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Simple Summary: COVID-19, an emerging infectious disease of possible animal origin due to SARS-
CoV-2, which has caused a severe pandemic, has also affected some zoo animals. Since non-human
primates are considered susceptible hosts, we tested 43 lemurs (20 black-and-white ruffed lemur
Varecia variegata and 23 ring-tailed lemur Lemur catta) from a Spanish zoological institution, which
were in close contact with humans during the pandemic period, for SARS-CoV-2 infection in both
2022 and 2023. We used molecular techniques for viral RNA detection in oropharyngeal and rectal
swabs and blood anti-SARS-CoV-2 serology. The molecular assays were negative, but one animal was
seropositive, strongly suggesting previous infection by SARS-CoV-2 of that animal. These data, while
not pinpointing a high susceptibility of lemurs to SARS-CoV-2 infection, add to existing information
on the need for surveillance of that virus in animals.

Abstract: In the setting of the recent COVID-19 pandemic, transmission of SARS-CoV-2 to animals
has been reported in both domestic and wild animals and is a matter of concern. Given the genetic
and functional similarities to humans, non-human primates merit particular attention. In the case
of lemurs, generally considered endangered, they are believed to be susceptible to SARS-CoV-2
infection. We have conducted a study for evidence of SARS-CoV-2 infection among the 43 lemurs of
Mundomar, a zoological park in Benidorm, Spain. They belong to two endangered lemur species,
23 black-and-white ruffed lemurs (Varecia variegata) and 20 ring-tailed lemurs (Lemur catta). Health
assessments conducted in 2022 and 2023 included molecular analyses for SARS-CoV-2 RNA of oral
and rectal swabs using two different RT-qPCR assays, always with negative results for SARS-CoV-2
in all animals. The assessment also included serological testing for antibodies against the receptor-
binding domain (RBD) of the spike protein (S) of SARS-CoV-2, which again yielded negative results
in all animals except one black-and-white ruffed lemur, supporting prior infection of that animal
with SARS-CoV-2. Our data, while not indicating a high susceptibility of lemurs to SARS-CoV-2
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infection, show that they can be infected, adding to the existing information body on potential ways
for SARS-CoV-2 virus spreading in zoos, highlighting the need for animal surveillance for the virus.

Keywords: COVID-19; SARS-CoV-2; lemurs, captive; Varecia variegata; Lemur catta; one health; animal
COVID-19

1. Introduction

The discovery of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in
Wuhan in late 2019 and its build-up into the global health crisis represented by the COVID-
19 pandemic prompted an unparalleled international pursuit encompassing research on
the virus, its transmission dynamics, the host’s immune responses, and potential animal
reservoirs [1,2]. Multiple studies have substantiated SARS-CoV-2 infection in some domes-
tic and farmed animals, including dogs, cats, mink, and ferrets (see, for example, [3–6]).
The presence of SARS-CoV-2 has been confirmed in some zoo-dwelling animals, including
lions, tigers, and great apes [7–9]. Sustained intraspecies transmission has been docu-
mented among farmed minks [5] and wild white-tailed deer of North America [10]. The
virus has also been detected in wild African white rhinoceros [11], feral mink [12], and
wild otters [13]. The occurrence of SARS-CoV-2 in wild animals raises concerns about the
potential for viral evolution outside the viral vigilance network, with the possibility of
re-entry of novel variants in the human population [2]. Furthermore, the occurrence of
deadly infections among natural populations of endangered animal species could place
these species at increased extinction risk.

Given their genetic closeness to humans, non-human primates were found [8,9,14,15]
or predicted [16,17] to be susceptible to SARS-CoV-2 infection. Among the primates
deserving particular attention are lemurs, since many lemur species are endangered, and
they are known to share infectious diseases with humans and domestic animals when they
inhabit tourists-frequented regions and humanized disrupted habitats [18–20], and they
do not appear particularly resistant to emerging infectious diseases [21]. Furthermore,
predictions based on the amino acid sequence of the major SARS-CoV-2 receptor (the ACE2
protein) suggested that lemurs could be highly susceptible to the infection by this virus,
particularly lemur species from the Avahi and Propithecus genera, followed by animals from
the Lemur and Varecia genera [17]. As highlighted by others [17], it appears important to
test these predicted susceptibilities. An indirect way of doing so could be by monitoring
SARS-CoV-2 infection of lemurs held in zoological facilities in which they frequently come
into close contact with zoo visitors and animal keepers. We are not aware of any published
prior study on this question on the lemur group of primates. To our knowledge, only
one negative serologic test for SARS-CoV-2 in one wild ruffed lemur has been reported
thus far [22].

We report here molecular and serological testing for SARS-CoV-2 in 43 lemurs from
a zoological institution of a major touristic hub of the Mediterranean seashore of Spain.
This park keeps in captivity, although free-roaming, 23 black-and-white ruffed lemurs
(Varecia variegata) and 20 ring-tailed lemurs (Lemur catta). These animals are exposed to
very large numbers of human visitors including close contact with visitors for educational
reasons. During the COVID-19 pandemic, visits to the park resumed in July 2020 and close
contact also resumed in 2021, with the summer of 2022 representing a major visitor peak in
the park’s history. In addition, the animals were always in continued contact with their
human keepers.

2. Materials and Methods
2.1. Animals: Location and Interaction with Humans

Mundomar, a zoological park located in Benidorm (seashore of the Valencian Commu-
nity, Eastern Spain), hosts approximately 300 animals (marine and terrestrial mammals,
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birds, and reptiles), among them 43 lemurs of 1–15 years of age, 23 and 20 of them be-
longing, respectively, to the V. variegata and L. catta species (two species in the IUCN
Red List of Threatened Species as endangered and critically endangered, respectively;
https://www.iucnredlist.org (accessed on 18 November 2023)). These lemurs are hosted in
a very spacious outdoor enclosure featuring rocks, trunks, branches, hammocks, climbing
ropes, and cave shelters. This enclosure is connected with temperature-controlled indoor
enclosures that are always available for these animals. The outdoor enclosure is surrounded
by a 2.5 m-high glass barrier, with efficient ventilation ensured by roof and top-lateral
fences. The animals are in close daily contact with their keepers; although after the emer-
gence of SARS-CoV-2 in 2020, the keepers have had to use personal protective equipment
(PPE), including donning filtering facepiece particle 2 (FFP2) masks, plastic face-covering
transparent shields, gloves, and boots, and had to disinfect themselves upon entering and
exiting the animal enclosures using a water solution of Virkon-S (Zotal Laboratories, Seville,
Spain), a bactericidal and viricidal mixture of peroxide compounds, surfactants, and organic
acids. The keepers were tested for SARS-CoV-2 upon suspicion of contagion, and since
March 2021 they were offered anti-COVID-19 vaccination by the Spanish health system.

Normally, close interaction with lemurs was allowed to visitors for educational pur-
poses (largely feeding and photography opportunities). With the COVID-19 pandemic,
the park was closed to visitors for nearly 4 months in 2020 (March 15 to early July). Upon
reopening, educational interactions with animals were suspended, with the visitors being
required to wear facemasks and to observe the animals from the outside of the enclosure. In
2021, educational interactions resumed in small groups of 20–30 people per day who had to
wear facemasks and enter and exit the enclosure through a disinfectant footbath (utilizing
Virkon-S), also sanitizing their hands with hydroalcoholic solution before entering the
enclosure. By 2022, the biosecurity measures for visitors were simplified to foot and hand
sanitization, and the use of facemasks was no longer mandatory, although zookeepers
continued to employ PPE when entering primate facilities, including facemasks.

2.2. Procurement of Samples

Samples for this study (March 2022 till March 2023) were collected as part of routine
health assessments of the animals, performed at least once on all the animals (twice for
18 animals, with 7–11 months spacing between the two assessments, Table 1). Twenty-four
animals were assessed after the summer of 2022, when the number of visitors had reached
top levels in the parks’ history (around 1000 visitors/day).

Table 1. General information about the study animals and their sampling. d/m/y day: Date given as
day/month/year. F, M: Female and male, respectively. The symbols + and – mean that the sample
was obtained or not obtained, respectively.

No.
#

Species Birth Date
(d/m/y) Sex Weight (kg) Sampling

Date (d/m/y)
Swab Samples

Serum Sample
Oropharynx Rectum

1 V. variegata 03/05/2012 F
4.2 29/03/2022 + + +

4.9 20/12/2022 + + +

2 V. variegata 22/05/2017 F
3.1 29/03/2022 + + +

4.0 26/01/2023 + + +

3 V. variegata 24/04/2020 M
2.1 29/03/2022 + + +

3.1 26/01/2023 + + +

4 V. variegata 05/05/2021 F
2.6 29/03/2022 + + +

3.4 26/01/2023 + + +

5 V. variegata 13/05/2019 F
3.0 29/03/2022 + + +

2.8 26/01/2023 + + +

https://www.iucnredlist.org
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Table 1. Cont.

No.
#

Species Birth Date
(d/m/y) Sex Weight (kg) Sampling

Date (d/m/y)
Swab Samples

Serum Sample
Oropharynx Rectum

6 V. variegata 24/05/2017 F
3.2 29/03/2022 + + +

3.3 22/11/2022 + + +

7 V. variegata 21/05/2009 F 4.1 29/03/2022 + + +

8 V. variegata 24/04/2020 F 2.8 29/03/2022 + + +

9 V. variegata 08/05/2010 F 5.7 29/03/2022 + + +

10 V. variegata 09/06/2008 M
4.4 29/03/2022 + + +

4.0 25/01/2023 + + +

11 V. variegata No data M
3.9 29/03/2022 + + +

4.0 25/01/2023 + + +

12 V. variegata 11/05/2012 M
3.7 29/03/2022 + + +

3.4 26/01/2023 + + +

13 V. variegata 02/05/2022 M
2.0 02/05/2022 + + +

2.5 26/01/2023 + + +

14 V. variegata 02/05/2022 F 2.8 26/01/2023 + + +

15 V. variegata 01/05/2022 F 2.7 22/11/2022 + + +

16 V. variegata 07/05/2014 M No data 29/03/2022 + + +

17 V. variegata 05/05/2021 M 1.7 29/03/2022 + + +

18 V. variegata 24/04/2020 F 2.5 29/03/2022 + + +

19 V. variegata 07/05/2014 M 3.4 29/03/2022 + + +

20 V. variegata 05/05/2021 F 2.1 29/03/2022 + + +

21 V. variegata 24/04/2020 F 2.9 29/03/2022 + + +

22 V. variegata 01/05/2021 F 2.4 29/03/2022 + + +

23 V. variegata 01/05/2022 M 2.6 26/01/2023 + + -

24 L. catta 26/03/2004 F
3.4 29/03/2022 + + +

3.1 02/03/2023 + + +

25 L. catta 21/03/2021 M
1.8 29/03/2022 + + +

2.6 19/10/2022 + + +

26 L. catta 23/08/2012 M 2.5 29/03/2022 + + +

27 L. catta 27/03/2013 M 3.9 29/03/2022 + + +

28 L. catta 02/08/2019 F 2.4 02/03/2023 + + +

29 L. catta 18/04/2020 M
2.6 29/03/2022 + + +

3.0 19/10/2022 + + +

30 L. catta 10/03/2017 F
2.0 29/03/2022 + + +

2.0 02/03/2023 + + +

31 L. catta 17/03/2021 F
1.9 29/03/2022 + + +

2.7 02/03/2023 + + +

32 L. catta 31/03/2008 M 4.0 29/03/2022 + + +

33 L. catta 11/03/2020 F
2.1 29/03/2022 + + +

2.2 02/03/2023 + + +

34 L. catta 15/03/2016 M 2.2 12/04/2022 + + +
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Table 1. Cont.

No.
#

Species Birth Date
(d/m/y) Sex Weight (kg) Sampling

Date (d/m/y)
Swab Samples

Serum Sample
Oropharynx Rectum

35 L. catta 21/03/2003 M 2.3 12/04/2022 + + +

36 L. catta 26/03/2004 M
2.5 12/04/2022 + + +

3.2 02/11/2022 + + +

37 L. catta 08/03/2003 M
2.6 12/04/2022 + + +

3.1 02/11/2022 + + +

38 L. catta 13/03/2020 M 1.9 06/04/2022 - + +

39 L. catta 26/06/2018 M 2.3 06/04/2022 - + +

40 L. catta 11/03/2017 M 2.5 06/04/2022 + + +

41 L. catta 18/06/2018 M 2.4 06/04/2022 + + +

42 L. catta 12/05/2013 M 3.5 10/01/2023 + + -

43 L. catta 27/03/2003 F 2.4 02/03/2023 + + +

Assessments followed well-established veterinary procedures for animal management
and welfare, using gentle manual restraining and light isoflurane anesthesia (delivered
via facemask), typically 5 min for weighing (Table 1), recording of body temperature,
heart rate, and respiratory frequency, evaluation by inspection of animal’s overall health
and potential lesions, and collection of venous blood samples from the jugular vein for
hematocrit, hemogram, and standard biochemical determinations in plasma (performed by
IDEXX Laboratories, Barcelona, Spain), also obtaining blood serum and preserving it at
−20 ◦C for serological analyses. In addition, oropharyngeal and rectal swabs were collected
aseptically during anesthesia and were preserved in closed plastic tubes under Sample
Preservation Solution (reference number P042T0020100; from JiangSu Mole Bioscience in
Taizhou, China; distributed in Spain by Palex Medical, Madrid), a proprietary solution [12]
that inactivates SARS-CoV-2 and preserves RNA for molecular analyses. The sealed tubes
were preserved at −80 ◦C. Table 1 lists the collected samples, noting that there was one
animal from each species and two L. catta individuals for which serum or oropharyngeal
swabs could not be obtained, respectively.

2.3. Molecular Analyses

For RNA extraction, we used 0.2 mL of the Sample Preservation Solution that had
hosted the nasopharyngeal or rectal swab of each animal and utilized the NZY Total RNA
Isolation kit (NZYtech, Lisbon, Portugal). The isolated RNA was stored at −80 ◦C.

Viral testing was carried out on 5 µL of isolated RNA solution by one-tube RT-qPCR
using the commercial Viasure assay (CerTest Biotec, Zaragoza, Spain; distributed by Palex
Medical). This test amplifies specific regions of the ORF1ab and nucleocapsid (N) viral
genes and of the host RNaseP gene (used as an operational internal positive control). This
last gene amplification in this commercial kit was previously shown to work for otters [13],
and now we find that it works for lemurs too (see below).

We also used a second commercial test from another supplier with all isolated RNAs
(NZYtech SARS-CoV-2 One-Step RT-PCR kit; from NZYtech, Lisbon, Portugal) for SARS-
CoV-2 detection in 8 µL of the isolated RNA solutions. This test targets another viral gene
(RdRp) in addition to the N gene and measures the combined signal from these two viral
genes using the same fluorophore for both of them. It also uses the host RNaseP gene as an
internal control, utilizing a second fluorophore for this gene. Again, preliminary assays
proved the suitability of the internal control of this commercial assay for lemur samples, in
line with our previous observation that it was appropriate for use in otters [13].



Animals 2024, 14, 140 6 of 13

We also used with the seropositive animal (animal #6, see below) a highly sensitive
home-made two-tube RT-qPCR assay originally reported for targeting the spike protein
(S) gene in feral mink [12] and a domestic dog [4] and expanded later on to target two
additional viral genes (N and ORF10) [13,23].

We carried out in parallel negative controls as well as positive controls (swab-derived
RNA from a positive human) [23]. These controls constantly yielded negative and positive
results, respectively.

For all PCR procedures, we used the Aria Mx Real-Time PCR (qPCR) instrument
(Agilent Technologies, Santa Clara, CA, USA). All individuals involved in the research that
conducted every aspect of the process from sample extraction to detection tested negative
for SARS-CoV-2 at the time of the assays.

2.4. Serological Studies

An indirect enzyme-linked immunosorbent assay (ELISA) that detects IgG recognizing
the receptor-binding domain (RBD) of the spike protein (S) of SARS-CoV-2 virus (ancestral
SARS-CoV-2 strain, Wuhan strain) in multiple animal species was used as previously de-
scribed [24,25]. Unfortunately, despite the prevailing presence of the SARS-CoV-2 Omicron
variant (B.1.1.529) during our study period, this specific variant was not accessible in our
laboratory for analysis. However, this limitation did not hinder the detection of seropositive
ferrets using the same technique within the study period in a previous work [24]. The
sera under study were used at 1:100 dilution, utilizing for detection Pierce recombinant
protein A/G conjugated to horseradish peroxidase (ref. 32490 from Thermo Fisher Scien-
tific, Waltham, MA, USA) diluted 1:100,000, with colorimetric detection of the peroxidase
activity at 492 nm on a Multiskan ELISA reader (Labsystems, Midland, ON, Canada) using
ortho-phenylene-diamine as a peroxidase substrate. Each 96-well plate included a positive
control, consisting of sera from previously identified seropositive ferret [24] and cat [25], as
well as serum from a healthy, non-infected lemur obtained before the COVID-19 pandemic
as a negative control.

Before use with the present sera, the technique was optimized using 12 L. catta and
4 V. variegata sera collected before 2020, prior to the emergence of SARS-CoV-2 (provided
by the serum bank of Bioparc-Fuengirola, Fuengirola, Spain), and with sera obtained in
2020 from 9 L. catta and 13 V. variegata individuals among the study animals, which had
tested seronegative for SARS-CoV-2 with confirmation from another laboratory (Veterinary
Faculty, University of Cordoba). The cut-off for our present indirect ELISA assay for anti-
RBD IgG for lemurs (L. catta and V. variegata) was set to 0.16 Optical Density units (OD
units) (mean +3 standard deviations of values from 38 animals, 17 of them V. variegata and
21 of them L. catta). Thus, any results surpassing the 0.16 OD threshold were considered
positive. The control sera were sourced from the collection of sera within the Laboratory of
Clinical Immunology at the Faculty of Veterinary Medicine, University of Zaragoza, Spain.

3. Results and Discussion
3.1. Normal Status of the Animals including the Seropositive Individual

The animals, of ages 8 months to 20 years at examination (Table 1 and Figure 1),
did not present evidence of disease or significant lesions, as judged by clinical veterinary
inspection and the analysis of basic constant and blood analytical parameters. Of interest
in the context of COVID-19, none of the animals had hyperthermia (monitored by infrared
thermometry). Their weights (Figure 1) were within normal ranges for each species in
captivity [26,27], with curves that reflected lower body weights in juvenile individuals, and
then some increase with mature age, although for the most aged individuals the weight
appeared to decrease somewhat. Similar observations including weight decline at older
age have been reported previously for V. variegata [26]. When the mean weights of adult
males and females (age ≥ 2 years) were compared, no significant differences were found
between the two sexes for any of the two species, with mean ± SD (for n determinations) for
V. variegata females, 3.58 ± 0.94 kg (n = 13) and for males (n = 7), 3.44 ± 0.73 kg; for L. catta
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females (n = 9), 2.48 ± 0.50 kg and for males (n = 16), 2.78 ± 0.61 kg. In this respect, animal
#6, the V. variegata female individual that tested seropositive for SARS-CoV-2 in its first
assessment at 5 years of age (see below), presented typical weights (3.2 and 3.3 kg) in both
assessments, which took place 8 months apart, the second of them when the serological
results had returned to the upper part of the normality range (see below), suggesting
that the infection of this animal with SARS-CoV-2 virus had not had an important impact
on its nutritional state, as it could be the case if the infection had triggered prostration
and/or fever.
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The RNA samples obtained from oropharyngeal and rectal swabs yielded negative
SARS-CoV-2 test results for all the animals (illustrated in Figure 2 for the lemur that tested
seropositive, see below) using an RT-PCR one-tube commercial diagnostic test (Verisure test,
from Certest, Zaragoza, Spain). This test, which targets two viral genes (N and ORF1ab), is
intended for humans but it also works with animal samples, as recently proven by ourselves
with an otter [13]. Although this test uses the human RNase P gene as an internal positive
standard, we previously found that this internal control also worked for otters [13] and
now we prove this for lemurs (Figure 2). The presence of a positive signal for this internal
control (Figure 2) supports the quality of the extracted RNA. We also proved that this
assay was working well for the two targeted viral genes by carrying in parallel an external
positive control (nasopharyngeal swab RNA from a positive human of our reported series
from Sicily [23]), which gave consistently a positive result for these genes in all the assays
(Figure 2).

Additional confirmation that the RNA samples from our lemurs did not contain viral
RNA was obtained by using a second one-tube commercial SARS-CoV-2 RT-PCR test with
these samples, which we had previously shown to work with otters [13]. This test differs
from the Viasure test in one of the viral genes targeted (RdRp instead of ORF1ab) and in the
maker (in this case, NZYtech, Lisbon, Portugal). Again, using this test, all lemur samples
were negative for amplification of the viral genes, and they were positive for amplification
of the RNaseP. Furthermore, the external positive control, run in parallel, revealed the
amplification of both viral and host genes.

Since lemur #6 was seropositive for SARS-CoV-2 (see below) but was found negative
for the presence of viral RNA by the two commercial one-tube RT-PCR assays, we used in
addition with this lemur a two-tube homemade RT-PCR assay believed to be extremely
sensitive [4,12], using it in its 3-viral-gene-targeting version (targeted genes, N, ORF10, and
the spike glycoprotein gene S) [13,23]. However, this assay also failed to detect the presence
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of the virus in any of the two occasions in which lemur #6 was sampled (Table 1). Therefore,
all the molecular assays led to the conclusion that the seropositive lemur, similarly to all
other lemurs of the present study, did not host any SARS-CoV-2 at the dates of any of its
two assessments.
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Figure 2. Illustrative example of RT-PCR, for animal 6, the lemur that tested positive by serology,
on the date of assessment that gave seropositivity. The sample was RNA from the oropharynx.
For details on the procedure and the positive and negative controls, see Section 2.3 Thresholds for
positivity were drawn by the program on the basis of the negative controls.

3.3. Evidence of Infection Based on Serological Findings

As indicated in Materials and Methods, for the determination of normal values in the
multispecies ELISA test for anti-RBD IgGs, we first used sera from 17 V. variegata and from
21 L. catta animals that had been collected prior to the COVID-19 pandemic or in the early
pandemic period and that were proven to correspond to animals that had not experienced
infection by SARS-CoV-2, as determined by serological criteria. No significant difference
was found between the means for the serology results obtained for V. variegata and L. catta,
therefore, the results for both species were merged (total of 38 animals) to estimate a
common upper limit of normality for both species, established as an optical density (OD)
of 0.16, corresponding to the mean plus 3 standard deviations for the assay results.

Having defined an upper normality limit for the serological assay, we applied it to
all the sera collected from the lemurs of the present study. Among the 59 serological
determinations (Figure 3A; all values are means of two determinations differing by less
than 10%), only one determination, for the first assessment of lemur #6 (singled out in
Figure 3A with black dots), exceeded the upper normality limit of 0.16 OD. For statistical
calculations, we excluded this high value as well as the one from the second assessment
on this same lemur conducted 8 months later, because the values for this lemur likely
reflected previous SARS-CoV-2 infection. The application of the Student’s t-test did not
yield a significant difference between the means for both species, as was the case for the
initial cohort of sera used for the estimation of the upper limit of normality. Merging the
results for both species in our cohort of sera from March 2022 to March 2023, except the sera
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from lemur #6, a mean ± SD of 0.077 ± 0.023 OD was obtained for the combined results of
these 57 sera, which would lead to an upper limit of normality (mean plus three standard
deviations) of 0.15 OD, very close to the upper normality limit of 0.16 OD estimated with
the initial cohort of non-infected lemurs of both species. In fact, except for lemur #6, none
of the sera from the present cohort exceeded a test result of 0.14 (Figure 3A). The negative
serology for SARS-CoV-2 in 40 of the 41 lemurs examined between March 2022 and March
2023 (17 of them tested on two occasions separated by 7–11 months) suggests a relatively
low susceptibility of these two species of lemurs to SARS-CoV-2 infection, particularly
since they were in daily contact with keepers and visitors. This is reassuring concerning
policies of interactions of lemurs of these species with humans in humanized habitats or in
zoological gardens.
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Figure 3. Serology results for anti-RBD of SARS-CoV-2 in the lemurs of the present study. For details,
see Materials and Methods. (A) Serological titers determined in this study (see Table 1 for the times
and animals sampled for serum) grouped per lemur species as indicated. The results for lemur
#6 (identified in Table 1; it is a V. variegata individual) are singled out in the center as filled circles,
indicating the date of the blood extractions. The horizontal lines represent means and standard
deviations for the points in the cohort. (B) Frequency of serological titers found in our entire animal
cohort (pooling of both species) in the indicated intervals of titer values. Results for lemur #6 are in
black filling. (C) Serology titers for all the animals for which two serum samples were obtained with
a 7–11 month interval between the two blood extractions (as indicated). Colors and symbols identify
each individual as shown. The two results for each animal are connected with a straight line, except
in the three cases, in which the second value was smaller than the first one, in which the lines are the
exponentials for a t1/2 for the decay of 1 month.
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However, one of these 41 lemurs (lemur #6) was seropositive in one instance and also
had a high serological titer, close but below the upper limit of normality, on a second serum
sample obtained 8 months after the first extraction (Figure 3A). The seropositive sample
was well above the frequency distribution of values of serological results for the rest of the
cohort of animals (Figure 3B). Therefore, the picture provided by lemur #6 is consistent
with a past infection of this animal with the SARS-CoV-2 virus that gave no clinical notice
and that subsided long enough before the first examination of this animal in March 2022.
Thus, no virus was detected in the respiratory tract or the intestine and feces, as attested
by the negativity of the molecular assays (illustrated in Figure 2 for this animal), but the
infection left as a trace an increased blood level of anti-RBD IgG, which was reflected in the
high serological titer. A second serum sample collected 8 months later revealed a lower
anti-RBD titer, although still at the top of the normality range. This decline in the antibody
content fits similar observations in humans following a COVID-19 infection [28]. Therefore,
it appears reasonable to conclude that lemur #6 had been infected by the SARS-CoV-2 virus.

A comparison of the serological results repeated in 18 animals with a 7–11 month
interval (Figure 3C) shows that only animal #6 exhibits a significant decrease in the sero-
logical titer over time, which, nevertheless, after 7 months, was within the upper range
of normality. In most other animals, the titers varied little or even increased somewhat,
with only two other instances of decrease (animals #25 and #29), although of much lower
absolute magnitude and also much lower values at first determination than with lemur
#6. Therefore, it appears that lemur #6 is the only animal that could be experiencing the
decrease in post-infection antibodies known to occur in humans following infection [28].
Interestingly, another animal (animal #24) exhibits stable top normal levels similar to the
value observed in the second serum extraction of animal #6 (Figure 3C). Actually, the
levels in animal #6 would plateau at approximately the same level as in animal #24 if they
are assumed to decrease with a t1/2 of 1 month (not far from the value for post-infected
humans) [28]. In this respect, it is to be noticed in Figure 3B that the range of serological
values in the highest part of the normality range (121–140 mOD) encompasses six sera from
5 animals (#6, #17, #24, #26, and #40), following a less populated interval (111–120 mOD),
making conceivable earlier SARS-CoV-2 infection leading to stable low level of residual
antibodies (known to last long times in humans [28]) in lemurs #17, #24, #26, and #40, in
addition to lemur #6.

3.4. Final Considerations

To the best of our knowledge, the present study represents the first report of a thorough
study of captive lemur populations concerning SARS-CoV-2 infection, conducted on two
distinct species of lemurs, ring-tailed lemur (L. catta) and black-and-white ruffed lemurs
(V. variegata), kept in proper care in a highly visited zoological institution. Moreover, this
investigation has introduced serological diagnostic methodologies [24,25] into these specific
lemur species, filling a void in which there was only one report of serological study in
a single wild ruffed lemur as a part of a serological survey of many different types of
animals [22].

Our discovery of a seropositive animal among the 23 ruffed lemurs studied here
highlights the potential of SARS-CoV-2 to infect at least one (V. variegata) of these lemur
species and to stimulate an immune response in this animal group. This finding adds to
previous knowledge of SARS-CoV-2 transmission to animals, with documented infections
of zoo animals but not of lemurs [7–9,29]. Such transmission is often considered sporadic,
accidental, and largely due to contact with infected keepers [30]. In the present lemur case,
the transmission may have occurred through the airborne route, either from an infected
worker or from a visiting member of the public, despite the restrictions and hygienic
measures applied in the park since 2020; although with the advent of widespread human
vaccination, these restrictions were progressively relaxed in 2021 and particularly in 2022
(see Materials and Methods).
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Remarkably, this seropositive animal was not noticed to show clinical signs or ab-
normal findings on physical examination, suggesting that this infection was subclinical.
This raises intriguing questions about the overall impact of SARS-CoV-2 on different an-
imal species, particularly when they show few or no perceptible disease manifestations.
This scenario mirrors findings in other species, where seropositivity was observed with-
out detectable viral RNA, underscoring the complexity and the potential for subclinical
manifestations of SARS-CoV-2 infections in animals [31].

The fact that only one animal was seropositive could raise doubts about the origin of
the RBD used in the ELISA, which comes from the ancestral variant (Wuhan), not being
the most prevalent variant during the study period. However, the application of this
same technique in ferrets during the same study period (with Omicron being the most
prevalent) and the detection of several seropositive cases confirm that, in this instance, it
did not interfere with the results [24]. Furthermore, it is crucial to emphasize the absence
of available information regarding the pattern of anti-SARS-CoV-2 antibodies and cross-
reactivity across different SARS-CoV-2 virus variants in the majority of wildlife species.
Therefore, judging from the low infection rate of SARS-CoV-2 in our cohort, restricted here
to 1–5 animals among a total of 43 animals, the transmission ability of the virus within
lemur appears to be limited. In any case, the study of emerging infections in new species of
zoo animals is relevant in the context of close and sustained interactions with humans, such
as those residing in open facilities with direct contact with the public, a circumstance that is
common in many zoological institutions. Additionally, the study of SARS-CoV-2 infections
in wild animals is important in the broader context of viral evolution, with the potential
for such animals to serve as reservoirs for the virus and to pose a future risk of reinfection
in humans. These findings emphasize the need for continued vigilance and research to
safeguard both animal and human health in our evolving relationship with SARS-CoV-2.

4. Conclusions

In conclusion, our results exclude the presence of active infection in any of the 43
animals including 18 animals in which the molecular assays were performed twice with an
interval of 7–11 months. They strongly suggest that one animal (lemur #6) was infected,
given its clear seropositivity at the earliest determination and the decay of the titer over
7 months to high values, although within the normality range. They also raise the pos-
sibility that four additional animals (#17, #24, #26, and #40) could have been historically
infected with SARS-CoV-2, maintaining a memory of that infection through the consistently
high, non-declining serological values that set them apart from the remaining 38 animals.
These findings indicate a low susceptibility to SARS-CoV-2 in the studied lemur species,
suggesting limited virus transmissibility within them. This observation may also suggest
the potential efficacy of PPE used by zookeepers, thereby reducing the probability of
human-to-lemur transmission. However, they evidence that infection can occur at least in
V. variegata. In this way, our study sheds much-needed light on the relation of SARS-CoV-2
with captive lemurs held in a highly visited zoo setting, while also developing serological
diagnostic techniques for these animals. The identification of a seropositive animal, de-
spite the absence of noticeable clinical symptoms, underscores the potential for accidental
and subclinical infections among lemurs kept in captivity in zoological institutions, with
epidemiological implications for settings of close interaction with humans. Furthermore,
this research emphasizes the need for ongoing surveillance and monitoring of SARS-CoV-2
in animals, as they can act as reservoirs for the virus, potentially posing a future risk of
reinfection in humans. This study highlights the complex interplay between human and
animal health in the ongoing response to the pandemic.
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