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Abstract: Brain metastases (BMs) are cancer cells that spread to the brain from primary tumors in
other organs. Up to 35% of adult cancer patients develop BMs. The treatment of BM patients who
have well-controlled extracranial disease and a small number of lesions consists of localized doses
of radiation (stereotactic radio surgery (SRS)). Estimating prognosis among BM patients may allow
treatments to be chosen that balance durability of intracranial tumor control with quality of life
and the side effects of treatment. No mathematical model-based quantitative biomarkers have been
determined for estimating prognosis. As a first step toward that goal, we describe a mathematical
model of growth and response of brain metastasis to stereotactic radio surgery. The mathematical
model incorporates some biological mechanisms involved in BM growth and response to SRS and
allows the observed dynamics to be accurately described.

Keywords: brain metastasis; mathematical modeling; mathematical oncology; ordinary differential
equation; stereotactic radio surgery

1. Introduction

Cancer is one of the world’s major health problems and is the second leading cause
of death in industrialized countries. Vast resources have been devoted to cancer research
in recent decades, which has resulted in only a small reduction in cancer death rates,
of about 1–2% per year [1]. The question has been raised of whether different approaches,
complementing classical ones, may be required to achieve more substantial breakthroughs
in the war on cancer. One of these may be to increase the use of tools offered by applied
mathematics. This is reflected in an increasing number of publications and reviews on the
interface between mathematics and cancer [2–5].

Brain metastases (BMs) are cancer cells that have spread to the brain from tumors in
other organs in the body. A substantial number, some 10–35% of adult cancer patients,
develop BMs [6]. BMs are a major cancer-related complication and are 10 times more
common than malignant primary brain tumors. The incidence of BMs is rising because
improved systemic therapies control systemic disease and prolong survival but cross the
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blood–brain barrier (the highly selective membrane barrier that separates the circulating
blood from the brain) too poorly to be able to control BMs.

The treatment of BM patients who have well-controlled extracranial disease and three
or fewer measurable lesions typically consists of high localized doses of radiation (stereo-
tactic radio surgery (SRS)) on the visible lesions and sometimes whole-brain radiotherapy
(WBRT) to target potentially occult BMs. This therapeutic approach allows metastatic
lesions to be controlled in many, but not all BM patients [7].

Applied mathematicians have studied different aspects of metastatic processes: the
growth and distribution of untreated metastatic tumors [8–13], the extravasation pro-
cess [14], cancer metastasis networks [15–18], the interaction between the primary and
metastatic tumors [19] and therapeutic strategies minimizing the metastatic burden [20],
to cite a few examples.

To our knowledge, few studies have considered the mathematical modeling of BM
growth and response to RT [21,22]. This is a situation of interest since the tumor’s response
to radiation therapy (RT), either alone or in combination with other treatments, has been
thoroughly studied in other brain tumors such as glioblastoma (see e.g., [23–32]) or low-
grade glioma (e.g., [33–38]).

Very little is known of how to describe mathematically the dynamics of metastatic
tumors in the brain and their response to therapies. BMs as seen in MRIs are composed
of several compartments: the contrast-enhancing tumor, the necrotic core and an infiltra-
tion component.

Estimating prognosis among patients with BMs is clinically relevant, as it may allow
clinicians to recommend treatments that balance durability of intracranial tumor control
with quality of life and the side effects of treatment. The prognostic index that has be-
come most prominent is the diagnosis-specific Graded Prognostic Assessment (GPA) [39].
This index includes prognostic factors that depend on the type of cancer, age, Karnofsky
Performance Scale score, extracranial disease status, number of BMs, etc. For the case
of primary brain tumors, mathematical modeling has helped in defining biomarkers of
prognosis [40–43] and response to therapies [44–46].

As a first step in constructing prognostic and response biomarkers in BMs, we de-
veloped a minimal mathematical model able to describe the longitudinal dynamics of
BMs. This was done using BM patient imaging data to feed ordinary differential equations
(ODEs) in biologically grounded tumor growth models. First, the extent to which these
models could describe the dynamics of untreated BMs was analyzed. Next, the dynamics
of response to radiosurgery over time was studied when death mechanisms and damaged
cell compartments were included.

The remainder of the paper is organized as follows: First, Section 2 sets out our math-
ematical model and describes the patient cohort used to validate it and the methodologies
used to process the imaging data. Next, Section 3 describes the results. Finally, Section 4
discusses the implications of our study and summarizes our conclusions.

2. Mathematical Model and Methods
2.1. Mathematical Model of Response to Radiosurgery

Our mathematical model to describe growth and response to therapy of brain metas-
tases is based on a set of ordinary differential equations for the different cellular compart-
ments involved in a simplified description of the tumor growth dynamics. The first will be
the proliferating tumor cells P(t). Since BMs are often small tumors that are detected at an
early phase of growth, far from the brain’s carrying capacity, the number of proliferating
cancer cells can be described by an exponential model of the form

dP
dt

= ρP. (1)
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In Equation (1), P(t) represents the number of proliferating cancer cells at time t,
and ρ represents the rate of proliferation. A recent paper [47] has shown that the growth
dynamics of brain metastasis could be better described by a superlinear growth law. For the
sake of simplicity, in this paper we will keep the simpler and more classical growth law
given by Equation (1).

Stereotactic radiosurgery is a highly precise form of radiation therapy that lethally
damages a fraction 1− S f of the irradiated proliferating cancer cells. Lethal damage, caused
by high doses of radiation, cannot be repaired and occurs via different pathways. Here we
will account for the two most important pathways in the response to SRS. The first process
is fast and leads to a fraction ε of lethally damaged cells being incorporated directly into
the necrotic cell (N(t)) compartment. The second process leads to a population D(t) of
lethally damaged cells that may undergo one or more divisions before dying by mitotic
catastrophe [48]. The evolution of this cellular compartment is given by the equation

dD
dt

= −ρ

k
D, (2)

where k is the average number of mitosis cycles completed before death. In practice, k/ρ
provides a, typically long, time scale for the death of this population of damaged cells. This
type of model have been found to provide a good description for the response of low-grade
glioma [35] and prostate cancer [49] to radiation therapy.

There is evidence in the literature that SRS destroys tumor vascular beds, thereby
deteriorating the tumor microenvironment and leading to indirect tumor cell death [50].
These phenomena can produce regions of hypoxia, tumor necrosis and massive release of
tumor antigens, elevating antitumor immune response in a short period of time. Further-
more, tumor hypoxia may persist after vascular injury caused by SRS, and both oxygenated
and hypoxic cells are ablated by high-dose radiation [51]. This fact, together with the
impossibility of accounting for the number of hypoxic cells in brain metastases through
MRI, motivates the non-inclusion of this population within the mathematical model. Thus,
we will also account for a population of immune cells I(t) present in the tumor, whose
dynamics would be governed by the equation

dI
dt

= αN − λI I. (3)

In Equation (3), α is a stimulation parameter that accounts for the immune system
activation by the presence of necrosis, and λI is the decay rate of the immune activation.

Finally, the dynamics of the necrotic cell (or necrosis) compartment will be governed
by the equation

dN
dt

=
ρ

k
D− λN NI. (4)

Thus, we will describe necrosis dynamics by the contribution of damaged cells through
mitotic death and the interaction with the immune system, which in turn is activated by the
release of a variety of pro-oxidant and proinflammatory cytokines such as tumor necrosis
factors [52]. The first term in Equation (4) corresponds to the contribution of damaged cells,
and the second describes the elimination of necrotic cells by the action of immune cells.
This process is modulated by the constant λN .

As to the initial data, the tumor is assumed to be composed mostly of proliferating
cells before treatment. SRS is performed at a given time t0 on a tumor cell population T(t0).
As stated above, a fraction of tumor cells S f will suffer either no damage or only sublethal
damage and will remain viable. A further fraction (1− S f ) will receive lethal damage of
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which a fraction ε will die on a short time scale (i.e., days), and the remainder will move
into the compartment of lethally damaged cells. This means that

P(t0) = S f T(t0), (5)

D(t0) = (1− S f )(1− ε)T(t0), (6)

N(t0) = (1− S f )εT(t0), (7)

I(t0) = 0, (8)

where S f and ε ∈ (0, 1). Figure 1 summarizes the different compartments included in the
model and the effect of radiosurgery. In this paper, we assumed the pretreatment number
of immune cells to be very small. Intratumoral areas in lung cancer brain metastases
have been reported to contain low numbers of inflammatory cells [53], high levels of
immunosuppressive molecules [54] and a suppressed immune microenvironment [55].

Figure 1. Schematic description of the compartments included in Equations (1)–(4) and the effect
of radiosurgery. Different cellular compartments appear after stereotactic radio surgery (SRS) on
metastatic cells. Proliferating cells P(t) continue to grow at a rate ρ. Damaged cells D(t) become
necrotic N(t) at a rate of ρ/k because of the mitotic catastrophe. Necrosis stimulates the immune cell
I(t) activation with a stimulation parameter α and is removed by its interaction with them. Immune
cells are inactivated with a decay rate λI .

In addition to damaging cancer cells, SRS damages healthy tissue cells located in
the field of the ionizing radiation. In spite of the increasing spatial precision of current
radiosurgery techniques, radiation necrosis of normal cells is a frequent complication.
Since brain tissue renewal occurs on very long time scales of many months, this damage
appears typically more than a year after SRS [56]. This effect has nothing to do with
tumor recurrence but can be confused with it on imaging because of the increase in the
inflammatory compartment. To account for that, we will include an explicit additional
source term in the necrotic compartment h(t) in Equation (4):

dN
dt

=
ρ

k
D− λN NI + h(t). (9)

Note that T(t) = P(t) + D(t) + N(t) + I(t) is a measure of the number of cellular
elements in the tumor and its environment. We assumed it to be related to the observed
tumor volume, which appears in MRIs as a combination of active areas (P + D + I) plus a
necrotic component (N).

The model was solved and fitted to the available longitudinal volumetric data (see
below) using ode45 and fmincon functions included in the scientific software package
MATLAB (R2019b, The MathWorks, Inc., Natick, MA, USA). We performed a heuristic
procedure to validate that the fitted model attained a global minimum on the set of
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parameters estimated (see Appendix A for a particular example). All parameters were fitted
for each metastasis individually, even in the case of lesions belonging to the same patient.

2.2. Patients

Patients included were participants in the study METMATH (Metastasis and Mathe-
matics), a retrospective, multicenter, nonrandomized study approved by the Ethics Com-
mittees of Instituto Valenciano de Oncología (code 2011-46, 2011), Hospitales HM (code
18.09.1303-GHM, 2018) and Hospital Universitario Ramón y Cajal (code METMATH, 2018).
We reviewed the METMATH records to look for patients satisfying the following inclusion
criteria: patients diagnosed with brain metastasis of a primary lung cancer that had under-
gone at least a T1-weighted MRI examination with contrast before SRS and at least two
T1-weighted MRIs after SRS. The time interval between the diagnostic MRI and SRS had to
be at most 2 weeks. Patients who received whole-brain radiation therapy within 4 months
before SRS, or during the followup period, were excluded. Patients who received surgery
were also excluded. In total, 45 patients satisfied the inclusion criteria. Patients with more
than one treated brain metastasis were analyzed; 32 patients had only one BM, 11 patients
had two BMs and 2 patients had three BMs. Finally, 60 brain metastases were included.
Median patient age was 60 years (range 43–80) and sex was 59% male, 41% female.

The dose and fractionation schedule was chosen at the discretion of the treating
radiation oncologists and performed using γ-rays. A total of 46 lesions were treated with a
single dose (range 17–24 Gy), six lesions with three dose fractions (range 5.5–8.8 Gy) and
eight lesions received between four and six dose fractions (range 4–9.5 Gy). The mean
follow-up period of the patients studied was 11 months (range 3–30 months).

Contrast-enhanced T1-weighted sequence was gradient echo transformed using 3D
spoiled-gradient recalled echo or 3D fast-field echo after intravenous administration of a
single dose of gadobenate dimeglumine (0.10 mmol/kg) with a 6–8-min delay.

MRI studies were performed in the axial or coronal plane with either a 1.5 T Siemens
scanner (259), a 3 T Philips scanner (45) or a 1 T Philips scanner (13). Imaging parameters
were no gap, slice thickness of 0.5–2.0 mm (mean 1.1 mm), 0.4–1.1 mm (mean 0.6 mm)
resolutions in the x and y planes and 0.6–2.0 mm spacing between slices (mean 1.5 mm).

2.3. Tumor Segmentation

Brain metastasis T1-weighted images were collected in DICOM format and analyzed
by the same image expert (OLT, 2 years of experience on tumor segmentation) and re-
viewed by either a senior radiologist (EA) or an image expert with 5 years of expertise in
tumor segmentation (JPB). The tumor volume for each brain metastasis was defined on
gadolinium-enhanced magnetic resonance imaging (T1Gd-MRI) as the contrast-enhancing
(CE) compartment of the tumor combined with the central non-enhancing (non-CE) com-
partment enclosed by the contrast (the latter usually represented necrosis).

Segmentation was performed by importing image files into the scientific software
package MATLAB (R2019b, The MathWorks, Inc., Natick, MA, USA). Images were manu-
ally placed in a 3D box and then semi-automatically delineated using a gray-level threshold
chosen to identify the contrast-enhancing volume. Segmentation was corrected manually
slice by slice as described in [45].

3. Results
3.1. Mathematical Model Describe the Response to Radiosurgery

Figure 2 shows examples of the time evolution of the volume of brain metastases
treated with SRS in three patients. The cases chosen provide instances of three differ-
ent typical behaviors. In the first case (Figure 2a), the patient had a sustained response
lasting for at least 17 months. In a second patient (Figure 2b), the tumor decreased in
volume for approximately 184 days and relapsed after the initial response. Finally, in the
third case (Figure 2c), the tumor continued to grow after radiosurgery treatment. Hence-
forth, we will denote the lesion behaviors described in the cases shown as monotonically
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decreasing lesions (MDLs), lesions that are first decreasing and later increasing (DILs)
and monotonically increasing lesions (MILs).

Figure 2. Evolution of tumor response for three brain metastasis (BM) patients. Left subplots show
characteristic two-dimensional slices of the contrast-enhanced T1-weighted MRI scans showing the
metastasis response to SRS for different times (in days) starting from a baseline pretreatment scan
(taken to be t = 0 days). Subplots in (a) and (c) show axial slices, and subplots in (b) show coronal
slices. Green boxes containing the tumors are shown to help locate them. Panels in the rightmost
column show the volumetric longitudinal data obtained from the 3D segmentations (red dots) and
the best fits (blue lines) obtained using the mathematical model of Equations (1)–(4). The model
parameters obtained for the best fits are (a) S f = 0.02× 10−2, ε = 0.90, ρ = 0.01, λN = 0.06, λI = 0.07,
α = 0.10; (b) S f = 0.12× 10−1, ε = 0.60, ρ = 0.02, λN = 0.20, λI = 0.01, α = 0.04; and (c) S f = 0.40,
ε = 0.10, ρ = 0.01, λN = 0.01, λI = 0.10, α = 0.01.

Our mathematical model was able to describe the different scenarios shown in
Figure 2.

Figure 3 shows additional examples for 9 of the 60 metastases. The model was able
to describe different dynamics of response to treatment in all cases. It also provided
good fits for the longitudinal volumetric data of 36 metastases, which showed evolution
framed within one of the three behaviors mentioned above: 6 metastases showed an
MDL behavior, 19 showed a DIL behavior and 11 showed an MIL behavior. This study
included only 13 patients with more than one metastasis treated, and thus a statistical
analysis to assess similarities in the behavior of the lesions could not be performed. Four
of the 11 patients were observed to have the same post-treatment dynamics in all of their
metastases, but the other seven patients had lesions with different longitudinal dynamics
after treatment therapy.
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Figure 3. Examples of longitudinal volumetric tumor data (red circles) and best fits obtained with
the model (1)–(4) (blue lines) for patients showing (a–c) monotonically decreasing lesions (MDLs),
(d–f) lesions that are first decreasing and later increasing (DILs) and (g–i) monotonically increasing
lesions (MILs). The vertical dashed red lines mark the radiosurgery date. All times are measured in
months from the baseline pretreatment scan.

3.2. The Mathematical Model Describes the Early Inflammatory Dynamics Observed in the
Post-SRS Response

Six patients in our dataset had imaging studies performed within the period of
3 months after SRS. These BMs increased in size initially, suggesting treatment failure. How-
ever, they decreased in size after a few weeks, which was shown by the second examination
after SRS. This is due to an early inflammatory response to the treatment that is assumed
to occur in most cases. In fact, this is the reason why the first control post-treatment MRI is
typically performed 3 months after SRS once the effect of early inflammation has vanished.
Figure 4a,b shows the longitudinal volumetric dynamics of BMs and the best fits using the
mathematical model for two of those patients.

It is interesting that when breaking the total tumor volume into the different compo-
nents (color lines in Figure 4), it was obvious that the initial volumetric growth was actually
associated with an increase in immune activation. In both cases, radiation generated a
large initial number of necrotic cells that stimulated immune cells. The sum of all the
cellular compartments resulted in an increase in the total volume, but in fact, the number
of proliferating cells was smaller after SRS treatment.

We calculated T(Imax), representing the time when the immune cell population reaches
its peak for the model fits. Figure 4c shows the histogram of the calculated times for the
42 metastases classified within the above response groups.
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Figure 4. Early inflammation occurs in the early response after surgery. The subplots (a) and (b)
show the dynamics of the proliferating cells (green line), damaged cells (magenta line), necrotic cells
(black line), immune cells (yellow line) and total tumor cells (blue line) of two patients, governed
by Equations (1)–(4). Red circles represent the tumor volume measurement, and dashed red lines
mark the radiosurgery date. (c) Histogram and distribution function of T(Imax) for the model fits of
42 BMs.

The computed times can be approximated by a gamma distribution with shape param-
eter a = 1.4 and scale parameter b = 36, and they have a mean value equal to 51 days and a
variance equal to 43 days. This means that the peak of inflammation occurs more frequently
between months 1 and 2 after SRS. Thus, our model confirms that when MRI scans are per-
formed within 3 months after treatment, the results may be affected by early inflammation
events and do not provide a reliable measure of the proliferating tumor component.

It is important to emphasize that all four classes of response dynamics studied so far
(monotonically decreasing lesions, lesions that are first decreasing and later increasing,
monotonically increasing lesions and early inflammation) were accurately described by
the mathematical model given by Equations (1)–(4). Figure 5 shows the mean square
errors (MSEs) of the best fits obtained using the mathematical model for this subset of
brain metastases.
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Figure 5. Mean square errors of the best fits of the model (1)–(4) to the metastasis volumetric data for
the 42 metastases showing a monotonous decrease (MDL), decrease first and later increase (DIL),
monotonous increase (MIL) and early inflammation in response to SRS. The formula used is given by
the expression MSE= 1

n ∑n
i=1(V̂i −Vi)

2, where n is the total number of follow-up MRIs performed
for each metastases, Vi is the segmented volume of scan i and V̂i is the volume estimated with the
model at the time of scan i.

3.3. Damage to Healthy Tissue Could Lead to Late Inflammatory Response and Radiation Necrosis

Late radiation necrosis is a frequent event after SRS treatment [57,58]. This is typically
observed in MRIs as volumetric growth of the lesion, typically between 1 and 2 years
after SRS, followed by spontaneous (partial or complete) remission. Radiation necrosis
(also called “pseudoprogression”) poses a challenge to radiologists since it is very difficult
to differentiate it from true tumor progression. In the former case, there is no need for
anti-tumoral treatment, while the latter requires a different therapy.

In our dataset, 7 BMs were diagnosed with radiation necrosis and an additional 11 BMs
presented late episodes of volume increase followed by volume decrease compatible
with that condition. Figure 6 shows two examples of the dynamics and the best fits
obtained, using different mathematical models. First, we tried to fit the dynamics using
Equations (1)–(4). However, the model did not accurately describe the dynamics (see
dashed blue lines in Figure 6a,b) with large MSEs (Figure 6e).

Figure 6. Late inflammatory response and result of model fit. (a,b) Tumor volumetric longitudinal
dynamics (solid red circles) for two patients receiving radiosurgery and best fits obtained using either
Equations (1)–(4) (dashed blue lines) or Equations (1)–(3) and (9) (solid blue line). Vertical dashed
red lines represent the SRS date. Best fits for the healthy tissue damage were obtained in the first case
by (c) h(t) = 130× N(20, 2.3) and (d) h(t) = 6.5× N(12, 2.3). MSE obtained when fitting the model
to the group of 18 BMs using (e) Equations (1)–(4) and (f) Equations (1)–(3) and (9).
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To explain the inflammatory response in this group of patients, we included the
late damage to the surrounding healthy tissue as described by Equation (9). To do so,
the parameters in Equations (1)–(3) and (9) were fitted for each metastasis using a Gaussian
form for the damage function h(t) = kNormal(µ, σ). A substantial reduction in the MSE
was obtained (Figure 6f) in line with the model dynamics, closely resembling the data (see
solid blue lines in Figure 6a,b).

3.4. Time to Tumor Progression Can Be Obtained from the Mathematical Model

Finally, our mathematical model allowed for a theoretical estimation of the time of
tumor progression from the initial response data.

After therapy, proliferating cells have exponential growth given by the explicit solution
P(t) = P0eρt. Similarly, damaged cells have exponential decay given by D(t) = D0e−ρt/k.
When dT/dt > 0, tumor volume will grow back. In ideal conditions, the immune system
is able to efficiently counteract necrotic cells, and both populations would eventually
disappear. Under this assumption, tumor progression is determined by the populations of
proliferating and damaged cells, i.e., P0eρt − 1

k D0e−ρt/k > 0. Taking the most reasonable
value, k = 2, i.e., damaged cells dying after two cell cycles on average, and substituting the
values of P0 and D0 using Equations (5) and (6), the previous inequality is satisfied if

tp >
2
3

1
ρ

ln
(1− S f )(1− ε)

2S f
, (10)

where (1− S f )(1− ε) > 2S f > 0, when D0 > 2P0. If D0 < 2P0, the inequality is satisfied
for all values of t > t0. Equation (10) can provide an estimate of the time to progression
under the assumptions that there is no damage to the healthy tissue (h = 0) and that the
survival fraction is positive (S f > 0). The value provided by this equation can be compared
with the progression time observed for each patient.

Figure 7 shows three examples of the longitudinal dynamics of BMs after treatment
using the mathematical model. Panels on the left display the dynamics for the three
patients. The rightmost panels show the dynamics of the different populations according
to the mathematical model (1)–(4).

In the first example (see Figure 7a,d), in a tumor without inflammation, the progres-
sion time clearly indicates the moment in which the proliferating cells outgrow half of
the damaged cell compartment, thus dominating tumor growth. For this patient, there
is an increase in tumor volume right after the progression time tp computed from our
mathematical model (Equation (10)).

The second and third examples correspond to patients diagnosed with radiation necro-
sis. The progression time could be used in these cases to distinguish between an increase in
the tumor volume caused only by the radiation necrosis (false progression) and an increase
caused by real growth. Specifically, the second example (Figure 7b,e) corresponds to a
patient with radiation necrosis without progression. In this case, the tumor volume increase
can be associated with the radiation necrosis, as it occurs 10 months before progression was
expected. In the third example, radiation necrosis occurs after the progression time. In the
graph, it is possible to see how even if the tumor volume increases due to the radiation
necrosis, it continues growing after the inflammation decreases, suggesting the coexistence
of radiation necrosis and tumor progression.
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Figure 7. Real longitudinal dynamics of three BMs and of the different compartments after SRS
according to the model (1)–(4). Red dots in panels (a–c) represent the longitudinal tumor volumetric
data for the three BMs chosen. Solid blue lines show the best fits obtained using the model Equa-
tions (1)–(4). The second column (d–f) shows radiosurgery response for proliferating cells (green
line), damaged cells (magenta line), necrotic cells (black line) and immune cells (yellow line) obtained
from the model. Dashed red lines mark the date of SRS, and vertical black lines mark the time of
tumor progression as calculated by Equation (10).

4. Discussion and Conclusions

In this study, we put forward a mathematical model that describes the effect of SRS on
brain metastases. The mathematical model includes only four cellular compartments (pro-
liferating, necrotic, damaged and immune) to account for the different dynamics observed
after SRS. Interestingly, the simple model was able to describe the volumetric evolution of
the lesions observed in the clinic and the different scenarios related to inflammation.

We wanted to keep the complexity of the model at a minimum. It is easy to construct
complex models accounting for many different, and not too well-known, biological pro-
cesses. However that often results in too many unknown parameters to be fitted using
a limited amount of biological data. In our case, the only available information was the
MRI data and, more specifically, tumor volume. Retaining only a small number of essential
variables/parameters is the best way to avoid overfitting problems.

In our mathematical model, we used a single population of proliferating metastatic
cells accounting effectively for the tumor dynamics. Brain metastases, and specifically lung
cancer ones, are heterogeneous and composed of genetically and phenotypically different
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subpopulations [59–61]. This heterogeneity leads to a differential response to radiation
therapy depending on many molecular factors such as EGFR overexpression [62], TopBP1
and Claspin [63], MET [64], CAVEOLIN-1 [65] and many others [66,67]. Indeed, radiation
resistance is not only associated with specific individual features of the cancer cells. It is
being increasingly recognized that the tumor microenvironment, cell–cell communications
and other factors play a role in this complex emergent property [68–70]. Here, we intended
to develop a minimal model able to describe observed volumetric dynamics, which is the
only follow-up information available through standard MRI-imaging.

It is interesting that the model was able to describe qualitatively the observed dynam-
ics without accounting for other relevant biological details of response to radiation therapy
such as the differential response of well-oxygenated and hypoxic cells to radiation ther-
apy [48] that has been included in other, more detailed models of radiation therapy of brain
tumors by different authors (see e.g., [28,71–74]). Another effect not accounted for in this
study was the fact that irradiated cells may undergo cell cycle arrest or become quiescent
for long time periods after sublethal radiation doses [33]. As imaging techniques progress
and provide biological data on metastasis status able to feed more complex mathematical
models, it may be relevant to develop models including all those biological processes.

In the context of our simplifying assumptions, we assumed the proliferation rate of the
BMs to be the same after treatment as before it. The phenomenon of growth acceleration of
residual tumors of certain histologies after fractionated radiotherapy courses, the so-called
accelerated repopulation, has been known for a long time [48]. However, repopulation
rate has been found to be lower in tumors with increased cell loss, as happens in radiation
surgery [75]. In fact, there are no reports of observations of accelerated repopulation after
radiation surgery treatments. This is also consistent with the observation in experimental
tumors that the triggering of accelerated repopulation requires minimum total treatment
durations longer than than 3–4 weeks in human tumors [48].

Other biological processes could also lead to differences in proliferation rate with
time. The possibility of actions on the primary tumor influencing the dissemination and
growth dynamics of metastasis has been hypothesized on the basis of different sources
of biomedical data and studied mathematically [19,76,77]. However, in the case of brain
metastases, the blood–brain barrier may provide a chemical firewall for the communication
between the primary tumor and metastatic colonies, and the fact is that no solid evidence
of such chemical links has been provided. Moreover in the case studied here of stage IV
lung cancer, surgical treatment of the primary tumor is not typically a therapeutic option.
This is why we did not account for any “communication” between the primary tumor and
the BMs in our modeling approach.

Early post-treatment inflammation was very easily accounted for in the model by
incorporating early cell death (necrosis) and associated inflammatory response. Radiation
necrosis events, assumed to be the result of damage to healthy tissue, were incorporated
in a simple and rather ad hoc way by the function h(t). The effect of radiation on healthy
tissue as an additional source of necrosis could be analyzed under different forms of this
function, but we have chosen the Gaussian form as a first approximation. Induced damage
to normal tissue by radiation therapy has been studied using mechanistic mathematical
models [78], where the cell population is directly exposed to radiation. Incorporating more
details of the SRS-induced damage to healthy tissue could allow us to write mechanistic
equations for the normal tissue behavior in response to treatment. As a first approach, we
wanted to keep the model simple and with a minimal number of parameters, but more
complex mathematical models could account for this effect in a more elegant way.

In this work, we chose S f to be an adjustable parameter instead of a fixed predeter-
mined value. In the context of elementary “static” mathematical approaches to radiation
therapy such as the linear–quadratic equation, it is customary to assume a given S f value
to solve problems in therapy replanning and other such applications. That given S f value
would be characteristic of the tumor histology. However, that approach is of limited use
in the context of radiation surgery of brain metastasis because there is a broad variety of
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potential outcomes to SRS treatment ranging from no response to complete response even
for the same primary types. This is probably due to the intra- and interpatient heterogeneity
as well as the role of many other elements in the response such as the tumor or immune
environments, as discussed previously.

According to the results of the model fits, it seems that this simple model has some lim-
itations in describing the tumor dynamics in some patients undergoing radiation necrosis.
The model fitting in these cases showed mean square errors larger than those obtained in
the more common scenarios of early response to SRS. This suggests that radiation necrosis
is a more complex phenomenon where different biological factors may play a role.

One of the current problems in clinical practice is to differentiate between tumor
progression and radiation necrosis, as both display a similar course as observed in the
MRI, requiring advanced diagnostic techniques for identification [79,80]. In this study, we
obtained an analytical estimate for the progression time due to the growth of remnant
proliferating cells after SRS. This estimated time may be the basis for biomarkers helping
clinicians to distinguish between progression and radiation necrosis. If the tumor increases
in size at a time close to the predicted tumor recurrence, this could be an indication of
tumor progression. On the other hand, tumor outgrowths at times much earlier than the
estimated by the model could be an indication of the presence of an inflammatory process.

The key point in moving from Equation (10) to a clinically relevant biomarker would
be to define the requirements for a reliable estimate of the outgrowth time, as this must
be done from MRI data. In principle, only a small number of data points are necessary to
obtain the value of this parameter (ρ, ε, S f ). If there are two MR imaging exams before SRS,
they would allow the tumor proliferation rate ρ to be estimated. Interestingly, performing
a second MRI immediately before SRS also has advantages from the clinical point of
view, since it would allow for a more precise definition of the target volume. It has been
reported recently [81,82] that measurable changes occur in brain metastasis over a short
period of time, on the order of a week, so a final planning right before SRS would help
in achieving greater therapeutic efficacy and provide a second MRI to obtain a baseline
growth rate estimate.

The parameters ε and S f can be obtained using the first few (2–3) MRIs of the standard
follow-up after radiosurgery. Thus, patients with two pretreatment MRIs and a 1-year
follow-up after SRS could have precise progression time estimates that could be used for
comparison with the observed dynamics after the first year. Unfortunately, our database
did not have patients fulfilling these requirements (i.e., all patients who presented radiation
necrosis or progression had only one pretreatment MRI), so we could not explore the idea
in more detail. As future work, we will address this by planning either a retrospective
search for such patients or a prospective study.

This work is one of the first mathematical studies describing the different outcomes
observed in the response of brain metastasis to radiosurgery using longitudinal tumor
imaging data. Brain metastasis is a condition 10 times more frequent than primary brain
tumors. It is thus striking that so many mathematical papers have studied primary brain
tumors and their time dynamics while BMs have received little attention. Our model is
a first step to a mathematical description of that disease. We hope that this work will
stimulate further studies addressing this important condition and that richer datasets could
be used to feed more elaborate models in the future.

In conclusion, we have developed a mathematical model based on a set of ordinary
differential equations that describe the observed longitudinal dynamics of brain metastases
after SRS. The model allowed the varying early longitudinal dynamics observed in patients
to be accurately described with very few parameters. Radiation necrosis events were
described in a simplified way, and in most cases, they were also fitted accurately using
the model. We obtained an equation for the expected tumor progression time based on a
few parameters that could be the basis for biomarkers to help in discriminating between
radiation necrosis and true progression, which currently represents a major challenge in
the clinical setting.
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Appendix A

To confirm that the optimization procedure implemented in the MATLAB func-
tion fmincon was not trapped in a local minimum of the parameter space, we heuris-
tically explored parameter values around the solution. To do so, we plotted the pro-
files of the objective function by fixing all parameters except one at their optimal values
and considered the unset parameter as a variable. The function used is given by the
expression MSE = 1

n ∑n
i=1(V̂i(ρ, S f , ε, λN , λI , α, h)−Vi)

2, where n is the total number of
follow-up MRIs performed for each metastases, Vi is the segmented volume of scan i and
V̂i(ρ, S f , ε, λN , λI , α, h) is related to the total number of cellular elements in the tumor and
its environment T(ti) given by the model (see Section 2.1).

Figure A1 shows two examples of minimum MSE profiles as a function of a single
parameter, where the other parameters have been set to the optimal value obtained by
fitting the data using fmincon. The simulations suggest that the set of parameter values
provided by the MATLAB routine were indeed global minima, although the procedure
used cannot guarantee it with absolute certainty.
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Figure A1. MSE profiles as a function of a single parameter where the other parameters have been set as the optimal values
obtained by fitting the data of two metastases (A,B) using fmincon. The red dots represent the value of the parameter
estimating all the parameters at the same time. The red dashed lines represent the minima of the MSE function.
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