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Abstract: Haemophilus influenzae is a gram-negative bacterium of relevant clinical interest. H. influenzae
Rd KW20 was the first organism to be sequenced and for which a genome-scale metabolic model
(GEM) was developed. However, current H. influenzae GEMs are unable to capture several aspects of
metabolome nature related to metabolite pools. To directly and comprehensively characterize the
endometabolome of H. influenzae Rd KW20, we performed a multiplatform MS-based metabolomics
approach combining LC-MS, GC-MS and CE-MS. We obtained direct evidence of 15–20% of the
endometabolome present in current H. influenzae GEMs and showed that polar metabolite pools are
interconnected through correlating metabolite islands. Notably, we obtained high-quality evidence of
18 metabolites not previously included in H. influenzae GEMs, including the antimicrobial metabolite
cyclo(Leu-Pro). Additionally, we comprehensively characterized and evaluated the quantitative
composition of the phospholipidome of H. influenzae, revealing that the fatty acyl chain composition
is largely independent of the lipid class, as well as that the probability distribution of phospholipids
is mostly related to the conditional probability distribution of individual acyl chains. This finding
enabled us to provide a rationale for the observed phospholipid profiles and estimate the abundance
of low-level species, permitting the expansion of the phospholipidome characterization through
predictive probabilistic modelling.

Keywords: microbial metabolomics; microbial lipidomics; phospholipidome; phospholipid compositional
model; metabolome characterization; lipidome characterization; Haemophilus influenzae

1. Introduction

Haemophilus influenzae is a gram-negative, pleomorphic bacillus that belongs to the
Gammaproteobacteria class. Attending to the presence and type of its polysaccharide
capsule, this species is classified into serotypes a–f and unencapsulated serotypes, which
are also referred to as non–typeable H. influenzae (NTHi). All serotypes are capable of in-
fecting humans and establishing disease, with serotype b (Hib) being the most virulent [1,2].
H. influenzae and, in particular, Hib cause a wide spectrum of clinical manifestations, es-
pecially in children. These complications range from otitis media and bronchitis to more
severe invasive conditions, such as pneumonia, meningitis, and sepsis [3]. Conjugate vac-
cines against Hib have significantly reduced the mortality rates attributable to H. influenzae
in the developed world. According to a 2015 estimate [4], Hib is responsible for an annual
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death toll of more than 29,000 children worldwide, with most deaths occurring in low–
income countries. NTHi is recently gaining attention as an underestimated pathogen, for
which no current vaccine has been developed [5–7].

Due to its relevance from a public health perspective and the well-known techniques
used for its culture in vitro [8], it is not surprising that several pioneering studies have con-
tributed to characterizing H. influenzae from a systems biology perspective. The genome of
H. influenzae was the first entire genome sequenced from a free-living organism, and it spans
over 1.83 Mb and contains ~1700 genes [9]. Further advances in omic technologies allowed
the performance of high-throughput gene and protein expression analyses that, while
mostly aiming to perform differential expression analyses, also characterized a substantial
part of the compendium of transcripts [10] and proteins expressed in H. influenzae [11–14].

One of the next frontiers in systems biology is the characterization of small molecules
implicated in the metabolism of an organism from a global perspective, as their diverse
physicochemical nature prohibits the use of amplification techniques for their determina-
tion. However, H. influenzae was the first organism for which a genome-scale metabolic
model (GEM) was reconstructed [15], and its metabolic capabilities have been extensively
studied [16–18]. The first GEM of H. influenzae inferred from gene annotation [9] consisted
of an initial metabolic architecture, which contained 343 metabolites and 488 reactions.
The next developed GEM, i.e., iCS400, contained 367 unique metabolites and 546 reactions
encompassing central carbon, amino acid, nucleotide, and lipid metabolism, as well as elec-
tron transport reactions and transport reactions between the cell and its environment [19].
Recently, an updated GEM, i.e., iNL638, was developed, which contains 746 metabolites
and 1385 reactions [18]. Significant advances in the developed GEMs include the addition
of tRNA metabolism, enhanced presence of lipid species, inclusion of significant cofactors,
incorporation of a periplasm compartment, extensive literature curation, and usage of more
complex biomass functions [18]. However, the metabolite pool composition of H. influenzae
is poorly described, as only a limited number of metabolomic studies have provided direct
evidence of metabolites being present in H. influenzae [16,20–22]. Direct characterization of
the metabolome and lipidome can address limitations in inferring metabolome qualitative
composition from genomics, as metabolites whose production is not supported by the
predicted enzymatic capabilities may also be detected [23]. Moreover, the qualitative com-
position of metabolites and lipids generated by enzymes with multiple substrate affinities
cannot be inferred from simple gene annotation [24,25].

Small molecules play crucial roles not only within cells, but also in the formation of
biological membranes. Similar to other gram-negative bacteria, the membrane of H. influen-
zae consists of an outer and inner membrane. Pioneering studies in other bacteria revealed
that gram-negative bacterial membranes are asymmetric in nature [26–28] and composed
of membrane proteins and glycerophospholipids (GPs), while bacterial lipopolysaccha-
ride (LPS) predominantly conforms to the outer leaflet of the outer membrane [29–31].
According to the literature, the membrane of H. influenzae possesses one of the simplest
compositions found in gram-negative bacteria, as few membrane GP classes have been
found to be present in H. influenzae phospholipid extracts, which account for approxi-
mately 85% phosphatidylethanolamine (PE) and 15% phosphatidylglycerol (PG) relative
content [32]. This relative proportion of PEs and PGs, their specific membrane locations,
and the degree of unsaturation and carbon number of acyl-chain moieties are critical factors
that define the properties of fluidity, membrane permeability, and stability of H. influenzae
membranes [33–35]. Previous GC-MS analyses related to phospholipid hydrolysis reported
that H. influenzae PEs contain C14:0, C16:0, C16:1, and C18:0 as predominant fatty acyl
chains, while only C16:0 and C18:0 were found to be fatty acyl chains bound to PGs [36].
Several lipidomic studies revealed a notably more complex fatty acyl profile in bacterial
membrane GPs [27,37–39]. Regarding the specific position of these fatty acyl moieties in
gram-negative GPs, it is well known that fatty acyl chains bound to the sn-1 position of the
glycerol backbone are preferentially saturated, while monounsaturated fatty acyl chains
are preferentially found at the sn-2 position [40,41]. In addition, it is known that these
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unsaturations mostly correspond to the presence of Z double bonds and cyclopropane
rings within fatty acyl chains [40,41]. However, the presence of low-level fatty acyl chains
and the degree of lipid chain asymmetry between sn-1 and sn-2 positions of GPs have not
yet been qualitatively or quantitatively addressed in H. influenzae.

In recent years, several ‘lipid atlases’ of distinct biological matrices have been eluci-
dated [42]. These atlases aimed to accurately describe and quantify the lipidome found in
specimens of biological origin. However, as lipid atlases are inferred from LC-MS data, they
often face limitations related to sensitivity that challenge the acquisition of information
from the ‘deep lipidome’. These limitations include the inability to match low-quality
MS/MS spectra or determine lipid species whose abundance is under the limit of detection.

In this study, we performed a multiplatform mass-spectrometry approach that enabled
us to qualitatively and quantitatively characterize the endometabolome and phospho-
lipidome of H. influenzae. We identified 18 metabolite species and GPs not previously
described in the reference metabolic model and elucidated the chemical structure of GPs
present in H. influenzae to the species level. Notably, the evaluation of the phospholipidome
compositional profile allowed us to develop a mathematical rationale that could be used to
explain the reasons that some phospholipids predicted to occur were not observed in our
lipidomic analysis and permitted the expansion of the phospholipidome by predicting the
abundance order of magnitude of these low-level species.

2. Results and Discussion
2.1. Global Compositional Properties of the Experimentally Determined Metabolome of
Haemophilus influenzae

A total of 257 chemical species with a wide variety of functional groups and po-
larities were annotated with varying degrees of confidence (Figure 1a). These species
included 96 polar metabolites (Table S1, File S1), lipids encompassed in 64 sum com-
positions (with evidence for the presence of at least 118 lipids, Tables S1 and S2), and
47 linear peptides with unknown functions (Figure 1a, Table S1). Remarkably, most polar
metabolites were identified with an L1 level of confidence in the annotation, except for
most peptides, which had L3 annotations (Figure 1a, Table S1). Interestingly, lipid anno-
tations showed a high level of confidence, being predominantly L2 (Figure 1a). Taken
together, these annotations accounted for 15–20% of the small molecule compendium of
H. influenzae, as captured in current GEMs (Figure 1b, Table S3). Although our study
provided a modest metabolome coverage compared to the global metabolome present
in current H. influenzae GEMs, these values were consistent with the current state-of-the
art coverage of single resources in untargeted metabolomics [43]. Systematic chemical
ontology analysis revealed the presence of several metabolite classes in the experimentally
determined metabolome, with notable representation of peptides, lipids, and carbohydrates
(Figure 1c, Table S1) attributable to the combination of techniques used in this analytical ap-
proach. Correlation analysis of metabolite pools showed the presence of 13 self-correlating
metabolite islands among polar metabolites, excluding peptides with unknown function
(A–M, Figure 1d, Table S1). These self-correlating islands exhibited partial intercorrelation
(Figure 1d, Table S4). Very high correlation coefficients were observed for expected metabo-
lite pairs with well-known biochemical associations, such as valine–isoleucine, glutathione
disulfide–S-adenosylmethionine, or the branched-chain keto acid dehydrogenase products
3-methyl-2-oxovalerate–2-ketoisocaproate (Table S4), which demonstrate the usefulness
of the correlation analysis employed. Additionally, very high self-correlations between
peptides and correlations between specific lipid sum compositions and polar metabolites
were observed (Table S5).
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Figure 1. Qualitative and semiquantitative properties of the metabolome of H. influenzae. (a) Confi-
dence in the annotation of polar metabolites, lipids, and linear peptides with unknown function; (b) 
metabolome coverage achieved via our multiplatform MS-based metabolomics approach and novel 
polar metabolites are annotated, both with regard to the filtered small molecule datasets obtained 
from iCS400 and iNL638 GEMs (each lipid type was considered to be a representative example, 
including the novel phospholipid subclass, LPE); (c) chemical ontology classification of annotated 
polar metabolites, excluding linear peptides of unknown function; (d) correlation heatmap of abun-
dances in polar metabolites, not including linear peptides of unknown function. Self-correlating 
metabolite islands are denoted by letters. Intercorrelating islands are denoted by the product of let-
ters. Asterisks (*) in the correlation heatmap specify that only part of the self-correlating island was 
involved in the intercorrelation. 

To provide insights into the topology of H. influenzae metabolic pathways, we per-
formed community clustering of the iNL638 periplasmic and cytoplasmic metabolite–re-
action subnetwork (File S2). The clustering algorithm classified the corresponding net-
work entities in 53 highly interconnected clusters of varying sizes and significantly en-
riched in different KEGG pathways (Figure 2, Tables 1 and S6). Among these examples, 
several highly sized clusters (clusters 1, 7, 13, 19, 22, Figure 2, Table S6) encompassed mul-
tiple metabolic pathways (Tables 1 and S6). Over-representation of network clusters in our 
experimentally determined metabolome was heterogeneous among clusters, with higher 
enrichment values found in clusters associated with general central carbon metabolism 
(cluster 1, Table 1), carbohydrate metabolism and transport (clusters 1, 3, 28, and 35, Table 
1), amino acid metabolism and transport (clusters 1, 7, 9, 12, 15, 16, 18, 19, 22, 23, 30, 34, 
49, 50, and 53, Table 1), nucleotide metabolism (clusters 7, 10, 11, 27, 44, and 45, Table 1), 
and choline transport and incorporation into lipo-oligosaccharide (cluster 48, Table 1). The 

Figure 1. Qualitative and semiquantitative properties of the metabolome of H. influenzae. (a) Con-
fidence in the annotation of polar metabolites, lipids, and linear peptides with unknown function;
(b) metabolome coverage achieved via our multiplatform MS-based metabolomics approach and
novel polar metabolites are annotated, both with regard to the filtered small molecule datasets ob-
tained from iCS400 and iNL638 GEMs (each lipid type was considered to be a representative example,
including the novel phospholipid subclass, LPE); (c) chemical ontology classification of annotated
polar metabolites, excluding linear peptides of unknown function; (d) correlation heatmap of abun-
dances in polar metabolites, not including linear peptides of unknown function. Self-correlating
metabolite islands are denoted by letters. Intercorrelating islands are denoted by the product of
letters. Asterisks (*) in the correlation heatmap specify that only part of the self-correlating island
was involved in the intercorrelation.

To provide insights into the topology of H. influenzae metabolic pathways, we per-
formed community clustering of the iNL638 periplasmic and cytoplasmic metabolite–
reaction subnetwork (File S2). The clustering algorithm classified the corresponding net-
work entities in 53 highly interconnected clusters of varying sizes and significantly enriched
in different KEGG pathways (Figure 2, Tables 1 and S6). Among these examples, several
highly sized clusters (clusters 1, 7, 13, 19, 22, Figure 2, Table S6) encompassed multiple
metabolic pathways (Tables 1 and S6). Over-representation of network clusters in our
experimentally determined metabolome was heterogeneous among clusters, with higher
enrichment values found in clusters associated with general central carbon metabolism
(cluster 1, Table 1), carbohydrate metabolism and transport (clusters 1, 3, 28, and 35, Table 1),
amino acid metabolism and transport (clusters 1, 7, 9, 12, 15, 16, 18, 19, 22, 23, 30, 34, 49,
50, and 53, Table 1), nucleotide metabolism (clusters 7, 10, 11, 27, 44, and 45, Table 1), and
choline transport and incorporation into lipo-oligosaccharide (cluster 48, Table 1). The
absence of metabolite mapping in some large- and medium-sized clusters revealed areas
of the H. influenzae metabolome that are poorly covered and warrant further metabolomic
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investigation (e.g., clusters 2, 5, 13, Figure 2, Table S6, File S2) [43]. Despite the high number
of annotated lipids (Figure 1a, Tables S1 and S2), we did not observe significant enrichment
in network clusters associated with lipid metabolism, as only a few of the species detected
were included in previous GEMs and, therefore, could be mapped to the subnetwork
metabolism (Table S3). These results highlight the need to update metabolic models that
effectively capture the diversity of lipids in H. influenzae, as current GEMs have limited con-
sideration for lipid composition in terms of chemical species [18,19,32]. Significant cluster
enrichment of metabolite groups within the identified self-correlating islands was found
(Figures 1d and 2, Table S6), suggesting a relationship between high interconnection within
clusters and metabolite level correlation, especially in the large-sized cluster 1 (Table 1,
Figure 2). Taken together, our results provide novel and global information on the means
through which the metabolite pools are inter-related in a significant part of the metabolome
of H. influenzae.

Table 1. Pathway enrichment of iNL638 cytoplasmic and periplasmic subnetwork clusters, subnet-
work cluster enrichment of the experimentally determined metabolome, and subnetwork cluster
enrichment of metabolite groups corresponding to the identified self-correlation islands A–M.

Cluster
Name

KOBAS-i Enriched Terms
(pBH < 0.05)

Metabolite
Cluster

Enrichment
Ratio

Cluster
Enrichment

pBH (Global
Metabolome)

Cluster Enrichment
(Correlation Islands,

pBH < 0.05)

Cluster 1

Pyruvate metabolism, two-component system, alanine,
aspartate and glutamate metabolism, citrate cycle (TCA

cycle), oxidative phosphorylation, butanoate
metabolism, phosphotransferase system (PTS), amino

sugar and nucleotide sugar metabolism, sulfur
metabolism, biosynthesis of amino acids, methane

metabolism, 2-oxocarboxylic acid metabolism, cysteine
and methionine metabolism,

glycolysis/gluconeogenesis, arginine biosynthesis,
pantothenate and CoA biosynthesis, valine, leucine
and isoleucine biosynthesis, fructose and mannose
metabolism, glycerophospholipid metabolism, and

nitrogen metabolism.

1.868 0.094 K, L

Cluster 2 Thiamine metabolism and ABC transporters 0 1.000 -

Cluster 3
Starch and sucrose metabolism, amino sugar and

nucleotide sugar metabolism, galactose metabolism,
and glycolysis/gluconeogenesis.

2.163 1.000 -

Cluster 4 Folate biosynthesis, glyoxylate and dicarboxylate
metabolism and methane metabolism. 0.541 1.000 -

Cluster 5

Pentose and glucuronate interconversions, fructose
and mannose metabolism, pentose phosphate pathway,

ascorbate and aldarate metabolism,
glycolysis/gluconeogenesis, lipopolysaccharide

biosynthesis, methane metabolism, biosynthesis of
amino acids, and terpenoid backbone biosynthesis.

0.186 1.000 -

Cluster 6 Xanthosine and XMP transport and interconversions *. 0 1.000 -
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Table 1. Cont.

Cluster
Name

KOBAS-i Enriched Terms
(pBH < 0.05)

Metabolite
Cluster

Enrichment
Ratio

Cluster
Enrichment

pBH (Global
Metabolome)

Cluster Enrichment
(Correlation Islands,

pBH < 0.05)

Cluster 7

Purine metabolism, biosynthesis of amino acids,
pyrimidine metabolism, alanine, aspartate and
glutamate metabolism, histidine metabolism,

phenylalanine, tyrosine and tryptophan metabolism,
vitamin B6 metabolism, 2-oxocarboxylic acid

metabolism, one carbon pool by folate, glutathione
metabolism, arginine biosynthesis, glycine, serine and

threonine metabolism, vancomycin resistance, and
nicotinate and nicotinamide metabolism

1.287 0.827 J

Cluster 8 Sulfur relay system, folate biosynthesis, and
ABC transporters. 0 1.000 -

Cluster 9 Valine tRNA-loading * 5.407 0.199 A

Cluster 10 Uridine and UMP transport and interconversions *. 1.352 1.000 D

Cluster 11
Pyrimidine metabolism, purine metabolism, ABC

transporters, biotin metabolism, arginine biosynthesis,
and sulfur relay system.

1.298 0.912 A

Cluster 12
Peptidoglycan biosynthesis, lysine metabolism, amino
sugar and nucleotide sugar metabolism, biosynthesis

of amino acids
1.202 1.000 -

Cluster 13

Fatty acid metabolism, fatty acid biosynthesis,
propanoate metabolism, pyruvate metabolism, citrate

cycle (TCA cycle), lysine degradation, biotin
metabolism, sulfur metabolism, cysteine and

methionine metabolism, butanoate metabolism,
lipopolysaccharide biosynthesis, glycerolipid

metabolism, and glycerophospholipid metabolism.

0.541 1.000 -

Cluster 14 Ubiquinone and other terpenoid–quinone biosynthesis,
and terpenoid backbone metabolism. 0 1.000 -

Cluster 15
beta-Lactam resistance, peptidoglycan biosynthesis,

ABC transporters, quorum sensing, and
vancomycin resistance.

2.403 0.230 -

Cluster 16 Tyrosine metabolism * 3.605 0.296 E

Cluster 17 Fatty acid biosynthesis, fatty acid metabolism, and
quorum sensing. 0 1.000 -

Cluster 18 ABC transporters and glutathione transport *. 1.992 0.127 B, F

Cluster 19

Glycerophospholipid metabolism, pyrimidine
metabolism, pantothenate and CoA biosynthesis,

glycine, serine and threonine metabolism,
lipo-polysaccharide biosynthesis, terpenoid backbone

biosynthesis, phenylalanine, and tyrosine and
tryptophan metabolism

1.639 0.173 -
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Table 1. Cont.

Cluster
Name

KOBAS-i Enriched Terms
(pBH < 0.05)

Metabolite
Cluster

Enrichment
Ratio

Cluster
Enrichment

pBH (Global
Metabolome)

Cluster Enrichment
(Correlation Islands,

pBH < 0.05)

Cluster 20 One carbon pool folate, glutathione metabolism,
selenocompound metabolism, and ABC transporters. 0.94 1.000 -

Cluster 21 Pyrimidine metabolism, purine metabolism and
nicotinate and nicotinamide metabolism. 0 1.000 -

Cluster 22

Pantothenate and CoA biosynthesis, valine, leucine
and isoleucine biosynthesis, biosynthesis of amino

acids, arginine and proline metabolism, ABC
transporters, glutathione metabolism, biosynthesis of

secondary metabolism, 2-oxocarboxylic acid
metabolism, C5-branched dibasic acid metabolism,

butanoate metabolism, and citrate cycle (TCA cycle).

2.028 0.016 M

Cluster 23

Glycine, serine and threonine metabolism, biosynthesis
of amino acids, lysine biosynthesis, cysteine and

methionine metabolism, vitamin B6 metabolism, and
2-oxocarboxylic acid metabolism.

1.802 0.708 M

Cluster 24 Phenylalanine, tyrosine and tryptophan biosynthesis,
and biosynthesis of amino acids. 0 1.000 -

Cluster 25 Selenocompound metabolism and aminoacyl-tRNA
biosynthesis. 0 1.000 -

Cluster 26

Riboflavin metabolism, folate biosynthesis, pentose
phosphate pathway, lipopolysaccharide biosynthesis,

glutathione metabolism, and glyoxylate and
dicarboxylate metabolism.

0.47 1.000 F

Cluster 27 Nicotinate and nicotinamide metabolism, purine
metabolism, and pyrimidine metabolism. 2.704 0.044 I

Cluster 28 ABC transporters and ribose transport *. 3.605 0.169 I

Cluster 29 Purine metabolism, nicotinate and nicotinamide
metabolism, and pyrimidine metabolism. 0 1.000 -

Cluster 30 ABC transporters and arginine biosynthesis. 3.004 0.023 F, K

Cluster 31 Purine metabolism, nitrogen metabolism 0 1.000 -

Cluster 32 ABC transporters and cationic antimicrobial peptide
(CAMP) resistance. 0 1.000 -

Cluster 33 Biotin metabolism, fatty acid biosynthesis, and fatty
acid metabolism. 0 1.000 -

Cluster 34 Aminoacyl-tRNA biosynthesis and phenylalanine
transport *. 5.407 0.053 E
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Table 1. Cont.

Cluster
Name

KOBAS-i Enriched Terms
(pBH < 0.05)

Metabolite
Cluster

Enrichment
Ratio

Cluster
Enrichment

pBH (Global
Metabolome)

Cluster Enrichment
(Correlation Islands,

pBH < 0.05)

Cluster 35

Glycine, serine and threonine metabolism,
glycolysis/gluconeogenesis, methane metabolism,

biosynthesis of amino acids, glyoxylate and
dicarboxylate metabolism, and

glycerolipid metabolism.

2.317 0.184 B

Cluster 36
Glycerophospholipid metabolism, fatty acid

biosynthesis, fatty acid metabolism, glycerolipid
metabolism, and biotin metabolism.

0 1.000 -

Cluster 37 Glycerophospholipid metabolism and
glycerolipid metabolism. 0 1.000 -

Cluster 38 Glycerophospholipid metabolism and
glycerolipid metabolism. 0 1.000 -

Cluster 39 Glycerophospholipid metabolism and
glycerolipid metabolism. 0 1.000 -

Cluster 40 Glycerophospholipid metabolism and
glycerolipid metabolism. 0 1.000 -

Cluster 41
Fatty acid biosynthesis, fatty acid metabolism, biotin
metabolism, glycerophospholipid metabolism, and

glycerolipid metabolism.
0 1.000 -

Cluster 42

C5 branched dibasic acid metabolism, valine, leucine
and isoleucine metabolism, 2-oxocarboxylic acid

metabolism, biosynthesis of amino acids, and
biosynthesis of secondary amino acids.

0 1.000 -

Cluster 43 Thiamine metabolism 0 1.000 -

Cluster 44 Pyrimidine metabolism and purine metabolism. 1.352 0.675 -

Cluster 45 CMP metabolism * 1.352 0.660 -

Cluster 46 dUMP metabolism * 0 1.000 -

Cluster 47 Inosine metabolism * 0 1.000 -

Cluster 48 ABC transporters and choline transport and
incorporation into LOS *. 2.704 0.174 E

Cluster 49 Leucine transport and tRNA loading *. 5.407 0.037 M

Cluster 50 Histidine transport and tRNA loading. 3.605 0.095 E

Cluster 51 Glycerol and glyceraldehyde metabolism *. 1.545 0.397 C

Cluster 52 Biotin metabolism 0 1.000 -

Cluster 53 ABC transporters and arginine transport and
tRNA loading *. 5.407 0.034 E

*: terms not identified via KOBAS-i but addressed through manual inspection of cluster nodes
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Figure 2. Topology of identified network clusters in the iNL638 metabolite–reaction subnetwork and
mapping of metabolites associated with self-correlating islands. Light green nodes represent reactions;
dark grey nodes represent unmapped species nodes and species not associated to correlating islands
A–M; species that belong to identified metabolite self-correlation islands are represented according to
the color legend.

2.2. Experimental Polar Metabolome Characterization Reveals Novel Metabolites of H. influenzae

Metabolome characterization unveiled the presence of 18 polar metabolites not contem-
plated in iCS400 and iNL638 [18,19] (Tables 2 and S1). Notably, we identified the presence
of a proline-based cyclic dipeptide not described previously in H. influenzae, cyclo(Leu-Pro)
(Tables 2 and S1, File S1), which was reported in other Gammaproteobacteria, such as
Pseudomonas spp. [44,45]. Cyclo(Leu-Pro) possesses significant biological functions, in-
cluding antimicrobial activity, presumably through inhibition of quorum sensing [46,47]
and biofilm formation [48], suppression of pro-inflammatory cytokines (IL-1β, TNF-α,
IL-6) [44], and regulation of the composition of the oral microbial consortium [49]. Hence,
the production of cyclo(Leu-Pro) by H. influenzae may play a significant regulatory role
during H. influenzae-associated infections and commensalism in the oropharyngeal mucosa.

Additionally, we annotated with reliability the metabolite pseudouridine, which is a
post-translational modification present in various forms of RNA, including tRNA, rRNA,
and mRNA [50]. We found gene annotation evidence for pseudouridine biosynthesis
via tRNA pseudouridine synthases A to D (UniProt IDs: P45291, P45142, P44197, and
P44039, respectively), as well as a dual-specificity RNA pseudouridine synthase (UniProt
ID: P44782). These results suggest that the observed pseudouridine pool is generated
from RNA degradation, despite this compound potentially being a dead-end product in
H. influenzae, as it lacks genes known to encode for enzymes, mediating its phosphorylation
and the subsequent cleavage of pseudouridine-5′-phosphate into ribose-5′-phosphate and
uracil [51,52].
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Table 2. Identified polar metabolites absent in current developed GEMs.

Analytical
Platform of
Detection

Confidence
in the

Annotation
Matching Experimental Evidence Metabolite Name

GC-
QTOF/MS

L1 HRMS fragmentation spectra and
retention times.

Cyclo(Leu-Pro)
N-Methylalanine

Cadaverine
γ-Aminobutyric acid

Thymine
Cytosine
Mannose
Sucrose

Trehalose
Erythritol

Ribitol
Xylitol

Sorbitol

L2
Nominal mass fragmentation

spectra and NIST retention indices.
Pseudouridine
Threonic acid

CE-TOF/MS L1
RMT, pseudomolecular ion m/z

and in-source fragmentation.

Ophtalmic acid
Betaine

5’-Methylthioadenosine
HRMS: high-resolution mass spectrometry; RMT: relative migration time

Moreover, our metabolomic analysis revealed the presence of high abundances of oph-
thalmic acid in the metabolome of H. influenzae (Tables 2 and S1). Interestingly, ophthalmic
acid is a poorly understood metabolite that is canonically generated via glutathione syn-
thethases. However, these synthetases are absent in the H. influenzae genome, as indicated
by the glutathione auxotrophy for this bacterium [53]. An additionally identified but poorly
understood metabolite was N-methylalanine (Tables 2 and S1, File S1). While this metabo-
lite is known to be biosynthesized from methylamine in other bacteria via N-methylalanine
dehydrogenase [54], no ortholog genes putatively encoding for this enzyme are present in
H. influenzae. Further studies are needed to ascertain the possible origin and function of
ophthalmic acid and N-methylalanine in H. influenzae.

Another metabolite annotated with high confidence absent in current GEMs and not
supported by gene annotation evidence was polyamine cadaverine. Intriguingly, the pres-
ence of cadaverine was previously determined in H. influenzae via HPLC analysis [55], and
lysine decarboxylase activity has been observed for several H. influenzae clinical isolates [56].
We also identified the metabolite 5′-methylthioadenosine, which is involved in polyamine
metabolism and supported by the presence of a purine nucleoside phosphorylase and a
5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase (UniProt IDs: P44552 and
P45113, respectively) (Tables 2 and S1). Another novel metabolite not supported through
gene annotation and identified via metabolomics is γ-aminobutyric acid (GABA). Interest-
ingly, the GABA subproduct succinate semialdehyde was included in iNL638. Thus, it may
be of interest to ascertain if GABA can be biosynthesized by H. influenzae, despite no known
orthologs putatively encoding for enzymes mediating its biosynthesis from glutamate or
spermidine being found in its genome. We also detected significant abundances of the
metabolite glycine betaine, which is a well-known osmoprotectant (Tables 2 and S1), despite
the absence of enzymes known to biosynthesize betaine in H. influenzae. Therefore, betaine
may act as an additional osmoprotectant for H. influenzae, which was presumably acquired
from the bacterial environment absorbed via the high affinity choline transporter BetT [57].

We also identified the existence of free thymine and cytosine pools not described in cur-
rent GEMs that may arise from the breakdown of other nucleosides and the incorporation
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of carbohydrate moieties [58] (Tables 2 and S1, File S1). We also identified two metabolite
pools consisting of polyols (erythritol, ribitol, xylitol, sorbitol) and carbohydrates (trehalose,
mannose, sucrose) (Tables 2 and S1). These results were unexpected since H. influenzae
is not capable of fermenting such compounds [59,60] and, therefore, they may represent
side reactions or simple absorption and accumulation of these compounds from the me-
dia. Lastly, we annotated with high confidence the metabolite threonic acid, which was
previosuly described as a degradation product from carbohydrate-like compounds [61].
Taken together, our results suggest modest differences in metabolic pathway topology than
were reported in previous GEMs, which are worth for further exploration and allowed us
to find unexpected metabolome constituents, which, in turn, could not be inferred solely
from current gene annotation evidence.

2.3. Global Compositional Properties of the Phospholipidome of H. influenzae

Using our lipidomics workflow and downstream extensive data curation, we deter-
mined that the phospholipidome of H. influenzae is composed of at least eight different
lipid series, according to their polar head and unsaturation number (Figure 3a, Table S1).
These lipid series corresponded to multiple GPs encompassed in 30-sum compositions of
phosphatidylethanolamines (PEs), 25-sum compositions of phosphatidylglycerols (PG),
and 7-sum compositions of lyso-phosphatidylethanolamines (LPE) (Tables S1 and S2). We
observed that PEs accounted for the majority (~75%) of the phospholipid content, while
~20% of the total phospholipid content was attributable to PGs (Figure 3b, Table S7). These
results were consistent with previous TLC studies [32] and proved the validity of our
analysis. Interestingly, we identified LPE as a novel lipid subclass not previously described
in H. influenzae, and it contributed to a very small fraction of the phospholipid content
(Figure 3a,b, Table S7). Consistent with the literature, no other major lipid classes were
identified in the phospholipid content of H. influenzae, demonstrating that this organism
possesses one of the simplest phospholipidomes among gram-negative bacteria. How-
ever, lyso-phosphatidylglycerols and other phospholipids, such as phosphatidylserines,
phos-phatidylglycerophosphates, phosphatidic acids, and their lyso-forms, may exist at
pools with abundances below our instrumental limit of detection (Table S3) [18,32]. Re-
garding constituents of the lipidome other than phospholipids, we confidently annotated
MG(18:0/0:0) and MG(0:0/18:0), as well as heptanoic acid (Table S1).

Evaluation of the unsaturation number distribution revealed that diunsaturated
diacyl-GPs were minor components (Figure 3c), whereas the quantitative distribution
of phospholipid-related sum compositions revealed that the carbon distribution in H. in-
fluenzae is qualitatively complex, quantitatively spanning at least ~4 orders of magnitude
(Figure 3d,e, Table S7). Despite the relatively high number of sum compositions found for
some lipid series (Figure 3e), it was determined that diacyl-GPs bearing 30 and 32 carbon
units accounted for ~80% of the total phospholipidome content (Figure 3d). In particu-
lar, PE(28:0), PE(30:0), PE(30:1), and PE(32:1) exhibited very high abundances (Figure 3e,
Table S7), which aligns with the total fatty acid composition determined via TLC, followed
by GC-MS analysis of hydrolyzed phospholipid extracts [36]. However, the very high
levels of PG(32:1) were not consistent with the fatty acyl compositions estimated for PGs,
as no unsaturated acyl chains were reported [36] (Figure 3e). Notably, we observed a strong
positive correlation between PE and PG logarithms of abundances in both saturated and
monounsaturated phospholipids (Figure 3f, Table S1), which indicated that the processes
governing the acyl chain distribution of PE and PG species in terms of order of magnitude
are largely independent of the polar head in H. influenzae.
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Figure 3. Qualitative and quantitative properties of sum compositions identified in the phospho-
lipidome of H. influenzae. (a) three-dimensional Kendrick mass plot representing all chromatographic
peaks corresponding to identified sum compositions; (b) %mol distribution of total PE, PG, and
LPE with respect to the total phospholipid content; (c) %mol content of phospholipids according to
their degree of unsaturation; (d) %mol distribution of sum composition carbon atoms in the total
phospholipid content, irrespective of the unsaturation number; (e) %mol distribution of detected PEs,
PGs, and LPEs according to their sum compositions. (f) Global- and series-dependent correlation of
the logarithms of the abundances between PEs and PGs. Note that each dot represents the summation
of the %mol attributable to species with identical sum composition, and population replicates were
designated as A to E.

2.4. Fragmentation Analysis of Phospholipid Coelutions Allow for a Detailed Estimation of the
Fatty Acyl Composition in the H. influenzae Lipidome and Positional Information of Fatty Acyl
Chains in Diacylglycerophospholipids

MS/MS analysis of molecular species coeluting with the same sum compositions
allowed us to obtain the compositional information in fatty acyl chain content for ~96.9%mol
of the detected phospholipidome (100%, ~99.5%, and ~95.2% of the %mol attributable to
LPEs, PGs, and PEs, respectively, as shown in Tables S1 and S2), as fatty acyl information
of coelutions corresponding to low-abundant sum-compositions could not be obtained
(Table S1). Within this subset of the total phospholipid content, spectral evidence of 61 PEs
and 29 PGs was found (Figure 4a, Table S2). Notably, it was found that the most abundant
PEs and PGs contained C14:0, C16:0, C16:1, and C18:0 fatty acyl chains, as evidenced based
on the estimated proportion of PE- and PG-bound fatty acids. In terms of consistency, only
C14:0, C16:0, C16:1, and C18:0 were previously reported as phospholipid-bound fatty acyl
residues in H. influenzae [36]. Here, our findings revealed the existence of a wide panel of
low-abundant fatty acyl chains ranging from C10 to C20 and bearing a maximum of one
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unsaturation (Figure 4b), with the exception of C11:1, C19:0, and C19:1, suggesting that
limitations in methodological sensitivity did not allow the detection of very low-level species
in previous studies [36]. Interestingly, MS/MS fragmentation analysis of distant PE(32:2)
peaks suggested a mixed profile of two diunsaturated PE types, as identical fatty acyl chains
were observed at different RTs (Figure S1). We propose that this effect can be attributed to
the coexistence of a mixed population of PE(X:2) bearing fatty acyl chains with unsaturated
Z bonds and cyclopropane rings, despite conventional MS/MS fragmentation analysis being
unable to distinguish between these isomers (Figure S1). Although diacyl-GP regioisomers
were not separated via the analysis, we estimated the abundance-corrected carbon and
unsaturation number of phospholipids by assuming that only the predominant regioisomer
was present, an assumption that was in agreement with bacterial biological constraints for
saturated and monounsaturated diacyl-GPs [40,41]. Under this assumption, it was observed
that the sn-2 positions of saturated PEs and PGs bear notably shorter fatty acyl chains than
those bound to the sn-1 position, while diunsaturated PEs and PGs exhibited the opposite
effect (Figure 4c). Unsaturated fatty acyl chains were found to be preferentially bound to the
sn-2 position of monounsaturated PEs and PGs (Figure 4d), which is consistent with the
literature [40,41]. Notably, it was observed that these differences in fatty acyl chain binding
to the sn-1 and sn-2 positions were principally attributable to the notable enrichment of
C16:0 at the sn-1 position, as well as C16:1 at the sn-2 position (Figure 4e).
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Figure 4. Estimated fatty acyl composition of the subset of fragmented sum compositions. (a) Estimated
relative composition of lipid chain isomers; (b) proportion of fatty acyl chains bound to GPs; (c) length
estimations of fatty acyl chains bound to the sn-1 and sn-2 positions of PEs and PGs; (d) unsaturation
number estimations of fatty acyl chains bound to the sn-1 and sn-2 positions of PEs and PGs; (e) global
estimations of fatty acyl composition found at both sn-1 and sn-2 positions of diacyl-GPs.
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2.5. Probabilistic Rules Are a Major Factor Defining the Order of Magnitude of Lipid Species,
Allowing the Prediction of Low-Level Species, Expansion and Refinement of the Phospholipidome

Through the examination of the associations between the different constituents of
the phospholipidome and their distribution patterns, we observed that highly abundant
LPEs were associated with highly abundant PE sum compositions, as these elements
encompassed PE chain isomers bearing fatty acyl chains that were also found in highly
abundant LPEs (Figure 3e). After formally testing of this relationship, we found high
correlation coefficients between the logarithms of experimentally determined abundance
fractions, which corresponded to sum compositions in PE(X:0) and PE(X:1) series, and the
logarithms of the predicted abundance fractions obtained via summing the pairwise and
compatible abundance products of LPEs (Figure 5a, Table S8). Although the predictability of
PE(X:2) sum composition abundances determined via this approach was modest (Figure 5a),
these results suggest that LPEs are generated via PE hydrolysis based on the putative
action of phospholipases without any significant overall preference for fatty acyl chains.
Furthermore, this result suggests that the probability distributions of PE(X:0) and PE(X:1)
series could be inferred from LPE abundances in terms of order of magnitude (Figure 5a).
However, structural elucidation limited the inference of the probability distribution of LPEs
from experimental PE abundance data using the opposite approach, as multiple PE chain
isomers bearing fatty acyl chains not detected in LPE series coeluted and had equivalent
PE sum compositions (Tables S1 and S3).

Based on the relationships between monoacyl- and diacyl-glycerophospholipids and
between the observed experimental lipid chain isomer distribution (Figure 4a) and the total
phospholipid-bound fatty acyl content (Figure 4b), we hypothesized that the distribution
profile of PEs and PGs arises from the conditional probabilities associated with the unique
probabilities of observing a fatty acyl chain in a given phospholipid. Inference of these
probabilities from experimental data (Table 3) allowed us to determine very high correla-
tion coefficients between the experimental and predicted logarithms of the abundances
corresponding to saturated PE and PG species, suggesting that positional independence
largely dominates the PE(X:0) and PG(X:0) profiles (Figure 5b, Table S9). In addition,
the utility of the predictions was further confirmed through adequate estimation of the
logarithms of abundances corresponding to sum compositions that were not fragmented
and, thus, not used for the calculation of probabilities (Figure 5c). Interestingly, most of
the undetected X:0 sum compositions that were predicted fell below the limit of detection
(Figure 5b, Table S9). Thus, the model successfully predicted the order of magnitude
of species that were undetectable via our MS method. In particular, we predicted the
existence of 31 additional PE(X:0)s and 43 additional PG(X:0)s (Table S9). Analysis of
the predictability of lipid chain isomer abundances in monounsaturated PEs and PGs
revealed weaker correlation coefficients (~0.84 and ~0.62, respectively) (Figure 5b). Several
possible explanations for this effect exist, including the following: (i) the calculation of
fatty acyl chain probabilities in PX(Y:1) series was made via substitution taking scaled
PX(Y:0) fatty acyl chain probabilities, as these figures could not be directly inferred from
experimental data in PX(Y:1) due to the intrinsic nature of unsaturated diacyl-GPs; (ii) the
partly resolved chromatographically species found in PX(Y:1) series may limit the accurate
estimation of abundances for species within a definite sum composition; (iii) lipid chain
isomers in PX(Y:1) bearing Z bonds or cyclopropane rings could follow distinct distribu-
tion probabilities; and (iv) PGs had significantly lower abundances, while given the high
correlation found between PE- and PG-associated abundances (Figure 3f), individual fatty
acyl chain probabilities calculated for PEs were used to predict PG abundances when these
probabilities were unsolvable within PG data. This issue significantly constrained the
number of fatty acyl chain probabilities available for PG(X:1) and, therefore, may restrict
the predictability of the PG(X:1) series. Nonetheless, due to the relatively high correlation
coefficient found between experimental and predicted PE(X:1) chain isomer abundance
data (Figure 5b), we could predict the existence of 61 additional PE(X:1) chain isomers
(Table S9). As expected (Figures 3f and 5a), we observed low predictive capabilities for
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the compositional profile of lipids belonging to the PE(X:2) series and insufficient data
to evaluate the abundance predictability of PG(X:2) series (Table S9). The modest results
observed when evaluating the PE(X:2) series (Table S9) may be attributed to the following
potential causes: (i) the low number of detected PE(X:2) sum compositions, (ii) the low
overall abundance for PE(X:2) sum compositions, and (iii) the putative presence of a mixed
population of PE(X:2) with different compositional behaviors due to the presence of Z
bonds and cyclopropane rings in fatty acyl chains (Figures 1A and S1). In sum, we consid-
ered the predictability of the compositional profile of PE(X:0), PG(X:0) and PE(X:1) chain
isomers to be good enough to expand the number of diacyl-GP chain isomers by more than
two-fold (135 predicted lipid chain isomers, in addition to the 90 chain isomers that were
experimentally determined, as shown in Tables S2 and S9). Nevertheless, we suggest that
deep lipidomics methodologies and computational optimization of probabilities may be
employed to evaluate the positional independence and compositional properties of PG(X:1),
PE(X:2), and PG(X:2) to generate more refined probabilistic models.

Table 3. Estimated fatty acyl chain probabilities for each lipid series.

Fatty Acyl
Chain PE(X:0) PG(X:0) PE(X:1) PG(X:1) PE(X:2) PG(X:2)

p10:0 0.015484 0.015072 0.007742 0.007536 0 0

p11:0 0.001413 0.001375 0.000706 0.000688 0 0

p12:0 0.036445 0.019686 0.018223 0.009843 0 0

p13:0 0.029268 0.042083 0.014634 0.021042 0 0

p14:0 0.552656 0.361674 0.276328 0.180837 0 0

p15:0 0.083368 0.166102 0.041684 0.083051 0 0

p16:0 0.233997 0.328652 0.116998 0.164326 0 0

p17:0 0.004429 0.011895 0.002214 0.005948 0 0

p18:0 0.037556 0.048219 0.018778 0.024109 0 0

p19:0 0 0 0 0 0 0

p20:0 0.005385 0.005241 0.002692 0.002621 0 0

p10:1 0 0 0.002384 0.003745 0.004768 0.00749

p11:1 0 0 0 0 0 0

p12:1 0 0 0.016958 0.026642 0.033916 0.053284

p13:1 0 0 0.006165 0.009686 0.01233 0.019371

p14:1 0 0 0.025861 0.024321 0.051722 0.048642

p15:1 0 0 0.009048 0.009295 0.018096 0.018589

p16:1 0 0 0.432158 0.312268 0.864315 0.624535

p17:1 0 0 0.0048 0.009216 0.0096 0.018432

p18:1 0 0 0.002466 0.104641 0.004932 0.209282

p19:1 0 0 0 0 0 0

p20:1 0 0 0.00016 0.000187 0.00032 0.000374
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Figure 5. Predictability of compositional properties in H. influenzae. (a) Correlations between the
logarithms of scaled abundance fractions of PEs and the logarithms of predicted scaled abundance
fractions inferred from the sum of the pairwise product of LPE abundances containing fatty acyl
residues compatible with the respective PE sum composition; (b) correlations between the logarithms
of the experimental abundances and the logarithms of the predicted abundances of phospholipid
chain isomers corresponding to PE(X:0), PE(X:1), PG(X:0). and PG(X:1) series; (c) correlations between
the logarithms of the experimental abundances and the logarithms of the predicted abundances of
sum compositions and superimposition of predicted sum compositions for PE(X:0), PE(X:1), PG(X:0),
and PG(X:1) series. We note that most predicted abundances for sum compositions not measured in
the analysis were below the lowest abundance corresponding to a sum composition within a lipid
series, while predicted logarithm of abundance values in sum compositions absent in experimental
data were additionally used in the y-axis to facilitate visualization.

3. Materials and Methods
3.1. Reagents and Solutions

All solvents and reagents used in this study were of MS-grade quality. The polar
extraction solution was 17.17 µM 4-chloro-phenylalanine (internal standard, Sigma-Aldrich,
Steinheim, Germany) in Milli-Q water. The lipophilic extraction solution was prepared by
adding methyl tert-butyl ether (Sigma-Aldrich, Steinheim, Germany) to MeOH (Thermo
Fisher Scientific, Loughborough, UK) up to a 1:1 (v/v) ratio.
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The CE-TOF/MS sample buffer solution was prepared by dissolving 0.2 mM methio-
nine sulfone (internal standard, Sigma-Aldrich, Steinheim, Germany) in Milli-Q water
containing 0.1 M formic acid (Sigma-Aldrich, Steinheim, Germany). The CE-TOF/MS
sheath liquid solution was prepared by mixing 100 mL of Milli-Q water with 100 mL
of 100% MeOH, 4 µL of concentrated formic acid, 10 µL of 5 mM purine, and 10 µL of
2.5 mM hexakis (1H,1H,3H-tetrafluoropropoxy)phosphazene HP722 (CE-TOF/MS refer-
ence masses, Agilent Technologies, Santa Clara, CA, USA). The CE-TOF/MS background
electrolyte solution consisted of 1 M formic acid in MeOH:H2O 1:9 (v/v).

For LC-QTOF/MS, the mobile phase eluent A was 10 mM ammonium acetate (Fluka,
Busch, Switzerland) and 0.2 mM ammonium fluoride (Sigma-Aldrich, Steinheim, Germany)
in 9:1 H2O:MeOH (v/v). The mobile phase eluent B was 10 mM ammonium acetate and
0.2 mM ammonium fluoride in a mixture of 2:3:5 ACN:MeOH:isopropanol (v/v, ACN and
isopropanol from Thermo Fisher Scientific, Loughborough, UK). The reference mass solu-
tion was 5% (v/v) Milli-Q water in ACN, as well as containing three reference masses (hy-
poxanthine, ammonium trifluoroacetate and (1H,1H,3H-tetrafluoropropoxy)phosphazene
HP-0921) to allow correction and high mass resolution in MS.

For GC-QTOF/MS, the methoxymation solution was pyridine containing 15 mg·mL−1

O-methoxyamine (Sigma-Aldrich, Steinheim, Germany). The silylation solution was
N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) with 1% trimethylchlorosilane (TMCS)
(Sigma-Aldrich, Steinheim, Germany). The GC/MS fatty acid methyl ester mix solution
was prepared by diluting the grain fatty acid methyl esters mix (C8:0-22:1, Sigma-Aldrich,
Steinheim, Germany) with dichloromethane (Carlo Erba Reagents, Sabadell, Spain) at a
1:100 (v/v) ratio. The GC/MS n-alkane mix was prepared by diluting the grain C8:C40
Alkane Calibration Standard (Sigma-Aldrich, Steinheim, Germany) with dichloromethane
at a 1:5 ratio (v/v). The GC/MS internal standard solution was 71.8 µM tricosane (internal
standard, Sigma-Aldrich, Steinheim, Germany) in n-heptane (GC grade, Panreac, Castellar
del Vallès, Spain).

3.2. Bacterial Strains and Culture Conditions

H. influenzae RdKW20 (NC_000907.1) was cultured via continuous shaking (125 rpm)
at 37 ◦C under microaerophilic conditions (5% CO2) in Haemophilus Test Medium (HTM)
broth (Francisco Soria Melguizo S.A., Madrid, Spain). Five biological replicate populations
of H. influenzae Rd KW20 were evolved for 10 days (approximately 100 generations, desig-
nated as A to E). Every 24 h, the grown cultures were diluted at a 1:1000 ratio (v/v) in fresh
media (2 mL HTM). Five biological replicates were generated from each evolution replicate
(total n = 25). The bacteria were then incubated overnight under the above-mentioned
conditions. Subsequently, the cultures were diluted at a ratio of 1:100 (v/v) with fresh HTM
and cultured until OD600 = 0.6. The bacterial pellets for mass spectrometry analysis were
obtained via centrifugation (108× g; T = R.T.; t = 3 min), followed by washing with 800 µL
PBS and another round of centrifugation (108× g; T = R.T.; t = 3 min). Next, 200 µL of cold
methanol (−20 ◦C) was added to the pellets, followed by storage at (−80 ◦C) to minimize
metabolism before quenching.

3.3. Cellular Lysis and Metabolite Extraction

To enhance metabolite recovery, double extraction was performed. The first polar
extract was generated by adding 140 µL of polar extraction solution to the bacterial pellets
preserved in cold MeOH (achieving a H2O:MeOH 1:1.43 (v/v) solvent mixture). Bacterial
lysis was achieved through alternating ultrasonication cycles (20 pulses for 0.5 s each,
amplitude = 60%) using a UP 200S ultrasonicator equipped with an S2 probe (Dr Hielscher
GmbH, Stahnsdorf, Germany) with immersion in liquid N2 (t = 50 s). This process was
repeated 20 times for each sample. After metabolite extraction on ice (t = 15 min), the
samples were centrifuged (12,600× g; T = 4 ◦C, t = 30 min). The supernatant was aliquoted
for further CE-TOF/MS and GC-QTOF/MS analyses. After collecting the supernatant,
200 µL of lipophilic extraction solution was added to the remaining pellet, which was
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then resuspended through ultrasonication (3 pulses for 0.5 s each, amplitude = 20%). The
samples were kept on ice to prevent overheating (t = 1 min), followed by vortexing (T = R.T.,
t = 30 min), and placed at RT (t = 15 min) for metabolite extraction. The samples were
centrifuged (16,300× g, T = R.T., t = 30 min), and 100 µL of the supernatant was transferred
to LC/MS vials for LC-QTOF/MS analysis.

3.4. LC-QTOF/MS Analysis and Data Processing

MeOH:MTBE extracts were analyzed following an adapted version of the Agilent
MassHunter Workstation Lipid Annotator method for lipidomics analysis described by
Agilent Technologies [62]. The analysis was performed using an HPLC system (1200 series,
Agilent Technologies, Santa Clara, CA, USA) coupled to an Agilent 6545 QTOF/MS ana-
lyzer (Agilent Technologies, Santa Clara, CA, USA). The injection volumes were 2 µL and
5 µL for positive and negative electrospray ionization (ESI) modes, respectively. Metabolites
were separated via an Agilent InfinityLab Poroshell 120 EC-C18 column (3.0 mm× 100 mm,
2.7 µm; Agilent Technologies, Santa Clara, CA, USA) equipped with an Agilent Infinity-
Lab Poroshell 120 EC-C18 guard column (3.0 mm × 5 mm, 2.7 µm; Agilent Technologies,
Santa Clara, CA, USA). The column temperature was 50 ◦C. A mobile phase flow rate of
0.6 mL·min−1 was maintained throughout the chromatographic gradient. Firstly, 70% B
was held until 1 min. Secondly, 86% B was achieved at 3.5 min and held until 10 min. Next,
100% B was achieved at 11 min and held until 17 min, followed by 2 min of re-equilibration
time at 70% B. The total method runtime was 19 min. Metabolites were ionized using an ESI
source with a nebulizer at 50 psi, a drying gas temperature of 200 ◦C a drying gas flow rate
of 10 L·min−1, a sheath gas temperature of 300 ◦C, and a sheath gas flow rate of 12 L·min−1.
In both polarity modes (ESI+ and ESI−), the capillary, fragmentor, skimmer, and 18ctupole
radiofrequency voltages were set to to 3500, 150, 65, and 750 V, respectively. Firstly, full
MS was selected as the data acquisition mode at an acquisition rate of 3.5 spectra·s−1 over
a mass range of m/z 50 to 3000. Mass correction was performed using m/z 121.0509 and
922.0098 for ESI+ and m/z 112.9856, 980.0164, and 1033.9881 for ESI-mode. Next, two itera-
tive auto MS/MS analyses (under both polarity modes) were conducted under identical
chromatographic conditions. MS/MS spectra were systematically acquired via iterative
MS/MS mode over subsequent injections from a sample pool. Isolation width, ramped
collision energy, and offset values were set at ≈1.3 Da, 3.8, and 4.6, respectively. Additional
iterative MS/MS analyses were performed by increasing the injection volume in both
ESI polarities to increase the spectral quality of low-abundant features (injection volumes
of 7 µL and 10 µL for ESI+ and ESI-, respectively). Data deconvolution, chromatogram
alignment, and compound integration were performed using Agilent MassHunter Work-
station Software Profinder (B.10.00, Agilent Technologies, Santa Clara, CA, USA). Kendrick
masses were calculated by adjusting for CH2, enabling the generation of Kendrick mass
diagrams for the systematic search of lipid series. We considered as a lipid series at least
three molecular features of similar Kendrick mass defect, which were spaced by 14 mass
units. Initial lipid series annotation was performed by merging the manually curated
Kendrick Mass output with the automated annotations obtained from processing MS/MS
files with Agilent MassHunter Workstation Lipid Annotator (v. 1.0, Agilent Technologies,
Santa Clara, CA, USA) (precursor and fragment ppm tolerance = 20). Unannotated molec-
ular features putatively belonging to annotated lipid series were annotated using CEU
Mass Mediator Batch search [63]. A subsequent metabolite annotation curation pipeline
was performed for annotations obtained via non-targeted metabolomics data reprocessing
using the following steps: (i) annotations were confirmed based on the presence of selective
diagnostic ions and neutral mass losses in the MS/MS spectra of lipids acquired via both
ESI+ and ESI− modes; (ii) annotations were further curated by requiring the presence
of a consistent adduct profile within lipid series ([M+H]+ > [M+Na]+ > [M+K]+, [M+H]+

> [M+NH4]+, and [M−H]− > [M+CH3COO]− for both PE and LPE series; [M+NH4]+ >
[M+H]+, [M+Na]+ > [M+H]+, [M−H]− > [M+CH3COO]− for PG series); (iii) annotations
of PX(Y:Z) (PX(Y:Z) was a generic GP, and X was defined as a polar head, Y was defined as
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a sum composition carbon number, and Z was defined as a sum composition unsaturation
number) were consistent with a logical elution order (RTPX(Y:0) > RTPX(Y:1) > RTPX(Y:2) at
equal C number; RTPG(Y:Z) < RTPE(Y:Z) at equal C and unsaturation numbers; RTPX(Y1:Z) >
RTPX(Y2:Z) if Y1 > Y2, at equal unsaturation number); (iv) manual inspection of extracted
ion chromatograms for all predicted m/z corresponding to all PG, PE, and LPE lipid series,
which contained a range of fatty acyl chains of C10:0–C20:0 and C10:1–C20:1, as no m/z
corresponding to fatty acyl chains with C number lower than 10 or higher than 20 were
observed in initial MS/MS data curation, and fatty acyl chains contained in GPs were
determined to bear a maximum of one unsaturation. The curated set of annotations was
used to re-integrate the LC-ESI(-)-QTOF/MS data from the [M−H]− adducts of peaks
that corresponded to the identified series LPE(X:0), LPE(X:1), PE(X:0), PE(X:1), PE(X:2),
PG(X:0), PG(X:1), and PG(X:2) (X being a defined C number) using Agilent MassHunter
Workstation Qualitative Analysis (B. 08.00, Agilent Technologies, Santa Clara, CA, USA)
(m/z tolerance = 20 ppm). All annotations with more than one piece of orthogonal infor-
mation (m/z, RT, MS/MS, adduct profile) were assigned as having an L2 confidence in
the annotation. The chromatographic method was unable to resolve lipid chain isomers
of saturated and isobaric diacyl-GPs and could only partially resolve lipid chain isomers
of unsaturated and isobaric diacyl-GPs. Consequently, the area under the curve (AUC)
of diacyl-GP lipid chain isomers and regioisomers (diacyl-GPs isomers bearing identical
lipid chains but opposite binding to the sn-1 and sn-2 positions of their glycerol backbone)
with identical sum composition that belonged to a specific phospholipid type (PE, PG,
LPE) was summed for initial phospholipidome compositional analysis. Next, lipid chain
isomers in each phospholipid coelution were determined based on the presence of com-
patible sums of m/z corresponding to fatty acyl chains in the collected MS/MS spectra.
The predominant regioisomer in each lipid chain isomer was determined, as the relative
intensity of the m/z generated from the fatty acyl chain bound to the sn-2 position of
Pes and PGs was described as being higher with respect to that generated from the fatty
acyl chain bound at sn-1 position [64]. LPE regioisomers with identical sum composition
were also summed, as it was shown that artifactual interconversion occurs between these
species [62,65]. Determination of the relative percentages of fatty acyl chains bound to
GPs was performed using MS1-reprocessed data corresponding to LC-ESI(-)-QTOF/MS
analyses. Firstly, raw phospholipid abundances of PGs and LPEs were normalized based
on their relative response factor (Table S10) with respect to PE using data retrieved from the
analysis of a mixture of 2.5 µL of SPLASH LipidoMIX™ Internal Standard (Avanti Polar
Lipids, Alabaster, AL, USA) and 97.5 µL MeOH:MTBE 1:1 (v/v), which was analyzed under
identical LC-ESI(-)-QTOF/MS conditions, as described above, in which the sample and QC
MS1 data were acquired. Additional recursive metabolite annotation of LC-MS data was
performed by manually searching for the presence of unidentified metabolites contained
in H. influenzae metabolic models iCS400 and iNL638 by generating the expected m/z
adducts [M+H]+, [M+NH4]+, [M+K]+, [M−H]−, [M+CH3COO]− of metabolites present
in the GEMs and manually evaluating the EIC of these predicted m/z in samples using
Agilent MassHunter Workstation Qualitative Analysis (B. 08.00, Agilent Technologies,
Santa Clara, CA, USA) (m/z tolerance = 20 ppm). RT being consistent with the predicted
LogP metabolites present in iCS400 and iNL638 was also considered [66].

3.5. GC-QTOF/MS Analysis and Data Processing

Samples were derivatized and analyzed following a protocol adapted from a previ-
ously described methodology [67–69]. Firstly, 100 µL of each MeOH:H2O polar extract
(1:1.43, v/v) were evaporated until dryness under high vacuum in a HyperVAC VC2124
vacuum concentrator (Gyrozen, Daejeon, Republic of Korea). Next, 10 µL of methoxi-
mation solution were added to the dried extracts, allowing methoximation of aldehyde
and keto groups at R.T. (t = 16 h). Afterwards, 10 µL of silylation solution was added for
trimethylsilylation of acid hydrogen-containing metabolites (t = 60 min; T = 70 ◦C). Vials
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were then cooled down (t = 30 min; T = R.T.) and reconstituted in 50 µL of GC/MS internal
standard solution.

Sample analysis was performed in an Agilent 7890B GC system coupled to an Agilent
7250 accurate mass Q/TOF analyzer (both from Agilent Technologies, Santa Clara, CA,
USA). Next, 2 µL of sample was injected into a multimode inlet at 250 ◦C with a 3:1 split
ratio. Separation of metabolites then occurred using a capillary column (Agilent DB-5MS,
30 m × 0.25 mm, 0.25 µm film thickness; 95% dimethyl–5% diphenylpolysiloxane and 10 m
guard column; Agilent Technologies, Santa Clara, CA, USA). The carrier gas (He) flow
rate was set at 0.85 mL·min−1. The oven was allowed to stand at 60 ◦C for 1 min, and the
temperature was gradually increased at 10 ◦C·min−1 until 325 ◦C, at which point it was
held for 10 min. Metabolites were ionized using an electron ionization (EI) source. Full MS
was selected as data acquisition mode, which used an acquisition rate of 6.67 spectra·s−1

over a mass range from m/z 45 to 650. D files acquired in profile mode were converted to the
SureMass format to use the SureMass deconvolution algorithm from Agilent MassHunter
Unknowns Analysis (B.10.00). The GC/MS fatty acid methyl ester described above was
used to generate a correlation between Fiehn retention indexes (RI) and RTs. Similarly,
the GC/MS n-alkane mix (C8–C40) was used to correlate NIST retention indexes with
RTs. A spectral library search was initially performed for deconvoluted features using a
combination of Exact Mass FiehnLib, Nominal Mass FiehnLib, and exact-mass in-house
libraries of polyols, carbohydrates, and other polar compounds, all of which generated
from data of pure standards analyzed via the same GC chromatographic method and
using 70 eV in an EI source [67]. Hence, an L1 level of confidence in the annotation was
assigned when match factor score > 70% or match factor < 70%, though the annotation was
supported by acceptable RT error (RT %Error < 2%) and specific exact mass ions (File S1).
An additional metabolite annotation was performed using the NIST Library (score cutoff >
80%), in which annotations were assigned an L2 confidence level if experimental RIs coming
from experimental RTs using the n-alkane RI regression (RT %Error < 5%) were consistent
with RIs collected in the NIST library. Metabolite annotations were manually curated,
and qualifier and quantifier ions were selected based on their relative abundance and
selectivity. Compound integration was performed using Agilent MassHunter Workstation
Quantitative analysis for TOF (B.10.00, Agilent Technologies, Santa Clara, CA, USA).
Additional recursive metabolite annotation over GC-MS data was performed by manually
searching for the presence of metabolites contained in the H. influenzae metabolic models
iCS400 and iNL638 in both Exact Mass and Nominal Mass FiehnLib. Annotations obtained
from iCS400 and iNL638 were given an L1 level of confidence in the annotation when
supported by RT tolerance (RT %Error < 2%) and characteristic exact mass ions (File S1).
Qualifier and quantifier ions associated with these annotations were reintegrated using
Agilent MassHunter Workstation Quantitative Analysis (B. 10.00, Agilent Technologies,
Santa Clara, CA, USA).

3.6. CE-TOF/MS Analysis and Data Processing

Samples were treated and analyzed following the adaptation of a previously -described
method [70]. In brief, 120 µL of H2O:MeOH extract was subjected to high vacuum on
a HyperVAC VC2124 vacuum concentrator (Gyrozen, Daejeon, Republic of Korea) until
complete dryness. Next, 60 µL of CE-TOF/MS sample buffer solution was added to each
dried sample, which was vortexed for 1 min. After subsequent centrifugation (12,600× g;
T = 4 ◦C; t = 15 min), the solution was transferred to CE/MS glass vials, which underwent
centrifugation (4000× g; T = 4 ◦C; t = 20 min). Clear solutions were analyzed using a
CE-TOF/MS platform composed of an Agilent 7100 CE system coupled to an Agilent
6224 TOF/MS analyzer (both from Agilent Technologies, Santa Clara, CA, USA). Samples
were hydrodynamically injected at 50 mbar for 100 s and stacked by injecting background
electrolyte at 100 mbar for 20 s. Metabolite separation was performed via a fused-silica
capillary (70 cm, 50 µm i.d.; Agilent Technologies, Santa Clara, CA, USA). Separation
conditions were +30 kV of capillary voltage (~2.4 mA) under normal polarity at 20 ◦C.
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Metabolites were ionized under ESI+ mode, with a sheath liquid flow of 6 µL·min−1,
a nebulizer pressure of 10 psi, a drying gas temperature of 200 ◦C, and a flow rate of
10.0 L·min−1. Voltages for capillary, fragmentor, skimmer, and octopole were set to 5500,
125, 65, and 750 V, respectively. Full MS was selected as data acquisition mode, which was
set at an acquisition rate of 1.36 spectra·s−1 over a mass range of m/z 70 to 1000. Mass
calibrators m/z 121.0509 and 922.0098 were used for online mass correction. Data decon-
volution, electropherogram alignment, and molecular feature integration were performed
using Agilent MassHunter Workstation Software Profinder (B.10.00, Agilent Technologies,
Santa Clara, CA, USA). Molecular features obtained using non-targeted metabolomics data
reprocessing were subjected to initial metabolite annotation using the CE-MS Experimental
RMT search from CEU Mass Mediator [71] (m/z tolerance = 20 ppm; RMT tolerance = 5%,
except 10% for regions near the EOF or at very low migration times [71]), which uses data
from an in-house library of pure standards run under identical method conditions. These
annotations were assigned an L1 confidence in the annotation. Annotations of compounds
not annotated in GC-MS were further supported based on the presence of characteristic
in-source fragments [71]. Subsequently, unannotated molecular features were subjected to
additional annotation using the CEU Mass Mediator Batch Search [63]. An L3 confidence in
the annotation level was assigned for these annotations if compatible migration times with
protonation status shown at separation pH (~2) were determined. Additionally, a recursive
metabolite annotation over CE-MS data was performed by manually searching for the
presence of metabolites contained in the H. influenzae metabolic models iCS400 and iNL638,
thus extracting the predicted m/z from [M+H]+ adducts of metabolites using Agilent
MassHunter Qualitative Analysis (B.08.00, Agilent Technologies, Santa Clara, CA, USA)
(m/z tolerance = 20 ppm). Compatible features were subjected to the aforementioned anno-
tation workflow for CE-TOF/MS and reintegrated using Agilent MassHunter Quantitative
Analysis for TOF (B.10.00).

3.7. Curation and Obtention of the Small Molecule Set of iCS400 and iNL638 Metabolic Models

iCS400 [19] and iNL638 [18] H. influenzae GEMs were downloaded in the SMBL format
from the BioModels repository (Model Identifiers MODEL1507180053 and MODEL2204040002).
We did not use iJE296 [15], as this model was unavailable [18]. Next, metabolite IDs,
names, and compartments for each model were extracted using Python (v. 3.10.1) and the
COBRApy package (v. 0.26.3) [72], and they were exported into tabular format (File S3).
KEGG Compound IDs and exact mass values for each compound were manually retrieved
from the KEGG Compound database [73]. Both iCS400 and iNL638 were subjected to
variable filtering, as only small molecules with defined mass <1500 Da were considered
as ‘truly metabolites’ (entries corresponding to proteins, tRNAs, oligomers of ≥3 residues,
and entries with MW ≥ 1500 Da were filtered out) (Table S3). To avoid biases in metabolite
coverage estimation, only one representative example of each lipid type contained in
models was retained for further global analysis of models (generic KEGG Compound IDs
were assigned to these representative compounds) (Table S3).

3.8. Curation and Network Analysis of the Small Molecule Set of iCS400 and iNL638
Metabolic Models

The KEGG Compound IDs for annotated compounds found in GC-MS, LC-MS, and
CE-MS were retrieved and curated manually from the KEGG Compound database [73].
Next, the information was crosschecked against the KEGG Compound IDs of the filtered
small molecule datasets obtained from iCS400 and iNL638. Additionally, mapping of exper-
imental metabolomics data was performed to a subnetwork of iNL638, which encompassed
all periplasmic and cytoplasmic metabolites, as well as their associated reactions. This
subnetwork was generated by importing iNL638 as a metabolite–reaction network using
the cy3smbl App (v. 0.3.0) [74] in Cytoscape (v. 3.8.0) [75] and subsequently deleting the
nodes not corresponding to metabolites or reactions, those corresponding to extracellular
metabolites, and those of metabolic subproducts or cofactors with very high connectivities
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(H2O, CO2, AMP, ADP, ATP, NAD(P)(H), and H+) (File S2). The subnetwork was clustered
using the GLay community clustering algorithm from the clusterMaker 2 (v. 2.0) Cytoscape
App [76]. Functional annotation of clusters was conducted using KEGG Enrichment over
network clusters using KOBAS-i, selecting H. influenzae Rd KW20 as the KEGG organ-
ism [77] (Table S6). The metabolome coverage of clusters was evaluated by considering
only the total number of chemical species present in the filtered small molecule dataset
obtained from iNL638, as described above. Over-representation analysis of clusters using
the experimental metabolomics data as a query was performed through a Fischer exact test
in each cluster using python (v. 3.10.1) and the scipy, seaborn, and math packages (File S4).

3.9. Global Evaluation of Metabolite Experimental Data

The chemical ontology of metabolites detected in experimental metabolomics data was
determined using the ClassyFire algorithm [78]. The abundances of these metabolites were
subjected to correlation analysis using MetaboAnalyst 5.0 [79]. Spearman’s rank correlation
was performed over experimentally determined metabolites using default values, and
correlation clusters with correlation coefficients of >0.6 and <−0.6 were subjected to further
manual inspection. Enrichment of subnetwork clusters in features (variables) associated
with self-correlating metabolite clusters was performed using python (v. 3.10.1) and the
scipy, seaborn, and math packages (File S4).

3.10. Calculation of Experimental Lipidomic Properties

Response factor-corrected phospholipid abundances were converted to %mol. The
total %mol content of each GP type (PE, PG, LPE) was determined for each measured sample
extract. To evaluate the distribution of the total unsaturation number, we calculated the
%mol of PX(Y:0), PX(Y:1), and PX(Y:2), respectively, which were summed for each sample
extract. Similarly, the carbon number distribution of sum compositions was determined
from C10 to C40, regardless of the unsaturation number. To calculate the fatty acyl average
content bound to phospholipids, we first estimated the content of each given lipid chain
isomer within an isobaric phospholipid coelution as the ratio between the sum of the
intensity of the m/z associated with its two acyl chains and the total sum of intensities of
combinations of m/z associated with fatty acyl chains compatible with the sum composition
in the MS/MS spectra, as reported by Agilent MassHunter Lipid Annotator (v. 1.0, Agilent
Technologies, Santa Clara, CA, USA), recognizing that the spectra were generated by
combining multiple MS/MS spectra acquired via subsequent QC injections, followed by
iterative auto MS/MS data acquisition, as described above for LC-ESI(-)-QTOF/MS. The
entries corresponding to diacyl-GPs (Table S2) were selectively duplicated, and each fatty
acyl chain was assigned to each of the generated entries. We then estimated the %mol
corresponding to each bound fatty acyl chain. Metrics for sn-1 and sn-2 positions of PE
and PG series were estimated by assuming that only the predominant regioisomer was
present. To quantitatively assess the differences between the numbers of carbon atom
and unsaturations, two parameters were calculated for the sn-1 and sn-2 position of each
determined diacyl-GP chain isomer. These were named as ‘abundance-corrected average
number of carbon atoms (Equation (1)), and ‘abundance-corrected average unsaturation
number’ (Equation (2)), as shown in the corresponding equations,

Abundance− corrected average carbon number =
∑n

i=m ai · ci

∑n
i=m ai

, (1)

Abundance− corrected average unsaturation number =∑n
i=m ai · ui

∑n
i=m ai

, (2)

where a represents the sum of abundances of lipid chain isomers containing a defined
carbon atom number (Equation (1)) or a defined unsaturation number (Equation (2)) (m)
from 1 to n, c represents a defined atom carbon number, and u represents a defined
unsaturation number.
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3.11. Calculation of Predictive Lipidomic Properties

We hypothesized that the probability of observing a defined PE or PG with Xi and
Xj chains (p(Xi_Xj)) in H. influenzae is equal to the conditional probability of a PE or PG
having specific acyl chains (p(Xi_Xj)) = p(Xi|Xj) = (p(Xi) · p(Xj)), as previously modelized
for other biological matrices [80]. For the prediction of probability distributions of PEs
from LPE composition, we assumed that p(PE(Xi_Xj)) = (p(LPE(0:0/Xi)) + p(LPE(Xi/0:0)))
· (p(LPE(0:0/Xj)) + p(LPE(Xj/0:0))). To generate the predicted sum composition distribu-
tion, we then calculated p(PE(Xi_Xj)) for all possible pairwise combinations of fatty acyl
chains contained in detected LPEs and summed all p(PE(Xi_Xj)) corresponding to lipid
species with identical sum compositions (Table S8). For the prediction of PE and PG sum
compositions and lipid chain isomers below the limit of detection from experimentally
determined PE and PG data, we first considered the calculated p(Xi_Xj) for each experi-
mentally determined PE or PG lipid chain isomer. Subsequently, we estimated p(Xi) (X =
C10:0 to C20:0) in saturated PE and PG lipid series by first taking p(Xi) as the square root
of p(Xi_Xi) (for chain isomers with identical fatty acyl chains). Next, p(Xi) that were not
determinable via this method were solved via substitution that considered the p(Xi_Xj) of
the lipid chain isomer of the same lipid series with the possible highest abundance and
an already solved p(Xj) other than p(Xi). Given the high correlation observed between
PE and PG abundances that corresponded to identical sum compositions and the lower
abundance observed for PG(Xi_Xj) compared to equivalent PE(Xi_Xj), we used p(Xi) val-
ues that were solved for PE series as p(Xi) for fatty acyl chains when not determinable
in the equivalent PG series. The p(Xi) values were scaled for both saturated PE and PG
series, meaning that ∑n

i=m p(Xi)= 1. For the prediction of p(Xi) in monounsaturated PE
and PG series, we used p(Xi) obtained from saturated species and scaled them such as
that ∑n

i=m p(Xi, saturated) = 0.5, as the probability of randomly observing a saturated
fatty acyl chain in a monounsaturated diacyl-GP was 0.5. Next, the p(Xi, unsaturated) of
monounsaturated fatty acyl chains were estimated through substitution. Lastly, probabil-
ities from diunsaturated species were estimated using p(Xi) values of monounsaturated
PE and PG series, as only few diunsaturated PEs and PGs were observed, which did not
allow a direct calculation of p(Xi) from p(Xi_Xi) for low-level fatty acyl chains. All of the
probabilities associated with each fatty acyl chain in each PE and PG series were used to
generate all possible phospholipid chain isomer predicted abundances (Table S9). Predicted
abundances of sum compositions were generated by summing all predicted abundances of
lipid chain isomers that corresponded to the same sum composition (Table S9).

4. Conclusions

This study is the result of a combination of experimental findings originating from
multiplatform metabolomics based on high-resolution analytical techniques, along with the
development and application of fruitful mathematical models based on data and scientific
principles. Consequently, we extended the direct evidence of the presence metabolome
constituents of H. influenzae. Despite the relatively limited coverage of the metabolites
predicted via GEMs, our established workflow for metabolome characterization enabled
not only the relative quantitation, but also the identification, of lipid molecular species
and polar metabolites not reported to date, of which the potential role of cyclo-(Leu-Pro)
in H. influenzae pathogenesis is worth further investigation. We propose that analyzing
correlating pools of metabolites could be a valuable resource for third-generation metabolic
models that use metabolite-level information. Current metabolic models may be addi-
tionally benefit from the inclusion of the phospholipid composition that was elucidated
through extensive study of the H. influenzae lipidome. Given the relative simplicity of the
H. influenzae phospholipidome and its well-characterized genome, we foresee potential util-
ity of H. influenzae as a model organism for exploring the factors that contribute to emergent
membrane properties attributable to changes in phospholipid composition. Importantly,
through the elucidation of the processes governing membrane composition in this relatively
simple lipidome, we generated the first experimental in silico characterization of the phos-
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pholipidome. Further studies are needed to address the rules governing the compositional
properties of membranes with higher lipid class diversity. Moreover, our study provides a
mathematical rationale for the selective observation of specific lipid species, even though
other species remain below the current instrumental limits of detection. We present the
application to H. influenzae lipidome and beyond, proposing that revealing these processes
could lead to more realistic membrane models and help in guiding the deep lipidome
characterization of other biological specimens.
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