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INTRODUCTION

The prediction of intramolecular contacts could be helpful in predicting the three-
dimensional structures of proteins. Structures might even be inferred directly if it were
possible to predict a sufficiently large number of contacts with sufficient accuracy. It is
not clear how many contact predictions would be required for structure prediction, but
one estimate is that as few as one contact on average for every seven residues might be
sufficient.1 Of course, not all contact pairs are equally useful in constraining 3D mod-
els. Also unclear is what accuracy of contact prediction would be required for de novo
structure prediction. However, contact predictions might be useful for selecting among
alternative structures or for constraining conformational searches even if they are too
few in number, or too inaccurate, to be used for de novo prediction.

The utility of contact prediction is not restricted to protein structure prediction.
Techniques that use strictly evolutionary information (in the form of multiple sequence
alignments) have been used to infer correlated mutations2–12 and tree-determinant
positions.13 Interprotein-correlated mutations have been interpreted as physical sites of
interaction.14 It has been shown that these predictions can distinguish between correct
and incorrect docking models.15 Tree-determinant positions are those residues that are
conserved between subfamilies of proteins, and these can be used to predict the inter-
acting surface between protein and substrates, or between different proteins.

The numerical assessment of contact predictions in Critical Assessment of Structure
Prediction experiment (CASP7) followed closely the methods established by some of
the authors in past CASPs and CAFASPs, and have been implemented in the EVA con-
tact evaluation server.16,17 The only substantive change was in the way contact predic-
tions were inferred from 3D predictions for comparison to the contact prediction accu-
racy of explicit contact prediction methods.

For the assessment of contact predictors, we restricted our analysis to Free Modeling

targets (FM) and to targets that were on the borderline between FM and Template

Based Modeling (FM/TBM). The exclusion of pure TBM targets eliminates contact pre-
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ABSTRACT

Predictions of intramolecular

residue–residue contacts were

assessed as part of the seventh

community-wide Critical As-

sessment of Structure Predic-

tion experiment (CASP7). As

in past assessments, we focused

on contacts that lie far apart

in sequence as these are likely

to be more informative in pre-

dicting protein structure. One

lab did somewhat better than

others according to our assess-

ment, and there is some reason

to think that this lab’s results

represent progress over CASP6.

In general, contacts inferred

from 3D structural predictions

are similar in accuracy to

those predicted by contact pre-

diction methods. However,

contact prediction methods

were more accurate for some

targets.
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dictions that might be based purely on fold recognition.

However, numerical assessments were performed for all

targets, including TBM targets, and the data are available

at http://casp.bioinfo.cnio.es.

METHODS

Target selection

The target classification used in the other CASP7 pre-

diction categories was used here as well. All 15 FM tar-

gets and all 4 FM/TBM targets were used in the assess-

ment. Pure TBM targets were not used to avoid the pos-

sibility of predictions that were based on comparative

modeling. As one measure of target difficulty, we deter-

mined the number of homologs to the original full-

length target sequences using BLAST/PSI-BLAST and the

EBI 90% nrdb sequence database. Four FM targets lacked

any homologs by this criterion at the time of assessment

(T0309, T0287, T0314, T0353).

Contact prediction format and definition

Contact prediction groups submitted lists of residue

pairs, as well as a probability estimate that each pair is in

contact. The CASP contact format also asked predictors

to specify the contact distance range for each pair, but

this was not used in the assessment. Instead, contacts

were defined as a Cb–Cb pair (Ca in the case of Gly)

less than or equal to 8 Å apart. This follows the prece-

dent of recent CASP contact prediction assessments, and

was noted in the contact prediction format specification

on the CASP7 website. For reasons of brevity and clarity

we have used the group numbers assigned to predictors

in all figures; the group names that correspond to these

group numbers are shown in Table I.

Contact lists and filters

Prediction groups submitted contact pairs based on the

entire target sequence, but only contact pairs that lie

within the official domain definition for the target were

used in the analysis. Short range contacts have less value

than long range contacts in constraining 3D structure pre-

dictions, so sequence separations were used to filter con-

tact predictions. The criteria used for filtering contacts by

sequence separation were slightly different than in past

CASP assessments in that upper limits were specified so

that different sequence separation thresholds do not

include the same contacts. The three separation ranges

used, and for which results are available at http://casp.

bioinfo.cnio.es, are 6 � x < 12, 12 � x < 24, and x � 24.

For all of the analyses discussed here, except those shown

in Figure 5, a sequence separation of 24 or greater was

used. This threshold was used extensively in the assess-

ment of contact predictions in CASP6 and was chosen

because it highlights sequence-distant contacts that are

likely to be most useful for structure prediction.16 The

CASP7 assessment also followed the precedent of earlier

CASP assessments in using target sequence length to

define how many predicted contacts were evaluated for

each target. For each target of length L, we separately cal-

culated quality measures for sets of L/x predictions, where

a variety of values of x were used in the range of 0.5–20.

Predictions were sorted according to the predictor’s prob-

ability estimates, and secondarily by residue number.

After eliminating residue pairs whose sequence separation

was less than the threshold, the top L/x predictions were

used in the analysis. Figure 5 shows accuracy results for

several groups at a variety of values of x and for two

sequence separation thresholds. For all other analyses

described here, we used an L/5 cutoff with a sequence

separation of �24 for evaluating the performance of pre-

diction groups. Values of L/x smaller than L/5 imply fewer

predicted contacts and, as a result, less confidence in the

analyses. For values higher than L/5, there are fewer

groups who predicted a sufficient number of contact

pairs. Numerical evaluation data for other combinations

of parameters are available at http://casp.bioinfo.cnio.es.

Comparison to contacts inferred
from 3D models

Results for contact predictors were compared to the

predictions that might have been made by 3D structure

predictors had they made contact predictions based on

their 3D models. Residue pairs in 3D models were ranked

by Cb–Cb distance (Ca for glycines) and the closest L/x

contacts were considered to be contact predictions, pro-

vided the contact distance was less than or equal to 8 Å.

This method differs from past CASP assessments which

sampled randomly from amongst the full set of contacts

that were 8 Å apart or less. We used only the ‘‘model 1’’

prediction from each group, since the contact predictors

only submitted one contact list per target. For 3D models

Table I
Contact Group Numbers and Names

Group number Group name

RR010 SAM-T06
RR042 Frishman
RR066 UF_GATORS
RR103 Huber_Torda
RR138 SVMcon
RR141 BETApro
RR154 GPCPRED
RR168 Distill
RR169 Meiler
RR176 CYKAY-AT-NTU-AND-III
RR230 Possum
RR271 BIME@NTU
RR296 PROFcon-Rost
RR389 SAM_T06_server
RR393 Distill_human
RR618 GajdaPairings
RR763 DISTILLFM
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that contained only Ca or backbone atoms, the Jackal

package was used to calculate Cb positions.18

Numerical evaluation criteria

All numerical evaluations were performed using a fixed

number of contact predictions based on target sequence

length, as described above. If the number of predicted

contacts that met the sequence separation criterion was

less than the length-defined threshold, then no assessment

of that contact model was made. Predictions were eval-

uated using two measures described in previous CASP

prediction assessment papers. One is accuracy (Acc),

which is the fraction of predicted contacts that are found

in the experimentally determined target structure. Acc 5
TP/(TP 1 FP), where TP 5 true positive and FP 5 false

positive. The second metric, Xd, is a measure of how the

distribution of distances that are observed for predicted

contacts differs from the distance distribution expected

by chance. It is defined as Xd ¼
Pi¼15

i¼1 Pip � Piað Þ=
di 3 15ð Þ. There are 15 distance bins, starting from 0–4 Å

(i 5 1), and increasing in 4-Å increments up to 56–60 Å

(i 5 15) Pip is the fraction of predicted contacts that are

in bin i and Pia is the fraction of all residue pairs that are

in bin i. di is the upper limit of the distance range for bin

i, normalized to 60. Note that the existence of di in the

denominator weights the summation towards shorter

contact distances. Larger values of Xd represent greater

skewing of the predicted contacts towards shorter

observed distances.

Two other measures used in previous CASPs were cal-

culated and are available at the web site. One is the

improvement in accuracy over a random prediction, and

the other is coverage, defined as the fraction of structur-

ally observed contacts that are predicted (TP/observed

contacts). We did not use these values in the assessment

because they can be determined directly from the accu-

racy of a prediction and the sequence length of the tar-

get, and are thus redundant for this purpose.

RESULTS

Prediction data sets

Seventeen groups participated in contact prediction in

CASP7. Most groups submitted predictions for all, or

nearly all, of the 19 FM and TBM/FM targets. However,

roughly half of the predictions failed to meet the thresh-

old number of contacts required for assessment. As a

result, the number of targets used to assess contact pre-

dictors varied widely [Fig. 1(A)]. For the analyses pre-

sented here, L/5 contacts were required with a sequence

separation of at least 24 amino acids (see Methods). This

threshold has been used in past CASP assessments as

well. For simplicity, we refer to contact predictions that

meet these criteria as ‘‘eligible predictions’’ and predic-

tions that fail to meet these criteria as ‘‘ineligible predic-

tions.’’ However these terms are not meant to imply that

the predictors did anything incorrect. Although predic-

tors could have anticipated our use of this threshold,

there is no way for them to know for sure what the

threshold number of contacts will be in advance. For

example, in a target sequence that has been divided into

domains for the purposes of CASP assessments, predic-

tors need to meet the contact number threshold for the

individual domain even though they do not know the

domain boundaries in advance. For this reason, domain

targets tend to have fewer eligible predictions [Fig. 1(B)].

Prediction accuracy by target

Contact prediction accuracy varies from target to tar-

get, but is typically quite low (mean of 0.13 across all

specialist (RR group) predictors and targets) (Fig. 2). For

the four targets that appear to lack homologs (Methods),

the average prediction accuracy is substantially lower

(0.04). The 15 targets that have readily identified homo-

logs have a mean contact prediction accuracy of 0.15.

This prediction accuracy is not significantly better, on

average, than the accuracy of contact predictions inferred

Figure 1
Coverage of contact prediction targets by contact prediction groups (A). Number

of targets for which each group submitted predictions (total height of histogram

bars), and the number of predictions which met the L/5 threshold for contacts

with a spacing of at least 24 amino acids (black bar). (B) Same as A, except the

number of prediction groups who made predictions is plotted for each target.

J.M.G. Izarzugaza et al.
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from 3D structural models (model 1 predictions; mean

of 0.14 across all targets and predictions). However, this

average value obscures a notable difference among two

classes of targets: those that are derived from target

sequences that were split into multiple target domains by

the assessors, and those for which the target sequence

resulted in a single target structure. There were six targets

in the FM and TBM/FM sets that were derived from

multidomain target sequences, and for each of these tar-

gets the predictions inferred from 3D models were worse

than the best contact predictions by specialist groups. In

fact, very few 3D models were even evaluated for these

targets because most of the models did not meet the L/5

criterion for number of contacts. Presumably this reflects

difficulties in the 3D structure prediction of target

sequences that are subsequently split into multiple target

domains. In contrast, for the 13 targets derived from a

singe-domain target sequence, 12 were predicted best by

3D models.

Predictions for T0321_2 are anomalous in their excep-

tional accuracy. This target was classified as a TBM/FM

target because there is a template that covers part of the

domain, and many of the 3D modeling groups did well on

that part of the structure. This explains the exceptionally

high median accuracy for contacts inferred from 3D mod-

els. It is less clear why the contact predictors did so well on

this target. One group (RR618) had 100% accuracy on the

top L/5 contacts they predicted (50 in this case). Although

this was exceptional, relatively high accuracy was the rule

for most groups. Of the 11 contact prediction groups that

had eligible predictions for T0321_2, 9 had higher accura-

cies for this target than for any other. T0321_2 consists, in

part, of a six-stranded beta sheet, five strands of which are

parallel. Perhaps contacts for this kind of structure are

more easily predicted. Some support for this comes from

T0296, which is the only single domain protein for which

the best contact predictions beat the best 3D model

derived predictions. T0296 also has extensive parallel beta

strand structure. Alternatively, the fact that T0321_2 was

not only exceptionally well predicted but was also the only

target that had a clear (albeit partial) template, suggests

that prediction groups were able to take advantage of this,

either implicitly or explicitly.

Prediction quality by group

Since the number of eligible contact predictions varies

widely from group to group, we adopted two methods

for assessing which groups did best. The first was to

compare separately each pair of groups using only the

targets for which those groups had predictions in com-

mon. A graphical representation of this analysis shows

that group RR010 typically predicted more targets with

higher accuracy than did other groups, followed very

closely by group RR389 (Fig. 3). These two groups are

both from the K. Karplus lab, group RR010 being the

‘‘human’’ group and RR389 the server.

We also asked which groups did best when averaging

over all their eligible predictions, regardless how much of

Figure 2
Accuracy of predictions for each contact prediction target. Accuracy values for

specialist contact prediction groups (RR) are shown as black dots. In some cases,

more than one group predicted contacts with the same accuracy. Accuracy values

for contacts inferred from 3D models are shown as box plots, with outliers

shown as open circles. As described more explicitly in Methods, accuracy is the

fraction of predictions that are true positives.

Figure 3
Pairwise comparison of RR groups. Each row compares a reference group with

each of the other RR groups (comparison groups). For each cell in the table, the

size of the outer circle reflects the number of predicted targets in common, and

the inner, black circle reflects the number of targets for which the reference group

had a higher prediction accuracy than the comparison group; note the scale at

the bottom of the figure. Ties were counted as half a win. The rows (reference

groups) have been sorted by the total number of targets in common with other

groups.
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an overlap in targets there was with other groups. To

normalize for target difficulty we converted accuracy val-

ues for each target to Z-scores based on the mean and

standard deviation of scores for all predictions for that

target (RR groups and 3D models). We then determined,

for each predictor, the average Z-score across all targets

for which the group had eligible predictions. Figure 4

shows that groups RR010 and RR389 performed best by

this criterion, as they did in the pairwise comparison. It

is also notable that RR010 had eligible predictions for

more targets (19/19) than did any other group, and that

RR389 was similar (17) (Fig. 4). Groups RR141 (8 targets),

RR296 (14 targets), and RR138 (15 targets) round out

the set of top scoring predictors. The small sample size

and large variances preclude any of the top groups from

being shown to be best with statistical confidence.

We performed a similar analysis using the Xd metric

(Fig. 4). Xd is a measure of how skewed the predicted

contacts are towards shorter distances compared to the

distribution of distances for all residue pairs that meet

the sequence separation criterion (Methods). Compared

to accuracy, Xd shows less discrimination amongst the

top contact prediction groups, with the five groups men-

tioned above all having average Z-values between 0.80

and 0.93. The top scoring group by this criterion is

actually a different group, RR763, with a Z-score of 1.11.

However this group had eligible predictions for only 5

targets. Other groups near the top were RR230 (Z 5
0.86; 3 predictions) and RR154 (Z 5 0.67; 6 predictions).

In general, contact predictors do better relative to 3D

modelers using the Xd metric than they do using accu-

racy (compare panels A and B in Fig. 4). However, even

by Xd, the best contact predictions inferred from 3D

models outperform the best predictions from contact

prediction groups.

Effect of alternative minimum spacing and
assessed contact numbers

The analyses presented here and at the CASP7 meeting

were based on a sequence separation of at least 24 amino

acids, using the L/5 top predictions from each group for

each target. To get some sense for how these parameters

might have affected the analysis, we determined the aver-

age prediction accuracy for each group using two differ-

ent definitions of sequence-remote contacts (�24 and

�12 amino acids) and six different cutoffs for the num-

ber of contact predictions assessed (Fig. 5). On theFigure 4
Accuracy and Xd Z-scores averaged over all targets for which a group had

eligible predictions. RR groups are shown as circles, with the size of the circle

reflecting the number of targets for which the group had eligible predictions. The

box plots show the values for 3D structural models; for clarity, outliers are not

shown. As noted in Methods, accuracy and Xd values were calculated for the top

L/5 predictions with sequence spacing of 24 residues or greater.

Figure 5
Mean accuracy for two different sequence separation criteria and for six different

numbers of assessed contacts. For purposes of this analysis, only groups with

eligible predictions for at least a third of the targets were considered. Of the 17

groups, 4 had the highest mean accuracy under at least one of the 12

combinations of sequence separation and L/x value. Just those four groups are

shown here. Circles that are missing from this plot indicate that there were an

insufficient number of targets with eligible predictions when evaluated with the

indicated parameters. (For example, missing points for RR103 and RR141 at a

sequence separation of 24 and an x value of 3 indicates that there were eligible

predictions for fewer than a third of the targets).
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whole, at a sequence separation of 24 or greater, the Kar-

plus lab groups (RR010 and RR389) perform best across

the full range of contact number thresholds, consistent

with the more detailed analyses we have presented here

using a contact number of L/5. However, when a

sequence separation of 12 amino acids or more is used,

group RR141 (BETAPro) performs better than all others

(Fig. 5). This shorter sequence separation appears to

favor the prediction of beta sheet contacts, which is what

BETAPro is designed to do.

For example, at a sequence separation of 12 amino

acids or more and a contact number threshold of L/7,

RR141 has eligible predictions for 12 of the 19 targets.

These 12 targets include only one all-helical protein. In

contrast, among the seven targets for which RR141 does

not have an eligible prediction, most are all helical. In

general contact prediction methods perform better for

sheet-containing structures rather than all-helical struc-

tures. Group RR010, which had eligible predictions for

all 19 targets at the L/7 cutoff, had an average accuracy

of 32% for the targets predicted in common with RR141

(i.e., predominantly beta-sheet), but an accuracy of only

22% for the other targets (predominantly helical). In this

particular case the bias towards sheet-containing proteins

means that we are only able to compare methods over a

subset of what might be considered ‘‘easier’’ targets.

Clearly, the choice of whether to use 12 or 24 residue

spacing, or some other number altogether, can have a

substantial effect on the assessment.

Has there been progress?

It is difficult to be sure whether progress has been

made in contact prediction since CASP6, due to small

sample sizes and large variances. CASP7 targets may also

have been more difficult than in CASP6. Several CASP

participants had the sense that targets in CASP7 were

more likely to have few or no homologs, or to have

homologs that were less informative. It is certainly the

case, of course, that the number and diversity of homo-

logs will have an effect on target difficulty. This is

reflected in the low accuracy scores for the four FM tar-

gets that lack homologs (0.04 vs. 0.15 for targets with

homologs). In an attempt to validate the view that targets

were in general more difficult in CASP7, we compared

the number of PSI-BLAST hits per target obtained during

the CASP6 analysis with those obtained for CASP7. We

were not able to conclude from this analysis that targets

were harder, in part because somewhat different protocols

were used for the homology searches in the two CASPs.

More important, though, is an inability to objectively

define how difficulty varies with the number and diversity

of homologs. The relative difficulty of a target for a par-

ticular predictor depends in part on how that predictor

uses the information in homologous sequences.

In an attempt to normalize across the CASP6 and

CASP7 targets, we used results obtained from the Prof-

CON server to predict contacts for the CASP7 targets.19

The ProfCON contact prediction algorithm has not

changed since CASP6, so its prediction accuracies on

CASP6 and CASP7 targets can be used as a rough mea-

sure of target difficulty. In CASP6, the ProfCON server

was used by the Rost group, which was deemed to be

one of three groups that were a bit better than others,

and in CASP7 it was used by group RR296. Using a sub-

set of New Fold (NF) targets that formed the basis for

much of the assessment in CASP6, ProfCON has a mean

accuracy of 21.8, quite close to the best mean accuracy of

any group (22.6). ProfCON did not perform as well on

the 15 FM targets from CASP7 (mean accuracy of 11.3)

suggesting that the targets in CASP7 were harder. In

addition, group RR010 did quite a bit better on the

CASP7 targets than did ProfCON (15.5 vs. 11.3). Thus, it

can be argued that RR010, and perhaps other groups,

may be doing better, when corrected for target difficulty,

than anyone did in CASP6. It must be kept in mind, of

course, that the variances in accuracy values across tar-

gets are very large, so that a different set of criteria for

selecting targets for comparison could have produced a

different result. In addition ProfCON, like any server, has

different strengths and weaknesses for different types of

targets. To reduce the effects of these biases, it would be

helpful in the future to have multiple servers that are left

unchanged from one CASP to the next.

DISCUSSION

The total number of groups participating in contact

prediction in CASP7 (17) was about the same as in

CASP6 (16). It is difficult to know exactly how much

new interest there is in contact prediction because some

labs participate as multiple groups, and at least one

group in CASP7 was headed by a former member of a

CASP6 group. Nevertheless, there do appear to be a few

new groups, which presumably injected new ideas into

the problem. In addition, while the Karplus lab (RR010/

RR389) did participate in contact prediction in CASP6,

they tried different approaches this time and were much

more successful. This should encourage other groups

who may be considering participation in future CASPs.

As in some other CASP categories, we are unable to

demonstrate progress with statistical confidence due to

small sample sizes, differences in target difficulty, and a

lack of frozen servers and data sets with which to com-

pare new methods. Nevertheless, there is reason for

encouragement as RR010 appears to outperform the Rost

ProfCON program, one of the three predictors consid-

ered to be tied for best at CASP6.

A more provocative question is how much contact

prediction needs to progress to make a contribution to

Assessment of Contact Predictions
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de novo structure prediction. Perhaps the utility of con-

tact prediction will lie in choosing among alternative

models. There do seem to be categories of targets in

which the best contact predictions are better than the

best predictions inferred from 3D models. Based on the

targets and predictions analyzed in CASP7, contact pre-

dictions are perhaps most likely to add value for those

targets that are derived from multidomain proteins, and

perhaps for those targets that have parallel beta sheets.

As in all the CASP prediction categories, changes in

thinking about how predictions might be used in the real

world require a re-thinking of the metrics that are used

to evaluate CASP predictions. Accuracy and Xd seem to

be good overall measures of prediction quality, and have

served contact prediction assessments well. In addition,

contact predictors are by now familiar with the use of a

length-dependent criterion for the number of contacts to

be assessed. In principle, this criterion allows predictors

to estimate how many contact pairs may need to be pre-

dicted. Unfortunately, without knowing the exact domain

boundaries for the target, it is impossible to know exactly

how many contacts need to be predicted, and what resi-

due range to use. As a result, almost half of the submit-

ted prediction lists were rejected for having too few pre-

dictions. A second disadvantage of the length-dependent

threshold is that it has different effects on short and long

proteins. Relative to protein size, short proteins have

fewer structurally observed contacts that meet the 24

amino acid sequence separation criterion. Therefore, to

achieve the same level of prediction accuracy, predictions

for small proteins need to have greater coverage of

observed contacts than do predictions for larger proteins.

Given the accuracy and coverage that might be

required to achieve complete de novo structure predic-

tion, it seems unlikely that contact prediction will com-

pete successfully with fragment assembly methods and

other techniques that may be developed in the future.

However, having a smaller number of contacts that are

predicted with greater confidence could still add value to

other methods for structure prediction. If that is the

case, it may be useful in future CASPs to consider mea-

sures of accuracy and coverage that do not require the

predictor to predict a certain number of contacts. Per-

haps contact predictors could even be asked to use their

predictions to participate in quality assessment of other

groups’ 3D predictions.
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