Occurrence and biosynthesis of 4',6-dihydroxyaurone in soybean. Phytochemistry 5(3):463-467
- Wu Y, Pan Y, Sun C et al (2006). Structural Analysis of an Alkali-Extractable Polysaccharide from the Seeds of *Retama raetam* ssp. *gussonei*. J Nat Prod 69:1109-1112
- Xu WH, Al-Rehaily AJ, Yousaf M (2015) Two New Flavonoids from Retama raetam. Helv Chim Acta 98:561-568
- Yaniv Z, Dudai N (eds) (2014) Medicinal and aromatic plants of the middle-east Vol. 2. Springer, pp. 29

Table 1. Species of the *Retama* genus. Synonyms and worldwide distribution (GBIF 2017; Greuter)

et al. 1989; Sequeira et al. 2011; The Plant List 2017)

Retama species	Synonyms	Country
(Accepted names)		
R. monosperma (L.) Boiss.	Genista monosperma (L.) Lam.; Lygos monosperma (L.) Heywood; Retama monosperma subsp. monosperma; Retama rhodorhizoides Webb & Berthel.; Spartium monospermum L.	Spain, Portugal, Morocco, Algeria, Egypt
<i>R. raetam</i> (Forsk.) Webb.	Genista monosperma; Genista raetam Forssk.; Lygos raetam (Forssk.) Heywood; Retama duriaei (Spach) Webb; Retama raetam subsp. Raetam; Retama raetum (Forssk.) Webb]	Morocco, Algeria, Tunisia, Libya, Egypt, Sicily, Jordan, Israel, Lebanon, Palestina
<i>Retama raetam</i> subsp. <i>gussonei</i> (Webb) Greuter	Lygos raetam <u>subsp.</u> gussonei <u>(Webb) Heyw.</u> Retama gussonei <u>Webb</u> Retama gussonii <u>Webb</u>	Sicily
R. sphaerocarpa Boiss.	Lygos sphaerocarpa (L.) Heywood	Spain, Portugal, Morocco, Algeria, Tunisia
к. aasycarpa Coss.		Svv Worocco

Table 2: Ethnopharmacological uses of *Retama* spp. Species, common name, part of the plant that is used in each case, preparation, via of administration and Country. NS: not specified.

Species	Common	Plant part	Traditional use	Preparation	Administration	Country/Province	References
	name				area		
R. monosperma (L.) Boiss	Retam, Rtem	Cladodes	Emetic	Powdered and mixed with honey	Oral	Morocco	Bellakhdar 1997
		Cladodes	Purgative,Vermifuge	Decoction	Rectal washings	Morocco	Bellakhdar 1997
	Tillugwît, îllugwî, Allugû, Talggût (beı	Cladodes	Prevention of hydrophobia (rabies)	Decoction	Oral	Algeria	Helmstädter 2016
<i>R. raetam</i> (Forsk.) Webb.	R'tam, Retam, Rataym,	Cladodes	Emetic	Powdered and mixed with honey	Oral	Morocco	Bellakhdar 1997
		Cladodes	Purgative, Vermifuge	Decoction	Rectal washings	Morocco	Bellakhdar et al. 1991; Bellakhdar 1997
		Cladodes	Healing in circumcisions Antiseptic and sedative in local wound care, wound and skin ulcers, vulnerary	Powered	Cataplasm	Morocco (Tissint)	Bellakhdar et al. 1991; Bellakhdar 1997
		Cladodes	Antipruritic and Scabies	Decoction	Liniments	Morocco (Marrakech)	Bellakhdar et al. 1991; Bellakhdar 1997
		Cladodes, Flowers	Abortive	Infusion	Oral	Morocco	Abouri et al. 2012; Bellakhdar 1997
		Roots	Abortive	Decoction	Vaginal washings	Morocco (Sahara)	Bellakhdar 1997
	Rtem	Roots	Diphtheria	NS	NS	Morocco (Sahara)	Mouhajir 2002
		Cladodes, Flowers	Skin disease	Decoction	External use	Morocco (Taounate, Tata)	Bellakhdar et al. 1991; El- Hilaly et al. 2003; Abouri et al. 2012
		Cladodes	Rheumatism	Infusion	Oral	Morocco (Tata)	Abouri et al. 2012
		Cladodes	Scorpion bite, wounds he	Cataplasm	External use	Morocco (Tata)	Abouri et al. 2012
	Retam	Cladodes	Rheumatism, Scorpion sting, Skin wounds	NS	NS	Algeria (Ouargla)	Ould El Hadj et al. 2003
		Cladodes	Healing in skin diseases, inflamed eyes, diarrhea, fever	NS		Algeria (Ouanougha)	Rebbas et al. 2012
		Cladodes	Treat stomachache	Infusion	Oral	Algeria	Rebbas et al. 2012
		Cladodes	Skin wounds, back pain	Powdered and mixed with olive oil	External use	Algeria	Rebbas et al. 2012
		Fruits, seeds	Diabetes	Decoction, Infusion	Oral	Algeria (Ouargla)	Telli et al. 2016
		Cladodes	Eczema	Decoction	External use	Algeriaç (M'Sila)	Boudjelal et al. 2013
	Rtam	Cladodes	Scabies	NS	Poultice	Tunisia	Viegi and Ghedira 2014
	Ratam	NS	Diabetes, sinusitis	NS	NS	Libya (Al-Jabal Al-Akhder)	El-Mokasabi 2014
	رتيم	Cladodes	Aching joints, back pain and skin bruise	Decoction	Bath	Israel	Said et al. 2002

	1						
	Retem	Cladodes	Fractures and burns	Decoction	Poultice	Jordan	Hudaib et al. 2008
	Retem	Cladodes	Joint aches	Decoction	Bath	Lebanon	El Beyrouthy et al. 2008
	Ratame	Cladodes, seeds	Antiinflammatory, treat inflamed eyes and sore throat, antirheumatic, treat infertility, treat paralysis	NS	Poultice	Palestine	Ali-Shtayeh et al. 1998
		Cladodes, seeds	Analgesic, treat stomachache	NS	Oral	Palestine	Ali-Shtayeh et al. 1998
	Ratam, rotem hamidbar	Cladodes	Hepatitis, jaundice	Infusion	Internal use	Yemen	Hehmeyer and Schönig 2012
	Ratam, Ratama	Cladodes, Flowers	Syphilis, women infertility	Decoction	External use	Middle –East	Yaniv and Dudai 2014
<i>R. sphaerocarpa</i> Boiss.	R'tam, Retam, Algu	Cladodes	Emetic	Powdered and mixed with honey	Oral	Morocco	Bellakhdar 1997
		Cladodes	Purgative, Vermifuge	Decoction	Rectal washings	Morocco	Bellakhdar 1997
	Rtem	Root	Diabetes	Decoction	Internal use	Morocco (Errachidia)	Tahraoui et al. 2007
	Rtem	Roots	Diphtheria	NS	NS	Morocco (Sahara)	Mouhajir 2002
		NS	To cure rabies	NS	NS	Algeria	Louaar et al. 2005
	Retama de flor amarilla	Cladodes	Joint aches,	Crushed with salt, vinegar or ash	Poultice	Spain	Benitez Cruz 2007
		Fruits	Diarrhoea	Fresh ingested	Oral	Spain	Benitez et al. 2010
		Flowers	Liver disease	Infusion	Oral	Spain	Benitez Cruz 2007; Benitez et al. 2010
		Cladodes	Fever	Infusion/Decoction	Oral	Spain	Benitez Cruz 2007; Benitez et al. 2010
		Flowers	Contusion, pain	Cataplasm	Торіс	Spain	Benitez et al. 2010
		Cladodes	Luxation	No preparation	Торіс	Spain	Benitez et al. 2010
		Flowers	Healing wounds skin	Crushed with water	Poultice	Spain	Benitez Cruz 2007
		Cladodes, Flowers	rheumatism, warts, Healing, Diabetes	Decoction	Oral and external use	Spain	Benitez Cruz 2007
<i>R. dasycarpa</i> Coss.	Algu	Seeds	Urological, nephrological disease		Oral	Morocco (Atlas Mountains)	Teixidor- Toneu et al. 2016

Table 3. Phytochemical composition of different parts of each *Retama* species

Phytochemical clasiffication	Part of plant	Plant species	References
MINERALS			
Al, Ba, Cd, Cu, Fe, Mg, Pb,Zn, Mn,	Cladodes,	R. monosperma	El Hamdani and Fdil.
Ca, K, Na, P	Seeds		2015
ALKANES			
Pentacosane	Flowers,	R. monosperma	Derhali et al. 2016
Hexacosane	Flowers,	R. monosperma	Derhali et al. 2016
Heptacosane	Flowers,	R. monosperma	Derhali et al. 2016
ACIDS	cladodes		
Hevadecanoic acid	Flowers	R monosperma	Derhali et al. 2016
	Tiowers	R. monosperma	
Nonanal (Pelargonaldehyde)	Flowers	R raetam	Edziri et al. 2010
Octanal (Caprylic aldebyde)	Flowers	R raetam	Edziri et al. 2010
Dodecanal (Lauraldebyde)	Flowers	R raetam	Edziri et al. 2010
Undecanal	Flowers	R raetam	Edziri et al. 2010
ALCOHOLS			
Hexadecan-1-ol	Cladodes,	R. sphaerocarpa	Touati et al. 2015
Octadec-9-en-1-ol	Cladodes,	R. sphaerocarpa	Touati et al. 2015
Octadec-1-ol	Cladodes,	R. sphaerocarpa	Touati et al. 2015
Ficosan-1-ol	Cladodes	R sphaerocarpa	Touati et al. 2015
Docosan-1-ol	Cladodes	R sphaerocarpa	Touati et al. 2015
Tetracosan-1-ol	Cladodes	R. sphaerocarpa	Touati et al. 2015
Octacosan-1-ol	Cladodes,	R. sphaerocarpa	Touati et al. 2015
	Seeds		
CYCLITOLS			
Pinitoi	Cladodes	R. monosperma, R. sphaerocarpa, R.	al. 2016
Quinicacid	Cladadas	R sphaerosarna	Touati at al. 2017
	Claubues	R. sphilerocurpu	
Galactomannans	Seeds	R. raetam	Ishurd et al. 2004
Xilo-gluco-4- <i>O</i> -methyl-α-D-	Seeds	R. raetam	Wu et al. 2006
glucopyranosyluronic acid			
FATTY ACIDS			
Saturated			
Lauric acid	Cladodes,	R. monosperma; R.	El Hamdani and Fdil.
	seeds	sphaerocarpa	2015; Touati et al. 2015
Myristic acid	Cladodes,	R. monosperma; R.	El Hamdani and Fdil.
	Seeds	sphaerocarpa	2015; Touati et al, 2015
Pentadecanoic acid	Cladodes,	R. monosperma; R.	El Hamdani and Fdil.
	Seeds	sphaerocarpa	2015; Touati et al. 2015
Margaric acid	Cladodes,	R. monosperma; R.	El Hamdani and Fdil.
-	Seeds	sphaerocarpa	2015; Touati et al. 2015
Stearic acid	Cladodes,	R .monosperma; R.	El Hamdani and Fdil.
	Seeds,	sphaerocarpa	2015; Touati et al.
	Flowers	· ·	

			2015; Derhali et al.
			2016
Arachidic acid	Cladodes,	R .monosperma; R.	El Hamdani and Fdil.
	Seeds	sphaerocarpa	2015; Touati et al.
			2015
Heneicosanoic acid	Cladodes,	R. sphaerocarpa	Touati et al. 2015
	Seeds		
Behenic acid	Cladodes,	R .monosperma; R.	El Hamdani and Fdil.
	Seeds	sphaerocarpa	2015; Touati et al.
			2015
Tricosanoic acid	Cladodes,	R .monosperma; R.	El Hamdani and Fdil.
	Seeds	sphaerocarpa	2015; Touati et al.
Liene corrie corid	Cladadaa	D	2015
Lignoceric acid	Cladodes,	R .monosperma; R.	El Hamdani and Fdil.
	seeds	sphaerocarpa	2015; Touati et al.
Pontacosanois asid	Cladados	P. monosporma	El Hamdani and Edil
	Claubues	R. Monospermu	2015
Palmitic acid	Cladodes	R monosperma	El Hamdani and Edil
	Seeds	n. monosperma	2015
Unsaturated			
Palmitoleic acid (omega 7)	Cladodes,	R .monosperma; R.	El Hamdani and Fdil.
	Seeds	sphaerocarpa	2015; Touati et al.
			2015
Oleic acid (omega 9)	Cladodes,	R .monosperma; R.	El Hamdani and Fdil.
	Seeds	sphaerocarpa	2015; Touati et al.
			2015
Elaidic acid (omega 9)	Cladodes,	R. sphaerocarpa	Touati et al. 2015
	Seeds		
Linolelaidic acid (omega 6)	Cladodes,	R .monosperma; R.	El Hamdani and Fdil.
	Seeds	sphaerocarpa	2015; Touati et al.
			2015
Linoleic acid (omega 6)	Cladodes,	R. monosperma	El Hamdani and Edil.
Linolenic acid(omega_3)	Cladodes	P. monosperma	El Hamdani and Edil
Enolenie acid(oniega-5)	Seeds	n. monosperma	2015
PHENOLIC COMPOUNDS	000000		
Phenolic Alcohols			
Resorcinol	Cladodes	R.raetam	Mariem et al. 2014
Tyrosol	Cladodes	R. sphaerocarpa	Touati et al. 2015
Phenolic Acids			
Hydroxybenzoic acids			
Gallic acid	Cladodes,	R. raetam	Mariem et al. 2014
	seeds		
Protocatechuic acid	Cladodes	R.raetam	Mariem et al. 2014
Ferulic acid	Cladodes	R. sphaerocarpa	Touati et al. 2017
Homoprotocatechuic acid	Cladodes	R.raetam	Mariem et al. 2014
Salycilic acid	Cladodes	R .raetam	Mariem et al. 2014
<i>p</i> -Hydroxybenzoic acid	Cladodes	R .raetam	Mariem et al. 2014
Vainillic acid	Cladodes	R.raetam	Mariem et al. 2014
Gentisic acid	Cladodes	R .raetam	Mariem et al. 2014
Syringic acid	Cladodes	R. raetam	Mariem et al. 2014
	Stems	к. spnaerocarpa	10uati et al. 2017
Hydroxycinhamic acids	Cladedes	D. raotar:	Mariam at al. 2014
	Cladadas	R ractam	Mariam et al. 2014
	Clauddes	A .iuetuili	iviarieni et al. 2014

Ferulic acid	Cladodes	R. raetam; R. sphaerocarpa	Mariem et al. 2014; Touati et al. 2015
<i>p</i> -Coumaric acid	Cladodes; seeds	R. raetam; R. sphaerocarpa;	Djeddi et al. 2013; Mariem et al. 2014; Touati et al. 2017
o-Coumaric acid	Cladodes	R .raetam	Mariem et al. 2014
Phenylpropanoids			
Chlorogenic acid	Cladodes	R .raetam	Mariem et al. 2014
Rosmarinic acid	Cladodes	R .raetam	Mariem et al. 2014
Flavonoids			
Flavonols			
Quercetin	Cladodes,	R. raetam; R.	El Sherbeiny et al.
	50003	sphaeroearpa	2017
Quercetin 3,7-di- <i>O</i> -β-glucoside.		R. sphaerocarpa	Louaar et al. 2005
Rhamnazin (Quercetin 3',7- dimethylether)	Cladodes	R. sphaerocarpa	Lopez-Lázaro et al. 1999
Rhamnazin-3- <i>O</i> -β- glucopyranosyl- $(1\rightarrow 5)$ -α-	Cladodes	R. sphaerocarpa	Martín-Cordero et al. 1999
arabinoturanoside Rhamnazin 3- O - β -D- glucopyranosyl-(1>5)-[β -D- apiofuranosyl(1>2)]- α -L- arabinofuranoside (Retamatrioside)	Cladodes	R. sphaerocarpa	Martín-Cordero et al. 2000a
Kaempferol	Cladodes , Seeds	R. raetam	El Sherbeiny et al. 1978; Djeddi et al. 2013; Mariem et al. 2014
Kaempferol-7-glucoside	Seeds	R.raetam	El Sherbeiny et al. 1978
Isorhamnetin	Cladodes, seeds	R.sphaerocarpa	Touati et al. 2017
Morin	Cladodes, seeds	R.sphaerocarpa	Touati et al. 2017
Galangin	Cladodes, seeds	R.sphaerocarpa	Touati et al. 2017
Flavononols			
Taxifolin	Cladodes, seeds	R.sphaerocarpa	Touati et al. 2017
Flavones			
Luteolin	Cladodes, seeds	R.raetam, R.sphaerocarpa	Abdalla and Saleh 1983; Djeddi et al. 2013; Mariem et al. 201; Touati et al. 2017
Luteolin-di-O-rhamnoside	Claodes, seeds	R.sphaerocarpa	Touati et al. 2017
Luteolin 4'-O-neohesperidoside	Cladodes	R.raetam	Kassem et al. 2000
Orientin (Lutavin Lutaslin & C	Cladadas	P.raotam	Abdalla and Salah
glucoside)	Clauoues	R.sphaerocarpa	1983; Touati et al. 2017
Orientin-4'-glucoside	Cladodes	R.raetam	Abdalla and Saleh 1983
Apigenin	Cladodes, Seeds	R.raetam; R.sphaerocarpa	El Sherbeiny et al. 1978; Mariem et al. 2014; Touati et al. 2017

Anigonin 8-C-glucosido (vitovin)	Cladodes	R sphaerocarpa	Louisar et al. 2005
Apigenin 7 glucoside (Vitexiii)	Cladedes	R raotam	Abdalla and Salah
Apigenin-7-giucoside	Clauodes	R.Idelam	1983
Apigenin 6,8-di-C-glucoside	Cladodes,	R.raetam;	Louaar et al. 2005; El
(vicenin-2)	seeds	R.sphaerocarpa	Sherbeiny et al. 1978;
			Abdalla and Saleh
			1983
Chrysoeriol (3'-Methoxyapigenin)	Cladodes	R.raetam	Abdalla and Saleh
			1983
Scutellarein (6-Hydroxyapigenin)	Cladodes	R.raetam	Djeddi et al. 2013
Prenylated flavones			
Licoflavone C	Cladodes	R.raetam	Xu et al. 2015
Isoprenylated flavones			
Ephedroidin	Cladodes	R.raetam	Kassen et al. 2000; Xu et al. 2015
Furanoflavones			
Retamasins A	Cladodes	R.raetam	Xu et al. 2015
Retamasins B	Cladodes	R.raetam	Xu et al. 2015
Atalantoflavone	Cladodes	R.raetam	Xu et al. 2015
5.4'-dihvdroxy-(3".4"-dihvdro-3".	Cladodes	R.raetam	Kassen et al. 2000
4"-dihvdroxy)-2".2"-	0.000000		
dimethylpyrano-(5".6":7.8)-			
flavone			
Flavanones			
Naringenin	Cladodes	R raetam R	El Sherbeiny et al
i i i i i i i i i i i i i i i i i i i	Seeds	sphaerocarpa:	1978: Mariem et al
	Secus	spilaciocalpa,	2014: Touati et al
			2017
Isoflavones			
130/10/01/23			
Genistein	Cladodes,	R. monosperma, R.	Harborne 1969; El
Genistein	Cladodes, Seeds	R. monosperma, R. raetam	Harborne 1969; El Sherbeiny et al. 1978;
Genistein	Cladodes, Seeds	R. monosperma, R. raetam	Harborne 1969; El Sherbeiny et al. 1978; Djeddi et al. 2013
Genistein 6-Hydroxygenistein	Cladodes, Seeds Cladodes	R. monosperma, R. raetam R. raetam	Harborne 1969; El Sherbeiny et al. 1978; Djeddi et al. 2013 Djeddi et al. 2013
Genistein 6-Hydroxygenistein Genistin (Genistein-7-glucoside)	Cladodes, Seeds Cladodes Cladodes	R. monosperma, R. raetam R. raetam R. sphaerocarpa	Harborne 1969; El Sherbeiny et al. 1978; Djeddi et al. 2013 Djeddi et al. 2013 Lopez-Lázaro et al.
Genistein 6-Hydroxygenistein Genistin (Genistein-7-glucoside)	Cladodes, Seeds Cladodes Cladodes	R. monosperma, R. raetam R. raetam R. sphaerocarpa	Harborne 1969; El Sherbeiny et al. 1978; Djeddi et al. 2013 Djeddi et al. 2013 Lopez-Lázaro et al. 1998; Louaar et al.
Genistein 6-Hydroxygenistein Genistin (Genistein-7-glucoside)	Cladodes, Seeds Cladodes Cladodes	R. monosperma, R. raetam R. raetam R. sphaerocarpa	Harborne 1969; El Sherbeiny et al. 1978; Djeddi et al. 2013 Djeddi et al. 2013 Lopez-Lázaro et al. 1998; Louaar et al. 2005
Genistein 6-Hydroxygenistein Genistin (Genistein-7-glucoside)	Cladodes, Seeds Cladodes Cladodes	R. monosperma, R. raetam R. raetam R. sphaerocarpa	Harborne 1969; El Sherbeiny et al. 1978; Djeddi et al. 2013 Djeddi et al. 2013 Lopez-Lázaro et al. 1998; Louaar et al. 2005
Genistein 6-Hydroxygenistein Genistin (Genistein-7-glucoside) 5-methoxy-Genistein	Cladodes, Seeds Cladodes Cladodes Cladodes	R. monosperma, R. raetam R. raetam R. sphaerocarpa R. monosperma,	Harborne 1969; El Sherbeiny et al. 1978; Djeddi et al. 2013 Djeddi et al. 2013 Lopez-Lázaro et al. 1998; Louaar et al. 2005 Harborne 1969
Genistein 6-Hydroxygenistein Genistin (Genistein-7-glucoside) 5-methoxy-Genistein	Cladodes, Seeds Cladodes Cladodes Cladodes	R. monosperma, R. raetam R. raetam R. sphaerocarpa R.monosperma, R.raetam	Harborne 1969; El Sherbeiny et al. 1978; Djeddi et al. 2013 Djeddi et al. 2013 Lopez-Lázaro et al. 1998; Louaar et al. 2005 Harborne 1969
Genistein 6-Hydroxygenistein Genistin (Genistein-7-glucoside) 5-methoxy-Genistein Genistein 8-C-glucoside	Cladodes, Seeds Cladodes Cladodes Cladodes Cladodes	R. monosperma, R. raetam R. raetam R. sphaerocarpa R.monosperma, R.raetam R.sphaerocarpa	Harborne 1969; El Sherbeiny et al. 1978; Djeddi et al. 2013 Djeddi et al. 2013 Lopez-Lázaro et al. 1998; Louaar et al. 2005 Harborne 1969 Louaar et al. 2007
Genistein 6-Hydroxygenistein Genistin (Genistein-7-glucoside) 5-methoxy-Genistein Genistein 8-C-glucoside Genistein-7-O-xylosyl- 8-C-	Cladodes, Seeds Cladodes Cladodes Cladodes Cladodes Cladodes	R. monosperma, R. raetam R. raetam R. sphaerocarpa R.monosperma, R.raetam R.sphaerocarpa R.sphaerocarpa	Harborne 1969; El Sherbeiny et al. 1978; Djeddi et al. 2013 Djeddi et al. 2013 Lopez-Lázaro et al. 1998; Louaar et al. 2005 Harborne 1969 Louaar et al. 2007 Akkal et al. 2010
Genistein Genistein Genistin (Genistein-7-glucoside) 5-methoxy-Genistein Genistein 8-C-glucoside Genistein-7-O-xylosyl- 8-C- glucoside	Cladodes, Seeds Cladodes Cladodes Cladodes Cladodes Cladodes	R. monosperma, R. raetam R. raetam R. sphaerocarpa R.monosperma, R.raetam R.sphaerocarpa R.sphaerocarpa	Harborne 1969; El Sherbeiny et al. 1978; Djeddi et al. 2013 Djeddi et al. 2013 Lopez-Lázaro et al. 1998; Louaar et al. 2005 Harborne 1969 Louaar et al. 2007 Akkal et al. 2010
Genistein Genistein Genistin (Genistein-7-glucoside) 5-methoxy-Genistein Genistein 8-C-glucoside Genistein-7-O-xylosyl- 8-C- glucoside Daidzein	Cladodes, Seeds Cladodes Cladodes Cladodes Cladodes Cladodes Cladodes	R. monosperma, R. raetam R. raetam R. sphaerocarpa R.monosperma, R.raetam R.sphaerocarpa R.sphaerocarpa R.sphaerocarpa	Harborne 1969; El Sherbeiny et al. 1978; Djeddi et al. 2013 Djeddi et al. 2013 Lopez-Lázaro et al. 1998; Louaar et al. 2005 Harborne 1969 Louaar et al. 2007 Akkal et al. 2010 Harborne 1969; El
Genistein 6-Hydroxygenistein Genistin (Genistein-7-glucoside) 5-methoxy-Genistein Genistein 8-C-glucoside Genistein-7-O-xylosyl- 8-C- glucoside Daidzein	Cladodes, Seeds Cladodes Cladodes Cladodes Cladodes Cladodes Cladodes, Seeds	R. monosperma, R. raetam R. raetam R. sphaerocarpa R.monosperma, R.raetam R.sphaerocarpa R.sphaerocarpa R.sphaerocarpa R.sphaerocarpa R.sphaerocarpa	Harborne 1969; El Sherbeiny et al. 1978; Djeddi et al. 2013 Djeddi et al. 2013 Lopez-Lázaro et al. 1998; Louaar et al. 2005 Harborne 1969 Louaar et al. 2007 Akkal et al. 2010 Harborne 1969; El Sherbeiny et al. 1978;
Genistein Genistein Genistin (Genistein-7-glucoside) 5-methoxy-Genistein Genistein 8-C-glucoside Genistein-7-O-xylosyl- 8-C- glucoside Daidzein	Cladodes, Seeds Cladodes Cladodes Cladodes Cladodes Cladodes Cladodes, Seeds	R. monosperma, R. raetam R. raetam R. sphaerocarpa R.monosperma, R.raetam R.sphaerocarpa R.sphaerocarpa R.sphaerocarpa R.sphaerocarpa	Harborne 1969; El Sherbeiny et al. 1978; Djeddi et al. 2013 Djeddi et al. 2013 Lopez-Lázaro et al. 1998; Louaar et al. 2005 Harborne 1969 Louaar et al. 2007 Akkal et al. 2010 Harborne 1969; El Sherbeiny et al. 1978; Abdalla and Saleh
Genistein Genistein Genistin (Genistein-7-glucoside) 5-methoxy-Genistein Genistein 8-C-glucoside Genistein-7-O-xylosyl- 8-C- glucoside Daidzein	Cladodes, Seeds Cladodes Cladodes Cladodes Cladodes Cladodes Cladodes, Seeds	R. monosperma, R. raetam R. raetam R. sphaerocarpa R.monosperma, R.raetam R.sphaerocarpa R.sphaerocarpa R.sphaerocarpa R.sphaerocarpa	Harborne 1969; El Sherbeiny et al. 1978; Djeddi et al. 2013 Djeddi et al. 2013 Lopez-Lázaro et al. 1998; Louaar et al. 2005 Harborne 1969 Louaar et al. 2007 Akkal et al. 2010 Harborne 1969; El Sherbeiny et al. 1978; Abdalla and Saleh 1983
Genistein Genistein Genistin (Genistein-7-glucoside) 5-methoxy-Genistein Genistein 8-C-glucoside Genistein-7-O-xylosyl- 8-C- glucoside Daidzein Daidzein-7-glucoside (Daidzin)	Cladodes, Seeds Cladodes Cladodes Cladodes Cladodes Cladodes, Seeds Cladodes	R. monosperma, R. raetam R. raetam R. sphaerocarpa R.monosperma, R.raetam R.sphaerocarpa R.sphaerocarpa R.monosperma, R.raetam R.sphaerocarpa	Harborne 1969; El Sherbeiny et al. 1978; Djeddi et al. 2013 Djeddi et al. 2013 Lopez-Lázaro et al. 1998; Louaar et al. 2005 Harborne 1969 Louaar et al. 2007 Akkal et al. 2010 Harborne 1969; El Sherbeiny et al. 1978; Abdalla and Saleh 1983 Lopez-Lázaro et al.
Genistein Genistein Genistin (Genistein-7-glucoside) S-methoxy-Genistein Genistein 8-C-glucoside Genistein-7-O-xylosyl- 8-C- glucoside Daidzein Daidzein-7-glucoside (Daidzin) -	Cladodes, Seeds Cladodes Cladodes Cladodes Cladodes Cladodes Cladodes, Seeds Cladodes	R. monosperma, R. raetam R. raetam R. sphaerocarpa R.monosperma, R.raetam R.sphaerocarpa R.sphaerocarpa R.sphaerocarpa R.raetam R.sphaerocarpa	Harborne 1969; El Sherbeiny et al. 1978; Djeddi et al. 2013 Djeddi et al. 2013 Lopez-Lázaro et al. 1998; Louaar et al. 2005 Harborne 1969 Louaar et al. 2007 Akkal et al. 2010 Harborne 1969; El Sherbeiny et al. 1978; Abdalla and Saleh 1983 Lopez-Lázaro et al. 1998
Genistein Genistein Genistin (Genistein-7-glucoside) 5-methoxy-Genistein Genistein 8-C-glucoside Genistein-7-O-xylosyl- 8-C- glucoside Daidzein Daidzein Genistein-7-glucoside (Daidzin) G'-methoxypseudobaptegenin	Cladodes, Seeds Cladodes Cladodes Cladodes Cladodes Cladodes, Seeds Cladodes Cladodes, Seeds	R. monosperma, R. raetamR. raetamR. raetamR. sphaerocarpaR.monosperma, R.raetamR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpa	Harborne 1969; ElSherbeiny et al. 1978;Djeddi et al. 2013Djeddi et al. 2013Lopez-Lázaro et al.1998; Louaar et al.2005Harborne 1969Louaar et al. 2010Harborne 1969; ElSherbeiny et al. 1978;Abdalla and Saleh1983Lopez-Lázaro et al.1998Louaar et al. 2007
Genistein 6-Hydroxygenistein Genistin (Genistein-7-glucoside) 5-methoxy-Genistein Genistein 8-C-glucoside Genistein-7-O-xylosyl- 8-C- glucoside Daidzein Daidzein 6'-methoxypseudobaptegenin 6'-methoxypseudobaptegenin	Cladodes, Seeds Cladodes Cladodes Cladodes Cladodes Cladodes Cladodes Cladodes Cladodes Cladodes	R. monosperma, R. raetam R. raetam R. raetam R. sphaerocarpa R.monosperma, R.raetam R.sphaerocarpa R.sphaerocarpa R.monosperma, R.sphaerocarpa	Harborne 1969; El Sherbeiny et al. 1978; Djeddi et al. 2013 Djeddi et al. 2013 Lopez-Lázaro et al. 1998; Louaar et al. 2005 Harborne 1969 Louaar et al. 2007 Akkal et al. 2010 Harborne 1969; El Sherbeiny et al. 1978; Abdalla and Saleh 1983 Lopez-Lázaro et al. 1998 Louaar et al. 2007
Genistein 6-Hydroxygenistein Genistin (Genistein-7-glucoside) 5-methoxy-Genistein Genistein 8-C-glucoside Genistein 8-C-glucoside Genistein-7-O-xylosyl- 8-C-glucoside Daidzein Daidzein 6'-methoxypseudobaptegenin 6'-methoxypseudobaptigenin 7- O-B-glucoside	Cladodes, Seeds Cladodes Cladodes Cladodes Cladodes Cladodes Cladodes, Seeds Cladodes Cladodes Cladodes	R. monosperma, R. raetamR. raetamR. raetamR. sphaerocarpaR.monosperma, R.raetamR.sphaerocarpaR.sphaerocarpaR.monosperma, R.raetamR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpa	Harborne 1969; ElSherbeiny et al. 1978;Djeddi et al. 2013Djeddi et al. 2013Lopez-Lázaro et al.1998; Louaar et al.2005Harborne 1969Louaar et al. 2010Harborne 1969; ElSherbeiny et al. 1978;Abdalla and Saleh1983Lopez-Lázaro et al.1998Louaar et al. 2007
Genistein Genistein Genistin (Genistein-7-glucoside) 5-methoxy-Genistein Genistein 8-C-glucoside Genistein-7-O-xylosyl- 8-C- glucoside Daidzein Daidzein G'-methoxypseudobaptegenin G'-methoxypseudobaptegenin G'-methoxypseudobaptigenin 7- O-β-glucoside Biochanin A	Cladodes, Seeds Cladodes Cladodes Cladodes Cladodes Cladodes, Seeds Cladodes Cladodes Cladodes Cladodes	R. monosperma, R. raetamR. raetamR. raetamR. sphaerocarpaR.monosperma, R.raetamR.sphaerocarpaR.sphaerocarpaR.monosperma, R.raetamR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpa	Harborne 1969; ElSherbeiny et al. 1978;Djeddi et al. 2013Djeddi et al. 2013Lopez-Lázaro et al.1998; Louaar et al.2005Harborne 1969Louaar et al. 2010Harborne 1969; ElSherbeiny et al. 1978;Abdalla and Saleh1983Lopez-Lázaro et al.1998Louaar et al. 2007
Genistein Genistein Genistin (Genistein-7-glucoside) 5-methoxy-Genistein Genistein 8-C-glucoside Genistein-7-O-xylosyl- 8-C- glucoside Daidzein Daidzein 6'-methoxypseudobaptegenin 6'-methoxypseudobaptegenin 7- O-β-glucoside Biochanin A Pratensein (3'-bydroxy-biochanin	Cladodes, Seeds Cladodes Cladodes Cladodes Cladodes Cladodes, Seeds Cladodes Cladodes Cladodes Cladodes Cladodes Cladodes	R. monosperma, R. raetam R. raetam R. sphaerocarpa R.monosperma, R.raetam R.sphaerocarpa R.sphaerocarpa R.monosperma, R.raetam R.sphaerocarpa R.sphaerocarpa	Harborne 1969; ElSherbeiny et al. 1978;Djeddi et al. 2013Djeddi et al. 2013Lopez-Lázaro et al.1998; Louaar et al.2005Harborne 1969Louaar et al. 2010Harborne 1969; ElSherbeiny et al. 1978;Abdalla and Saleh1983Lopez-Lázaro et al.1998Louaar et al. 2007
Genistein Genistein Genistin (Genistein-7-glucoside) 5-methoxy-Genistein Genistein 8-C-glucoside Genistein-7-O-xylosyl- 8-C- glucoside Daidzein Daidzein G'-methoxypseudobaptegenin G'-methoxypseudobaptegenin G'-methoxypseudobaptigenin 7- O-β-glucoside Biochanin A Pratensein (3'-hydroxy-biochanin A)	Cladodes, Seeds Cladodes Cladodes Cladodes Cladodes Cladodes Cladodes Cladodes Cladodes Cladodes Cladodes Cladodes Cladodes Cladodes	R. monosperma, R. raetamR. raetamR. raetamR. sphaerocarpaR.monosperma, R.raetamR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR. raetamR. raetam	Harborne 1969; ElSherbeiny et al. 1978;Djeddi et al. 2013Djeddi et al. 2013Lopez-Lázaro et al.1998; Louaar et al.2005Harborne 1969Louaar et al. 2010Harborne 1969; ElSherbeiny et al. 1978;Abdalla and Saleh1998Louaar et al. 2007Lopez-Lázaro et al.1998Louaar et al. 2007
Genistein Genistein Genistin (Genistein-7-glucoside) 5-methoxy-Genistein Genistein 8-C-glucoside Genistein-7-O-xylosyl- 8-C- glucoside Daidzein Daidzein C-methoxypseudobaptegenin G'-methoxypseudobaptegenin G'-methoxypseudobaptigenin 7- O-β-glucoside Biochanin A Pratensein (3'-hydroxy-biochanin A) 3'-O-Methylorobol	Cladodes, Seeds Cladodes Cladodes Cladodes Cladodes Cladodes Cladodes, Seeds Cladodes Cladodes Cladodes Cladodes Cladodes Cladodes	R. monosperma, R. raetamR. raetamR. raetamR. sphaerocarpaR.monosperma, R.raetamR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR.sphaerocarpaR. raetamR. raetamR. raetamR. raetam	Harborne 1969; ElSherbeiny et al. 1978;Djeddi et al. 2013Djeddi et al. 2013Lopez-Lázaro et al.1998; Louaar et al.2005Harborne 1969Louaar et al. 2010Harborne 1969; ElSherbeiny et al. 1978;Abdalla and Saleh1983Lopez-Lázaro et al.1998Louaar et al. 2007

Calycosin	Cladodes,	R.sphaerocarpa	Touati et al. 2017
	seeds		
Puerarin	Cladodes	R.sphaerocarpa	Touati et al. 2017
Furanoisoflavones		-	
Derrone	Cladodes	R.raetam	Xu et al. 2015
5"-Hydroxy-Derrone	Cladodes	R. raetam	Xu et al. 2015
Dihydrochalcones			
Phloretin	Cladodes, seeds	R. sphaerocarpa	Touati et al. 2017
Aurones			
6,4'-dihydroxyaurone (Hispidol)	Seeds	R .raetam	El Sherbeiny et al. 1978
Hispidol-6-glucoside	Seeds	R. raetam	El Sherbeiny et al. 1978
TERPENOIDS			
Monoterpenes			
Oxygenated Monoterpenes			
β-Linalool	Flowers	R. raetam	Edziri et al. 2010; Awen et al. 2011
α-Terpineol	Flowers	R. raetam	Edziri et al. 2010;
			Awen et al. 2011
cis-linalool oxide	Flowers	R. raetam	Awen et al. 2011
Ethyl linalool	Flowers	R. raetam	Awen et al. 2011
Linalyl acetate	Flowers	R. raetam	Edziri et al. 2010
2-Decen-1-ol	Flowers	R. raetam	Awen et al. 2011
Isobornyl thiocyano acetate	Flowers	R. raetam	Awen et al. 2011
Geraniol	Flowers	R. raetam	Edziri et al. 2010
Geraniol formate	Flowers	R. raetam	Awen et al. 2011
Geranyl acetate	Flowers	R. raetam	Edziri et al. 2010
Citronellal	Flowers	R. raetam	Edziri et al. 2010
Neral (Citral)	Flowers	R. raetam	Edziri et al. 2010
Nerol	Flowers	R. raetam	Edziri et al. 2010
Geranial	Flowers	R. raetam	Edziri et al. 2010
Geraniol			Edziri et al. 2010
Non-oxygenated Monoterpenes			
<i>cis</i> -β-Ocimene	Flowers	R. raetam	Awen et al. 2011
Limonene	Flowers	R. raetam	Awen et al. 2011
Terpinolene	Flowers	R. raetam	Edziri et al. 2010;
			Awen et al. 2011
α-Pinene	Flowers	R. raetam	Edziri et al. 2010
β-Pinene	Flowers	R. raetam	Edziri et al. 2010
α-Thujene	Flowers	R. raetam	Edziri et al. 2010
Camphene	Flowers	R. raetam	Edziri et al. 2010
Sabinene	Flowers	R. raetam;	Edziri et al. 2010;
		R.monosperma	Derhali et al. 2016
Myrcene	Flowers	R. raetam	Edziri et al. 2010
α-Terpinene	Flowers	R. raetam	Edziri et al. 2010
Limonene	Flowers	R. raetam	Edziri et al. 2010
<i>p</i> -Cymene	Flowers	R. raetam	Edziri et al. 2010
γ-Elemene	Flowers	R. raetam	Edziri et al. 2010
Santolinatriene	Flowers	R.monosperma	Derhali et al. 2016
Sesquiterpenes			
Nerolidol acetate	Flowers	R. raetam	Awen et al. 2011
α-Humelene (α-Caryophyllene)	Flowers	R. raetam	Edziri et al. 2010
β-Caryophyllene	Flowers	R. raetam;	Edziri et al. 2010;
		R.monosperma	Derhali et al. 2016
Farnesol	Flowers	R. raetam	Edziri et al. 2010

Diterpenes			
Carnosic acid	Cladodes	R. raetam	Mariem et al. 2014
Phytol	Cladodes	R.monosperma	Derhali et al. 2016
Triterpenes			
β-Amyrin	Caldodes	R.sphaerocarpa	Touati et al. 2015
NOR-ISOPRENOIDS			
β -Damascenone	Flowers,	R.monosperma	Derhali et al. 2016
	cladodes		
β -Damascone	Flowers,	R.monosperma	Derhali et al. 2016
	cladodes		
Theaspirane A	Flowers,	R.monosperma	Derhali et al. 2016
Theresises a	cladodes	0	Daubali et al. 2016
Theaspirane B	Flowers,	R.monosperma	Derhall et al. 2016
l'energe	Cladodes	D managemer mag	Darbali at al. 2016
β-homosconono	Flowers	R.monosperma	Derhali et al. 2016
p-Damascenone	cladodes	n.monospermu	Demail et al. 2010
ß-Sitosterol	Cladodes	R monosperma	El Sherbeiny et al
	Seeds	R.sphaerocarpa.	1978: Belavachi et al.
		R.raetam	2014 ; Touati et al.
			2015
Stigmasterol	Cladodes,	R.monosperma,	Belayachi et al. 2014;
	seeds	R.sphaerocarpa	Touati et al. 2015
Campesterol	Cladodes,see	R.monosperma,	Belayachi et al. 2014;
	ds	R.sphaerocarpa	Touati et al. 2015
ALKALOIDS			
Bipyperydine		-	
Ammodendrine	Cladodes,	R.monosperma,	Martin-Cordero et al.
	fruits,	R.spnaerocarpa,	1991; EI-Shaziy et al.
	novers,	R.IUELUIII	1990
N-Formylammodendrine	Cladodes	R monosperma	Fl-Shazly et al. 1996
Debydroammodendrine	Cladodes	R monosperma	El Shazly et al. 1996
Ouinolizidine			Fl-Shazly Et Al. 1996
Epilupinine	Cladodes	R.sphaerocarpa	El-Shazly et al. 1996
Sparteine	Cladodes,	R.monosperma,	Martín-Cordero et al.
	fruits,	R.sphaerocarpa,	1991; El-Shazly et al.
	flowers,	R.raetam	1996
	roots		
A-Isosparteine	Cladodes	R.monosperma,	Martín-Cordero et al.
		R.sphaerocarpa,	1991; El-Shazly et al.
-		R.raetam	1996
β-Isosparteine	Cladodes,	R.monosperma,	El-Shazly et al. 1996
	fruits,	R.raetam	
	flowers,		
11.12 Debudrosparteine	Cladadas	P monochorma	El Shazhy et al. 1006
11,12-Dellydrosparteine	fruits	R snhaerocarna	LI-5118219 Et al. 1990
	flowers	R raetam	
	roots		
17-Oxosparteine	Stems,	R.monosperma.	Martín-Cordero et al.
	flowers	R.sphaerocarpa,	1991; El-Shazly et al.
		R.raetam	1996
Lupanine	Cladodes,	R.monosperma,	Martín-Cordero et al.
	fruits,	R.sphaerocarpa,	1991; El-Shazly et al.
	flowers,	R.raetam	1996
	roots		

α-Isolupanine	Cladodes	R.monosperma,	El-Shazly et al. 1996
		R.sphaerocarpa	
5,6-Dehydrolupamine	Cladodes,	R.monosperma,	Martín-Cordero et al.
	fruits,	R.sphaerocarpa,	1991; El-Shazly et al.
	flowers,	R.raetam	1996
	roots		
12α-Hydroxylupanine	Cladodes	R.sphaerocarpa,	El-Shazly et al. 1996
		R.raetam	Abdel-Halim et al.
			1992
6 α-Hydroxylupanine	Cladodes	R.raetam	Abdel-Halim 1995
Retamine	Cladodes,	R.monosperma,	Martín-Cordero et al.
	fruits,	R.sphaerocarpa,	1991; El-Shazly et al.
	flowers,	R.raetam	1996
	roots		

Table 4. Main biological activities of Retama spp. Species, part of the plant that was analysed, extract tytpe, test system and effects are summarized.

Activity	Extracts	Test Systems	Effects	Study	Dosage	Species	Plant part	References
Analgesic				-				
	Isolated flavonoids (3- methylorobol, Biochamin A)	Acetic acid induced writhing behavior in mice	86.2% and 75.23 % inhibition	In vivo	1 mg kg ⁻¹	R. raetam	Aerial parts	Djeddi et al. 2013
Anti-anxiety								
	MeOHE	Elevated plus-maze test in mice model	The extract enhances ambulatory movement at a dosage of 250 mg kg ⁻¹ , but decrease it at higher doses. Anxiolytic at lowest doses and anxiogenic athighest doses	In vivo	125, 250 and 375 mg kg ⁻¹	R. raetam	Aerial parts	Al-Tubuly et al. 2011
Antihypertensive/Diuretic								
	AE	Normotensive and hypertensive animal model. Oral administration	Lowered systolic blood pressure in spontaneous hypertensive rats by 26.5 mmHg from 7 days (increased Na ⁺ ,K ⁺ ,and Cl ⁻ excretion). Enhancement of glomerular filtration rate	In vivo	20 mg kg ⁻¹ body weight day ⁻¹ p.o. for 3 weeks	R. raetam	Leaves	Eddouks et al. 2007
	AE	Wistar rats (urinary excretion, clearance of creatinine, plasma osmolality). Intravenously administration.	Elevation of Glomerular filtration rate, a significant decrease of osmolarity and a significant diuretic effect in normal rats. Reduction of blood pressure	In vivo	5 mg kg ⁻¹ body weight. h i.v.	R. raetam	Aerial parts	Maghrani et al. 2005
Anti-inflammatory								
	EtOAcF	Monocytes from healthy human donors	Inhibition 80-100% against the activation of TNF- α signalling	In vitro	10 μg ml ⁻¹	R. sphaerocarpa	Cladodes	Bremmer et al. 2009
	AE	Wistar rats (Extension of colon lesion) (Colonic weight length ratio)	This extract significantly attenuated the extend and severity of the colonic injury against control TNBS. 0.18 and 0.19 mg cm ⁻¹ at 9 and 18 mg kg ⁻¹ respectively against the negative control TNBS (0,26 mg cm ⁻¹)	In vivo	9 and 18 mg kg ⁻¹ p.o.	R. monosperma	Cladodes	González-Mauraza et al. 2014
	HEtOHE	%-Lipoxygenase enzyme inhibition assay	IC ₅₀ : 0.421 mg ml ⁻¹	In vitro		R. raetam	Aerial parts	Miguel et al. 2014
Antimicrobial								
	EtOAcE	Bacillus subtilis, Streptococcus agalactiae, Streptococcus pyogenes, Enterococcus faecium, Staphylococcus aureus (MSSA), and Staphylococcus aureus (MRSA)	MICs : 0.256–1.25 mg ml ⁻¹	In vitro	0,1 µg ml ⁻¹ µp to 2mg ml ⁻¹	R. raetam	Flowers	Edziri et al. 2008
	MeOHE	Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi	An Inhibition zone diameter at 14-19 mm	In vitro	150 μg ml ⁻¹ disc	R. raetam	Leaves	Alghazeer et al. 2012
	EtOAcF	Bacillus cereus ATCC 14579, Escherichia coli ATCC 85218	An Inhibition zone diameter equal to 12mm	In vitro	300 µg ml ⁻¹	R. raetam	Cladodes	Mariem et al. 2014
	Essential oil	Staphylococcus aureus ATTC 27950, Streptococcus faecalis ATCC 29212	MICs: 2.5 and 0.625mg ml ⁻¹ respectively	In vitro	0.625-5 mg ml ⁻¹	R. raetam	Flowers	Edziri et al. 2010
	Essential oil	Staphylococcus aureus, Streptococcus pyogenes	MICs: 250 and 375 µg ml ⁻¹ for isolated compunds 3-6 mg ml ⁻¹ essential oil	In vitro	Up to 6 mg ml ⁻¹	R. raetam	Flowers	Awen et al. 2011
	Flavonoids isolated from EtOAcE (licoflavone	Escherichia coli Pseudomonas aeruginosa Candida sp	MICs: 7.81-15.62 81 µg ml ⁻¹ for bacteria 7.81 µg ml ⁻¹ for fungi	In vitro	0.125 μg ml ⁻¹ up to 250 μg ml ⁻¹	R. raetam	Flowers	Edziri et al. 2012

	C and							
	HMeOHE	Staphylococcus aureus ATCC 25923, L. innocua CLIP 74915, Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 2785	Inhibition zone diameter <i>S. aureus</i> : 11.17 mm (cladodes); <i>P. aeruginosa</i> : 10.23 mm	In vitro	20 µl at 3mg ml ⁻¹ per disk ml ⁻¹	R. sphaerocarpa	Cladodes	Touati et al. 2016
	EtOAcE	Bacillus subtilis, Enterococcus faecium, Enterococcus fecalis, Streptococcus agalactiae, Streptococcus pyogenes, Corynebacterium spp, Staphylococcus aureus (MSSA), and Staphylococcus aureus (MRSA), Acinetobacter beumannii, Erratia marcescens, Escherichia coli, Klebsiella pneumonia, Candida albicans, C. glabrata, C. parapsilosis, C. kreusei	MIC less than 1mg ml ⁻¹ for Gram-positive bacteria, especially MSSA, MRSA and Streptococcus spp. Low antifungal activity	In vitro	1 µg ml ⁻¹ up to 10 mg ml ⁻¹	R. raetam	Aerial parts	Edziri et al. 2007
	Acid-base alkaloids purification from a MeOHE extract	Aspergillus niger, Candida albicans, Candida tropicalis	An Inhibition zone diameter at 125 µg ml ⁻¹ 10.1, 9.66 and 8.10 mm respectively for stems; 9.66; 9.33; 7,01 mm for leaves	In vitro	31,25 μg ml ⁻¹ up to 500 μg ml ⁻¹	R. monosperma	Stem Leaves Flowers Seeds	El Hadmani et al. 2016
Anti-osteoporosis								
	HMeOHE	Dexamethasone induced osteoporosis in rats	Increase in alkaline phosphatase activity Amelioration of the imbalance between bone resorption and formation	In vivo	30 mg kg ⁻¹ , 3 months	R. raetam	Seeds	Omara et al., 2009
Antioxidant								
	AE	DPPH, Hydrogen peroxide scavenging activity	Low free radical scavenging activity, good hydrogen peroxide scavenging activity flowers: 54 %; stems 53 %)	In vitro	100-1000 mg L ⁻¹	R. raetam	Roots Stems Flowers Fruits	Djeddi et al. 2013
	HEtOHE	Indometacin administred reduced significantly SOD, CAT, GST	SOD, CAT, GST increased by the extract	In vivo	25 mg kg ⁻¹	R. raetam	Seeds	El-Toumy et al. 2011
	HMeOHE	Gavage of 7.2 mg kg ⁻¹ per day of Formalin for two weeks	This extract cancels out the formalin mediated increase in red blood cells count, hemoglobin content, serum glucose, SOD and GPX.	In vivo	20 mg kg ⁻¹ day ⁻¹ for 3 weeks	R. raetam	Seeds	Koriem et al. 2010
	HMeOHE	ABTS, Reduction power, DPPH	ABTS IC_{50} : 125.62 µg ml ⁻¹ ; Reduction power:1.25 mg ml ⁻¹ ; DPPH IC_{50} : 252.03 µg ml ⁻¹ ;	In vitro		R. sphaerocarpa	Cladodes	Touati et al. 2016
	HEtOHE	TBARS	IC ₅₀ : 1.05 mg ml ⁻¹	In vitro		R. raetam	Aerial parts	Miguel et al. 2014
	HEtOHE	DPPH	IC ₅₀ : 0.477 mg ml ⁻¹	In vitro		R. raetam	Aerial parts	Miguel et al. 2014
	HEtOHE	OH scavenging activity	IC ₅₀ : 0.144 mg ml ⁻¹	In vitro		R. raetam	Aerial parts	Miguel et al. 2014
	HEtOHE	Chelating metal ions	IC ₅₀ : 0.134 mg ml ⁻¹	In vitro		R. raetam	Aerial parts	Miguel et al. 2014
	HEIOHE MeOHE	ABIS DPPH test TAC and	10_{50} : 0.23 / mg ml ⁻¹	In vitro		R. raetam	Aerial parts Seeds	Tili et al. 2014
	MEOHE	Reduction power assay	gallic acid equivalents ml ⁻¹ ; EC ₅₀ : 78.10 μg ml ⁻¹ respectively	111 VIII O		K. rueum	Secus	1 mi ci al. 2013

	MeOHE	DPPH test	IC ₅₀ : 40 μg ml ⁻¹	In vitro	0.03 up to 3.13 mg ml ⁻¹	R. raetam	Leaves	Alghazeer et al. 2012
	MeOHE	ORAC, TEAC, DPPH, FRAP, Antiglycation capability	7.3 mmol Trolox equivalent g^{-1} extract, 0.4 mmol Trolox equivalent g^{-1} extract, 0.24 mmol Trolox equivalent g^{-1} extract, 0.2 mmol Fe ² g^{-1} extract, respectively. IC ₅₀ of AGEs inhibition: 40.32 µg ml ⁻¹	In vitro	5 μg ml ⁻¹ up to 100 μg ml ⁻¹	R. sphaerocarpa	Fruits	Boussahel et al. 2017
	AE	ORAC, TEAC, DPPH, FRAP, Antiglycation capability	4.03 mmol Trolox equivalent g^{-1} extract, 0.3 mmol Trolox equivalent g^{-1} extract, 0.16 mmol Trolox equivalent g^{-1} extract, 0.7 mmol Fe ²⁺ g^{-1} extract, respectively. IC ₅₀ of AGEs inhibition: 249.86 µg ml ⁻¹	In vitro	50 μg ml ⁻¹ up to 400 μg ml ⁻¹	R. sphaerocarpa	Fruits	Boussahel et al. 2017
	MeOHE	TBA test	IC ₅₀ : 0.122 %(w/v)	In vitro	0.005 % w/v up to 0.5 % w/v	R. raetam subsp. gussonei	Seeds	Conforti et al. 2004
	MeOHE	TBA test	IC ₅₀ : 0.59 % (w/v)	In vitro	0.005 % w/v up to 0.5 % w/v	R. raetam subsp. gussonei	Leaves	Conforti et al. 2004
	EtOAcF	DPPH test	EC ₅₀ : 150 μg ml ⁻¹	In vitro		R. monosperma	Seeds	Belmokhatar and Harche 2014
	EtOAcF	DPPH test	IC ₅₀ : 166 μg ml ⁻¹	In vitro	1 μg ml ⁻¹ up to 100 μg ml ⁻¹	R. sphaerocarpa	Cladodes	León-González 2012
	EtOAcF	DPPH test	IC ₅₀ : 400 μg ml ⁻¹	In vitro	0,1 μg ml ⁻¹ up to 2mg ml ⁻¹	R. raetam	Flowers	Edziri et al. 2008
	EtOAcF	DPPH test	IC ₅₀ : 33.5 μg ml ⁻¹	In vitro	6	R. raetam	Cladodes	Mariem et al. 2014
	EtOAcF	ABTS assay	EC ₅₀ : 500 µg ml ⁻¹	In vitro		R. raetam	Cladodes	Mariem et al. 2014
	Essential oil	DPPH test	EC ₅₀ : 800 µg ml ⁻¹	In vitro		R. raetam	Flowers	Edziri et al. 2010
Antiulcer								
	HEtOHE	Gastroprotective effect of ulcers induced by Indometacin	76% protection compared to Ranitidine (85%)	In vivo	25 mg kg ⁻¹	R. raetam	Seeds	El-Toumy et al. 2011
Antiviral								
	MeOHE	Ability of the extract to inhibit the cytopathic effect of human cytomegalovirus (HCMV) strain AD-169	IC ₅₀ : 250 μg ml ⁻¹	In vitro	0,1 μg ml ⁻¹ up to 2 mg ml ⁻¹	R. raetam	Flowers	Edziri et al. 2008
Cytotoxic								
	DCMEF	MTT assay: SiHa cervical carcinoma and HeLa cervix carcinoma	IC ₅₀ : 15 and 21 μg ml ⁻¹	In vitro	5 up to 80 $\ \mu g \ ml^{-1}$	R. monosperma	Leaves	Merghoub et al. 2011
	DCMEF	Apoptosis induction: annexin V and propidium iodide stain in SiHa and HeLa cell lines	28.34 % early apoptosis in SiHa; 57.68 % in HeLa. Reduction of mitochondrial membrane potential, increase in ROS levels, activation of Caspase 3 and a decrease in Bcl2 expression	In vitro	20 μg ml ⁻¹	R. monosperma	Leaves	Merghoub et al. 2011
	EtOAcE	MTT assay: SiHa cervical carcinoma and HeLa cervix carcinoma	IC_{50} : 28 and 77 $\mu g~ml^{-1}$	In vitro	5 up to 80 $\ \mu g \ ml^{-1}$	R. monosperma	Leaves	Merghoub et al. 2011
	МеОН	SRB assay: large lung carcinoma cell (COR-L23)	IC ₅₀ :40 μg ml ⁻¹	In vitro	1,5, 10, 20, 30, 50, 100, 150 μg ml ⁻¹	R. raetam subsp. gussonei	Leaves	Conforti et al. 2004
	МеОН	SRB assay: large lung carcinoma cell (COR-L23)	IC ₅₀ :150 μg ml ⁻¹	In vitro	1,5, 10, 20, 30, 50, 100, 150 μg ml ⁻¹	R. raetam subsp. gussonei	Seeds	Conforti et al. 2004

	HE	Cell Titer –Glo Luminiscent assay: Leukemic T-cell lymphoblast (Jurkat cell line)	IC ₃₀ : 34.44 μ g ml ⁻¹ Cell cycle arrest, activation of Caspase 3, 7, 8, and 9. increase in Fas L level	In vitro	0 up to 50 µg ml ⁻¹	R. monosperma	Leaves	Belayachi et al. 2014
	HEXE	Cell Titer –Glo Luminiscent assay: Lymphocyte cells (Jurkat)	IC ₅₀ : 34.44 μg ml ⁻¹	In vitro	$\frac{1}{\mu g} ml^{-1} up \text{ to } 50$ $\mu g ml^{-1}$	R. monosperma	Leaves	Belayachi et al. 2013
	MeOHE	Cell Titer –Glo Luminiscent assay: Lymphoblast cells (Jeko-1)	IC ₅₀ : 21.47 μg ml ⁻¹	In vitro	1 μg ml ⁻¹ up to 50 μg ml ⁻¹	R. monosperma	Leaves	Belayachi et al. 2013
	DCMF	Cell Titer –Glo Luminiscent assay: Lymphoblast cells (Jeko-1), Lymphocyte cells (Jurkat)	$IC_{50};$ 24 .77 μg ml $^{-1}$ ml $^{-1}$ and 9.12 μg ml $^{-1}$ respectively	In vitro	1 μg ml ⁻¹ up to 50 μg ml ⁻¹	R. monosperma	Leaves	Belayachi et al. 2013
	EtOAcF	Cell Titer –Glo Luminiscent assay: Lymphoblast cells ((Jeko-1), Lymphocyte cells (Jurkat)	IC ₅₀ : 12.01 μ g ml ⁻¹ and 20.22 μ g ml ⁻¹ respectively	In vitro	1 μg ml ⁻¹ up to 50 μg ml ⁻¹	R. monosperma	Leaves	Belayachi et al. 2013
	TCMF	SRB assay: human renal adenocarcinoma (TK-10); human breast adenocarcinoma (MCF-7): human melanoma (UACC-62)	IC_{50} : 87 $\mu g\ ml^{-1}$, 76 $\mu g\ ml^{-1}$ and 42 $\mu g\ ml^{-1}$ respectively	In vitro	25 μg ml ⁻¹ up to 250 μg ml ⁻¹	R. sphaerocarpa	Aerial parts	López-Lázaro et al. 2000
	EtOAcF	SRB assay: human renal adenocarcinoma (TK-10); human breast adenocarcinoma (MCF-7): human melanoma (UACC-62)	IC_{50} : 49 $\mu g\ ml^{-1}$, 52 $\mu g\ ml^{-1}$ $$ and 36 $\mu g\ ml^{-1}$ respectively	In vitro	25 μg ml ⁻¹ up to 250 μg ml ⁻¹	R. sphaerocarpa	Aerial parts	López-Lázaro et al. 2000
	BuOHF	SRB assay: human renal adenocarcinoma (TK-10); human breast adenocarcinoma (MCF-7): human melanoma (UACC-62)	IC_{50} >250 μg ml $^{-1}$, 51 μg ml $^{-1}$ and 65 μg ml $^{-1}$ respectively ml $^{-1}$	In vitro	25 μg ml ⁻¹ up to 250 μg ml ⁻¹	R. sphaerocarpa	Aerial parts	López-Lázaro et al. 2000
Hypolipidaemic	AE	STZ rats	This extract exhibited long term cholesterol and	In vivo	20 mg kg ⁻¹	R raetam	Cladodes	Maghrani et al. 2004
		512100	triglycerides lowering activities in normal and streptozotocin	11 1110	20 mg kg		Chuloues	Augmun et al. 2004
	HMeOHE	Gavage of 7,2 mg kg ⁻¹ per day of Formalin for two weeks	This extract decrease serum cholesterol levels	In vivo	20 mg kg ⁻¹ day ⁻¹ for 3 weeks	R. raetam	Seeds	Koriem et al. 2010
Hypoglycaemic								

	AE	STZ rats	This extract induced a significant hypoglycaemic	In vivo	20 mg kg ⁻¹	R. raetam	Leaves	Maghrani et al. 2003
			effect both in normal an streptozotocin diabetic					
			rats (STZ). This effect was more pronounced in					
			STZ than normal rats. This effect was greater					
			than metformin. No effect in insulin levels					
	MeOHE	STZ rats	This extract at 250 or 500 mg kg-1 significantly	In vivo	100, 250, 500 mg	R. raetam	Fruits	Algandaby et al. 2010
			lowered blood glucose levels at the 3rd and 1st		kg ⁻¹			
			week of treatment, respectively. Increase of		Ū.			
			insulin levels. Inhibition of glucose intestine					
			absorption					
Hepatoprotective								
	AE	Carbon tetrachloride induced	Reduce histopathological alterations. Restore	In vivo	20 and 40 mg kg ⁻¹	R. raetam	Seeds	Omara et al. 2009
		liver damage in rats	enzyme serum levels (aspartate and alanine		for 2, 3 or 4 weeks			
		5	aminotransferase, alkaline phosphatase					
	HMeOHE	Liver and kidney toxicity	Diuresis, Decrease in cholesterol levels, reduce	In vivo	100 or 20 mg kg ⁻¹	R. raetam	Seeds	Koriem et al. 2010
		induced bay formalin	hyperglucemia, antioxidant properties, reverse of		for 2 weeks			
		-	histopathological laterations, restore lyier					
			enzimes serum levels					

AE: Aquous extract; BuOHF: buthanol fraction; EPE:ether petroleum extract; DCMEF: Dichloromethane fraction; EtOAcE: Ethyl acetate extract; EtOAcF: Ethyl acetate fraction; HEtOHE: H₂O: Ethanol extract; HMeOHE: H₂O: Methanol extract; MeOHE: H₂O: Meth