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Abstract

In this paper the Standardized Precipitation Conversion Index (SPCI), a PWV-based drought index, has been computed using GNSS
and ERA5 PWV and its performance has been tested with respect to the Standardized Precipitation Evapotranspiration Index (SPEI) in
Southern Spain. One of the climatic features of this area is the low correlation level between PWV and precipitation, in contrast with
other areas in which SPCI has been previously tested. The GNSS-SPCI has been derived from validated ZTD time series estimated from
local GNSS permanent stations’ data. All the needed meteorological values were derived from ERA5, excepting precipitation values and
SPEI-SPI values which were extracted from a national high-resolution dataset.

The resulting SPCI time series have shown high correlation coefficients with respect to the SPEI. The use of longer SPCI time series
allowed by ERA5 model has provided the most coherent results, suggesting that the ERA5-PWV data can be interesting to overcome
problems caused by the short timespan of GNSS time series in SPCI computation. In general, high correlation coefficients have been
obtained compared to global results from previous studies. This shows that, even for regions with low correlation levels between
PWV and precipitation, the SPCI can have an interesting potential for drought monitoring. The SPCI was found to perform better
on higher timescales (12 and 24 months). The performance of SPCI has also been compared that of the SPI: SPCI is able to outperform
SPI for the 24-month timescale for a limited geographical region. This supports that the inclusion of PWV data in drought monitoring
indices could be promising and is worth keeping to be investigated.
� 2023 COSPAR. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/
by-nc-nd/4.0/).
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Nomenclature

GNSS-PWV estimation related abbreviations

GNSS Global Navigation Satellite System
PWV Precipitable Water Vapor
ZHD Zenith Hydrostatic Delay
ZTD Zenith Total Delay
ZWD Zenith Wet Delay

Drought index related abbreviations

PE Precipitation Effectiveness
SPCI Standardized Precipitation Conversion Index
SPEI Standardized Precipitation Evapotranspiration

Index
SPI Standardized Precipitation Index
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1. Introduction

GNSS (Global Navigation Satellite Systems) technolo-
gies have seen a great advance in the last decades. This
advance has led to the development of new by-products
that can be used for a wide variety of purposes. One of
these important by-products are the tropospheric delays
(Zenith Total Delay, ZTD) estimated from GNSS observa-
tions. The ZTD is strongly related to the atmospheric Pre-
cipitable Water Vapor (PWV) through temperature and
pressure and hence can be used for meteorological and cli-
matological studies. While the use of the GNSS-ZTD and
GNSS-PWV has been usually oriented to applications such
as the study of extreme precipitation events or its integra-
tion in Numerical Weather Prediction models, there is very
little literature exploring the potential of this variable for
drought monitoring (Bordi et al., 2016). In recent years,
some studies have tried to define GNSS-PWV-based
drought monitoring indices and compare their perfor-
mance with some widely used indices such as the Standard-
ized Precipitation Index (SPI) or the Standardized
Precipitation Evapotranspiration Index (SPEI). Bordi
et al. (2015, 2016) first considered a Precipitation Effective-
ness (PE), based on GNSS-PWV and precipitation data, to
monitor drought/wet episodes and found a good correla-
tion between PE and SPI. Based on these results, Zhao
et al. (2020) suggested a new multi-time scale Standardized
Precipitation Conversion Index (SPCI) and performed a
global correlation analysis between SPCI and SPEI indices,
finding good correlations (over 0.96) at a 12-month time-
scale for most of the world regions.

The SPCI consists of an interesting option between the
SPI and more complex indices such as the SPEI. Unlike
the SPI, which is only based on precipitation data, the
SPCI accounts for temperature through the PWV, as these
variables are generally very strongly correlated (Zhao et al.,
2020). Its calculation is kept simple as only precipitation
and PWV are involved, and the latter can be accurately
sensed in real-time by using GNSS technologies (Ma
et al., 2021).

Some local studies have been carried out to test the
capacity of GNSS-derived ZTD, PWV, and SPCI for
drought monitoring. Jiang et al. (2017) and Wang et al.
(2018) found that PWV trends can be used for severe flood
and drought event monitoring at a regional scale in
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Yunnan (China) and Australia, respectively. Zhao et al.
(2019) and Li et al. (2022) found that the Thornthwaite
(TH) model, which is frequently used for Potential Evapo-
transpiration (PET) computation in the SPEI estimation,
can be significantly improved by including a GNSS-ZTD
(or PWV), temperature and pressure data combination,
and Ma et al. (2021) verified that SPCI is able to outper-
form SPEI in the Yunnan region, using a Comprehensive
Index (CI) of the China Meteorological Administration
as a reference. Zhao et al. (2021) also suggested a new Stan-
dardized ENSO Monitoring Index based on GNSS-ZTD
and temperature data and found good correlations with
both Sea Surface Temperature and SPEI-12 in Taiwan.

These studies support the potential of the SPCI or
GNSS-PWV-related indices for drought monitoring pur-
poses. Nevertheless, all the regions considered in the previ-
ous case studies (Australia, China and Taiwan) are
characterized by a positive and very high correlation
between PWV and temperature as well as positive and very
high correlations between PWV and precipitation, accord-
ing to the global results obtained by Zhao et al. (2020).
Considering this fact, the next question arises: Does
GNSS-PWV have the same potential for drought monitor-
ing in regions where these correlations are weaker or
inverse? This is the case for a wide area around the
Mediterranean Sea that displays negative correlation coef-
ficients between PWV and precipitation, as shown in Zhao
et al. (2020). The Mediterranean region has proven to be
increasingly affected by droughts in recent decades (Sousa
et al., 2011; Tramblay et al., 2013; Vicente-Serrano et al.,
2014; Spinoni et al., 2015) and will be prone to severe
drought events along with high socioeconomic implications
under the climate change scenario (Gu et al., 2020). There-
fore, it is very interesting to evaluate the capacity of SPCI
for drought monitoring in these regions. This work consti-
tutes a first assessment of the usefulness of SPCI in a
Mediterranean region such as the Autonomous Commu-
nity of Andalucı́a, Southern Spain.

This territory provides a very interesting scenario for the
study of PWV and SPCI. The 87.599 km2 area is character-
ized by a steep topography and the influence of two differ-
ent seas (Atlantic Ocean and Mediterranean Sea), which
results in a great climatological variability. For example,
in terms of precipitation, some of the driest zones such as
the southeastern shore (Almerı́a province) accumulate less
M. Clara de Lacy, Use of GNSS and ERA5 precipitable water vapor
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than 200 mm of annual precipitation, while the wettest
areas in the southern part of the territory (Cádiz) can reach
more than 1300 mm of accumulated annual precipitation
(REDIAM, 2014).

To account for this variability, in this study the area has
been divided into three different regions attending geo-
graphical criteria. The basin of the main river, the Guadal-
quivir, and the Sierra Morena mountain range (region 1)
are located at the northwestern side of the Baetic Moun-
tains Ranges. The Baetic Mountain Ranges (main moun-
tain range system) constitutes region 2. The territories
located at the eastern side of the Mountain Ranges consti-
tute region 3. The whole area is uniformly covered by a
regional permanent GNSS network that includes some sta-
tions that have been operating since 2005 and is completed
by the national GNSS network, as well as some IGS (Inter-
national GNSS Service) stations and stations of the border-
ing provinces. The location of the stations used in this
study and the geographical region they belong to are
shown in Fig. 1.

Some previous works have addressed PWV in this region
(Ortiz de Galisteo et al., 2014, 2011; Priego et al., 2016;
Torres et al., 2010). However, there was no attempt so far
to use all the available GNSS stations of the territory for
long-term PWV computation, nor to test the capacity of
this data for drought monitoring. The main objective of this
study is to compute long time series (spanning 7 to 15 years
between 2007 and 2022) of GNSS-PWV over the whole area
and to test the capacity of GNSS-derived as well as ERA5-
derived SPCI for drought monitoring in this region. The
Fig. 1. GNSS stations with more than 7 years of data in A
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article is organized as follows. The data set used and the
processing methods are explained in Section 2. The
obtained results are presented and discussed in Section 3:
this includes the ZTD time series validation, the PWV time
series validation, the SPCI-SPEI correlations analysis, the
comparison with respect to worldwide results and the com-
parison between the performance of SPI and SPCI. At last,
the article is closed with the conclusions.

2. Data set and methods

2.1. GNSS data

GNSS permanent stations distributed over Southern
Spain have been used for the GNSS-ZTD computation.
These belong to four different networks: the regional net-
work RAP (Andalusian Positioning Network, Red RAP |
Portal Geodésico de Andalucı́a (juntadeandalucia.es)),
the national network ERGNSS (National Geodetic Net-
work of Reference Stations, Información descriptiva -
Instituto Geográfico Nacional (ign.es)), the Topo-Iberia
geodynamic research campaign network, Topo-Iberia:
Introduction (igme.es) (Garate et al., 2015) and the IGS
network Network – International GNSS Service (igs.org).
44 stations with 7 to 15 years of data (between 2007 and
2022) were considered in Andalucı́a and its surroundings
(Fig. 1). The lowest station, CARG, is located at the coast
at 8.4 m above the mean sea level, while the highest station,
NEVA, is located in the Sierra Nevada mountain chain, at
approximately 2880 m a.m.s.l..
ndalucı́a and surrounding territories (Southern Spain).
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The GNSS data was processed with goGPS (Herrera
Olmo et al., 2015) version 1.0. This is an open-source
scientific GNSS processing software which is implemented
in Matlab and has already been used for positioning and
troposphere estimation purposes in other studies with sat-
isfactory results (e.g. Barindelli et al., 2018; Ssenyunzi
et al., 2019; Coletta et al., 2021; Mascitelli et al., 2021).
The data was processed using the PPP (Precise Point Posi-
tioning) technique and only GPS observations in order to
obtain continuous time series between the 1st of January
of 2007 and the 1st of January of 2022. CODE operational
final products have been used for ephemeris, clock files and
Earth Rotation Parameters (Dach et al., 2016). A 7� eleva-
tion mask was applied with a satellite-elevation dependent
weighting parameter. An ionosphere-free combination was
used along with the application of High Order Ionosphere
corrections. For the ZTD estimation, Saastamoinen model
(Saastamoinen, 1972) with Global Pressure Temperature
(GPT) model meteorological values (Boehm et al., 2007)
were used as a priori values. Global Mapping Function
(Boehm et al., 2006) and Chen & Herring gradient mapping
functions (Chen and Herring, 1997) were used for tropo-
sphere mapping. A daily set of station coordinates was esti-
mated, while the ZTD was estimated every hour and the
ZTD gradients were estimated every four hours.

The GNSS time series were screened based on the verti-
cal position time series, by discarding as outliers the data-
points that exceeded 5 times the variability of the vertical
position (results of the screening are described in Sec-
tion 3.1). The screened ZTD values were compared with
values published by IGS and EUREF for the 8 stations
belonging to at least one the two international networks
(these are ALME, CARG, CEU1, COBA, HUEL, MALA,
MELI, and SFER). In the case of Euref, Repro2 (Pacione
et al., 2017) overlaps by 8 years (2007–2014) and, therefore,
both the original Euref estimations and Repro2 were con-
sidered for validation.
2.2. ERA5 meteorological data

Conversion from GNSS-ZTD to GNSS-PWV requires
of pressure and water–vapor-weighted mean atmospheric
temperature data for the position of the GNSS stations.
The temperature, pressure and humidity profiles extracted
from ‘‘ERA5 (European Center for Medium-Range
Weather Forecasts Reanalysis 5) monthly averaged data
on pressure levels from 1940 to present” model
(Hersbach et al., 2023) were used to compute these meteo-
rological variables. The data was downloaded from the
Copernicus Climate Change Service (C3S) Climate Data
Store. In addition, ERA5-PWV was also computed from
the same variables.

The vertical pressure interpolation was carried out fol-
lowing the procedure described by Jade and Vijayan
(2008). T m was computed using the equation given by
Davis et al. (1985).
4Please cite this article as: L. Retegui Schiettekatte, M. Selmira Garrido and
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Tm ¼
R ztop
zs

Pv
T dzR ztop

zs
Pv
T 2 dz

ð1Þ

where Tm is the water–vapor-weighted mean temperature,
T is the temperature, Pv is the water vapor pressure
(hPa), and the integral must be performed over the zenith
path dz, from the station height zs to the top of the atmo-
sphere ztop. The water vapor pressure was computed using
equation (2)

Pv ¼ q � p
Mw
Md

þ 1� Mw
Md

� �
q

ð2Þ

where Md ¼ 28:9634 g/mol is the molar mass of dry air,
Mw ¼ 18:01528 g/mol is the molar mass of water vapor,
p is the atmospheric pressure (hPa) and q is the specific
humidity (kg/kg). The water vapor pressure was necessary
for the computation of PWV, which was integrated using
equation (3)

PWV ¼ 1

qw � g
Z ps

ptop

q � dp ð3Þ

where qw ¼ 1 kg/l is the density of water and g is the grav-
ity value at the computation point, and ps and ptop are the

surface pressure and top-atmosphere pressure respectively.
Both integrations (Tm and PWV ) were numerically imple-

mented in a similar fashion to previous works, assuming a
linear progression of the integrands between the vertical
pressure levels of the model (e.g., W. Zhang et al., 2019;
Yang et al., 2019; Y. Zhang et al., 2019). Coastal stations
were sometimes found to be located under the lowest pres-
sure level of 1000 hPa (240 m under the lowest pressure
level in the most extreme case). In these cases, the pressure
values were extrapolated using the formulation in Jade and
Vijayan (2008), while for the mean temperature and PWV
the lapse rate of the integrand was computed using the two
lowest pressure levels. In this study the top of the atmo-
sphere in the integration corresponds to the height of the
highest pressure level of the model (1 hPa), which is in all
moments above 45 km for the considered region and
timespan.

The model has a native 0.25� � 0.25� horizontal grid res-
olution. Therefore, for each GNSS station, the pressure,
mean temperature and PWV variables were computed for
the four nearest grid points and the values at the precise
GNSS station position were interpolated based on the
angular distance to the grid points, following the method
described in Jade and Vijayan (2008).
2.3. GNSS-PWV computation

The monthly GNSS-PWV has been computed by com-
bining the monthly mean of Zenith Total Delay (ZTD)
provided by the GNSS processing results with meteorolog-
ical pressure and temperature data. First, the wet part
(Zenith Wet Delay) was computed by subtracting the dry
M. Clara de Lacy, Use of GNSS and ERA5 precipitable water vapor
g in the Mediterranean coast: A first case study in Southern Spain,
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or hydrostatic part (Zenith Hydrostatic Delay) from the
total delay (ZTD):

ZWD ¼ ZTD� ZHD ð4Þ
The ZHD was computed by using surface pressure val-

ues in the Saastamoinen (1972) formula:

ZHD ¼ 0:0022768 p
1� 0:00266 cos 2/ð Þ � 0:00000028� hð Þ ð5Þ

where p (hPa) is the pressure at the GNSS station, u is the
latitude and h (m) is the station’s orthometric height.

The ZWD has been converted to PWV using the Askne
and Nordius (1987) factor,

PWV ¼ Q� ZWD ð6Þ

Q ¼ 4615:24

3:739�105

Tm
þ 22:1

� � ð7Þ

where Tm (K) is the weighted mean temperature of the
atmosphere.

The resulting PWV values have been validated against
the ERA5 monthly averaged pressure level model-derived
PWV estimations. The PWV computation and validation
have been restricted to the Iberian Peninsula to reduce
the spatial extent of the meteorological data and because
precipitation data, needed for the subsequent SPCI compu-
tation, was not available for the stations located on the
African continent. Hence, stations CEU1 (Ceuta) and
MELI (Melilla) have been omitted from these calculations.

2.4. Precipitation, SPEI and SPI data

Precipitation data, as well as the reference drought
indices’ values, were extracted from the 1.1 km � 1.1 km
resolution database developed by Vicente-Serrano et al.
(2017). The drought indices considered in this study, that
is, the Standardized Precipitation Evapotranspiration
Index (SPEI) (Vicente-Serrano et al., 2010) and the Stan-
dardized Precipitation Index (SPI) (McKee et al., 1993),
are openly available in https://monitordesequia.csic.es/his-
torico/ for the area of Spain.

Both indices are multi-timescale, i.e., they can be com-
puted for different timescales, which usually range between
1 month and 24 months. The SPI is based on the simpler
Standardized Precipitation (SP) concept, which represents
the difference of precipitation from the mean for a specified
time period divided by the standard deviation, where the
mean and standard deviation are determined from past
records (McKee et al., 1993) (equation (8)).

SPn;normal ¼ Pn � �Pn

rPn

ð8Þ

where Pn is the mean precipitation computed over a time-

scale of n months, and �Pn and rPn are the Gaussian mean
and standard deviation computed over past records with
5Please cite this article as: L. Retegui Schiettekatte, M. Selmira Garrido and
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the same timescale. The additional complexity of SPI with
respect to the presented SP consists of accounting for the
fact that precipitation is typically not normally distributed
on accumulated periods of 12-months or less. Therefore,
for the SPI index computation, the records are first fitted
to a non-gaussian function, usually a gamma function.
More details on the computation can be found on
McKee et al. (1993).

The SPEI is derived using a similar computation as for
the SPI, but additionally accounts for the water balance
by subtracting potential evapotranspiration to the precipi-
tation variable (equation (9)).

Dn ¼ Pn � PETn ð9Þ

where Pn, PETn and Dn are the Precipitation, Potential
Evapotranspiration and the difference between both
respectively, all computed over a n-month timescale. The
SPEI index is computed over the variable Dn. This allows
to account for the influence of temperature in drought,
which is especially relevant in the actual context of global
warming Vicente-Serrano et al. (2010). More information
about this index can be found on (Vicente-Serrano et al.,
2010). Potential Evapotranspiration can be computed in
several ways. In the case of the database used on this study
it has been computed using the Penman-Monteith (PM)
method (Allan et al., 1998).

For more details on the meteorological data treatment
and the computation of SPI and SPEI drought indices that
were used in this study, refer to Vicente-Serrano et al.
(2017).
2.5. SPCI computation

The SPCI (Zhao et al., 2020) is a standardized multiscale
index, based on GNSS precipitation effectiveness calcula-
tion as done by Bordi et al. (2016). The multiscale PCI
(Precipitation Conversion Index) is computed in the fol-
lowing way:

PCIn ¼
Pmþn�1

i¼m Ptotal
iPmþn�1

i¼m PWVmean
i � dayi

� 100 ð10Þ

where Ptotal
i is the total monthly accumulated precipitation

of month i, PWVmean
i is the mean PWV value of month i,

dayi is the number of days on month i, n is the number
of months in the multi-month scale (in this work,
n ¼ 1; 3; 6; 9; 12; 24 months) and m is the first month of a
multi-month scale. Hence, PCIn represents the precipita-
tion conversion index with a n-month scale. The index is
finally standardized for inter-comparing with other indices:

SPCIn ¼ nor PCInð Þ ¼ PCIn � PCI
�

n

rPCIn

ð11Þ
M. Clara de Lacy, Use of GNSS and ERA5 precipitable water vapor
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Fig. 2. Differences between goGPS ZTD and Euref/IGS ZTD products, for the 8 stations belonging to these international networks. The white horizontal
lines represent the mean and standard deviation of the differences.
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3. Results and discussion

3.1. Evaluation of ZTD estimation results

A basic data screening of the vertical position computed
with goGPS was performed for outlier detection. As a
result, for most of the stations, less than 0.06% of the data
points were eliminated, except for MELI (2%), UCAD
(1.9%), SFER (0.7%), NEVA (0.6%) and CAAL (0.1%)
which showed more anomalies. The resulting ZTD time
series were validated against IGS and EUREF hourly
ZTD publications. The differences between the reference
and computed ZTD time series are shown in Fig. 2. and
the validation results are shown in Table 1.

SFER initially showed a high standard deviation with
respect to IGS (13.5 mm) while this deviation was lower
when compared to Euref (5.3 mm). This turned out to be
due to some particular defective files of the IGS between
the years 2011 and 2014, in which the ZTD values remain
stuck around 2.3 m for a whole day, resulting in differences
of up to 216 mm between IGS and goGPS or Euref. When
omitting the days corresponding to these files, a lower dif-
ference of 0.4 mm ± 5.9 mm was achieved between the
goGPS results and the IGS product. Some defective data
was also found for MELI for days 10th of December of
6Please cite this article as: L. Retegui Schiettekatte, M. Selmira Garrido and
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2020, 19th of March, 17th of June and 12th of August of
2021, where the IGS time series displayed particularly high
or low values, reaching differences up to 167 mm with
respect to goGPS and Euref solutions. When omitting
these four days, the standard deviation between goGPS
and IGS was reduced from 6.5 mm to 5.0 mm and the
mean difference from 0.5 mm to 0.4 mm. For the remaining
stations, mean differences below 2 mm and standard devi-
ations between 5 mm and 6 mm can be found, excepting
MELI which shows a difference of up to �2.8 mm when
compared against EUREF. These values are in the range
of those found in comparisons between specific software
and IGS troposphere products in previous studies
(Barindelli et al., 2018; Morel et al., 2015; Sguerso et al.,
2015).

3.2. GNSS-PWV and ERA5-PWV comparison

PWV time series have been computed for all of the sta-
tions located on the Southern Iberian Peninsula (42 sta-
tions, excluding CEU1 and MELI) following the
methodology described in Section 2.3. For the stations
located below 1500 m height, mean PWV values located
in the range of 10 mm for the higher stations to 19.7 mm
for sea level stations have been found. The mean PWV
M. Clara de Lacy, Use of GNSS and ERA5 precipitable water vapor
g in the Mediterranean coast: A first case study in Southern Spain,
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Table 1
Results of the comparison between goGPS ZTD estimations and IGS/EUREF ZTD estimations. The results are expressed as the mean
difference ± standard deviation.

Mean difference (mm) ± standard deviation (mm)

Difference between ZTD coming
from goGPS – EUREF

Difference between ZTD coming
from goGPS – EUREF Repro2

Difference between ZTD coming
from goGPS – IGS

ALME �0.9 ± 5.5 �1.7 ± 6.0
CARG 0.0 ± 5.0
CEU1 0.9 ± 5.4 0.1 ± 5.9
COBA 1.0 ± 4.9 1.2 ± 5.3
HUEL 0.7 ± 6.0 1.2 ± 5.8
MALA 0.2 ± 5.2 �0.2 ± 5.6
MELI �2.1 ± 5.1 �2.3 ± 5.4 0.4 ± 5.0
SFER �0.6 ± 5.1 �0.4 ± 5.3 0.4 ± 5.9
Mean: �0.1 ± 5.3 �0.3 ± 5.6 0.4 ± 5.4
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depends linearly on the station height: it decreases by
7.3 mm with each km of altitude. For the highest stations
(CAAL, Calar Alto, to 2160 m a.m.s.l. and NEVA, Sierra
Nevada, to 2883 m a.m.s.l.) the PWV values deviate from
the trend of the other stations due to the lower content
of PWV on higher atmospheric layers.

The monthly GNSS-PWV and ERA5-PWV time series
have been compared. An average mean difference of
�0.3 mm has been found, with mean difference values
between �1.0 mm (MELI) and 0.3 mm (HUOV and
PALM). The standard deviation of the differences has an
average of 0.7 mm, with values ranging from 0.3 mm
(NEVA) to 1.4 mm (TGIL). As monthly (and not daily
or hourly) values of PWV estimations have been compared,
these differences are, as could be expected, bellow those
found by other authors that compare daily values. On
the daily timescale, a few millimetres differences are gener-
ally found (e.g., Li et al., 2020; Ssenyunzi et al., 2020).
Fig. 3. Correlation coefficients between a) PWV and temperature, b) PWV and
to region 1. Green corresponds to region 2. Red corresponds to region 3. Sta
appear masked in grey.
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Differences have also been computed between the
ERA5-PWV- and GNSS-PWV-derived SPCI indices. The
1-month timescale SPCI displays very similar values for
both, with an average of the absolute mean difference of
0.04 units and a standard deviation of 0.16. However, when
the timescale is increased, the cumulative effect of all the
differences becomes more apparent. As a result, at the 24-
months timescale, the average of the mean absolute differ-
ence increases to 0.22 units, while its standard deviation is
of 0.20 units.

3.3. Temperature, precipitation, and PWV correlation

analysis

This paper aims to test the performance of the SPCI in a
region with a low correlation level between PWV and pre-
cipitation such as Southern Spain. Hence, before starting
with the SPCI computation, the correlations between
precipitation, for the different geographical areas. Blue color corresponds
tions for which correlations are not significant (p-value greater than 0.05)
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PWV and temperature as well as PWV and precipitation
are studied in detail. These correlations have been com-
puted and are shown in Fig. 3. The correlation levels are
in general agreement with the results of Zhao et al.
(2020), with high correlation levels ranging between 0.74
and 0.92 for PWV and temperature, and low (sometimes
not-significative) and negative correlation levels between
0.02 and �0.53 for PWV and precipitation.

Regarding the variation of these correlation levels along
the territory, the highest correlations between PWV and
temperature are reached on the eastern side of the territory
(region 3). In contrast, strongest and most significant neg-
Table 2
Average and standard deviation of the correlation coefficients between
GNSS-SPCI and SPEI for stations in the three considered geographic
regions.

GNSS-SPCI Region 1 Region 2 Region 3 Total

Mean STD Mean STD Mean STD Mean

1-month 0.66 0.04 0.67 0.04 0.66 0.07 0.67

3-months 0.83 0.02 0.81 0.05 0.83 0.02 0.82

6-months 0.89 0.03 0.85 0.06 0.87 0.04 0.87

9-months 0.91 0.03 0.87 0.06 0.88 0.05 0.89

12-months 0.93 0.04 0.89 0.06 0.89 0.05 0.90

24-months 0.93 0.05 0.89 0.09 0.88 0.07 0.90

Table 3
Average and standard deviation of the correlation coefficients between
ERA5-SPCI (61 years) and SPEI for stations in the three considered
geographic regions.

ERA5-SPCI Region 1 Region 2 Region 3 Total

Mean STD Mean STD Mean STD Mean

1-month 0.70 0.02 0.67 0.03 0.67 0.02 0.68

3-months 0.86 0.01 0.84 0.03 0.84 0.01 0.85

6-months 0.91 0.01 0.89 0.03 0.89 0.01 0.90

9-months 0.93 0.01 0.91 0.03 0.91 0.02 0.92

12-months 0.95 0.01 0.93 0.03 0.92 0.02 0.93

24-months 0.95 0.02 0.94 0.03 0.93 0.03 0.94

Fig. 4. SPCI-SPEI correlation coefficients for 24-month timescale, computed us
(61 years). Blue color corresponds to region 1. Green corresponds to region 2
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ative correlation levels between PWV and precipitation are
found in region 2 (Betic mountain range), suggesting that
the complex orography of the territory could be influencing
the relationship between PWV and precipitation.
3.4. SPCI computation and correlation analysis

The GNSS-SPCI and ERA5-SPCI have been computed
for all the stations for 6 different time scales: 1, 3, 6, 9, 12
and 24 months. The correlation coefficients with respect
to SPEI have been computed and are shown in Appendix
A. Mean values and standard deviations for each region,
as well as for all the region, are summarized in Tables 2
and 3. In general, high correlation values are found. The
correlation coefficients display mean values of 0.67 and
0.68 for the 1-month timescale, for GNSS-SPCI and
ERA5-SPCI respectively. This level becomes higher as the
timescale increases, reaching its maximum at the 12-
month and
24-month timescales (0.90 for GNSS-SPCI and 0.93–0.94
for ERA5-SPCI). In the case of GNSS-SPCI, the correla-
tion levels drop slightly at the 24-month timescale for some
stations, while this effect is not observed in the case of
ERA5-SPCI. ERA5-SPCI generally shows higher correla-
tion levels than the GNSS-SPCI for all the timescales.

The results have been studied in more detail attending to
the geographical region the stations belong to. The correla-
tion coefficients for the 24-months timescale depending on
the region are represented in Fig. 4 (a and c). One of the
striking features observed for the GNSS-SPCI consists of
the great variability of the correlation coefficients inside a
given geographical region, which doesn’t occur for
ERA5-SPCI. Table 2 reveals that, for the GNSS-SPCI,
the standard deviations between the correlation coefficients
inside a given region increase with time and even reach 0.09
points of standard deviation in the case of region 2. More-
over, some inconsistencies can even be found between close
stations in the case of GNSS-SPCI. For instance, MALA
ing a) GNSS-PWV (15 years), b) ERA5-PWV (15 years) and c) ERA-PWV
. Red corresponds to region 3.
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and MLGA, located at a 4 km distance, have coefficients of
0.81 and 0.64 respectively for the 24-month timescale; or
VIAR and VICA (8 km distance) show coefficients of
0.95 and 0.83 respectively for the same timescale. In addi-
tion, the station HUOV shows a very singular behaviour
with respect to the other stations belonging to region 3,
with very low correlation coefficients, reaching 0.14 for
the 24-month timescale (this station has been omitted from
the mean correlation computations as an outlier).

One of the main differences between the GNSS-SPCI
and ERA5-SPCI is the timespan of the time series (15 years
and 61 years, respectively). In order to explore the possible
influence of this factor in the aforementioned incoheren-
cies, the ERA5-SPCI has been recomputed over a similar
time period as the GNSS time series, that is, 2007–2022.
The obtained correlation coefficients for the 24-month
timescale are represented on Fig. 4 b.

For this new ERA5-SPCI (15 years), incoherencies also
appear for the stations MALA-MLGA and HUOV. As a
consequence, these can be attributed to an insufficient
length of the data time series. Fig. 5 presents the
ERA5-PWV, precipitation, ERA5-PCI and ERA5-SPCI
(24-month timescale) time series for the 15-years computa-
tion for stations MALA and MLGA, two GNSS stations
very close to each other (the distance between them is less
than 4 km and the difference in altitude is above 4 m). It
can be seen that, although the differences in ERA5-PWV
and precipitation are very small between both stations,
the drought indices show more important differences.
These differences can be explained by the use of the 24-
month timescale, which causes an accumulation of all the
small differences in PWV and precipitation over two years,
amplifying them in the drought index time series. This also
Fig. 5. PWV, precipitation and drought indices time series for stations MALA
accumulated over 24-months (2 years) these cause important differences in t
coefficients with respect to SPEI.

9Please cite this article as: L. Retegui Schiettekatte, M. Selmira Garrido and
based standardized precipitation conversion index for drought monitorin
Advances in Space Research, https://doi.org/10.1016/j.asr.2023.08.030
explains the fact that the standard deviation of the correla-
tion coefficients inside a region increases when the drought
index timescale is increased, as seen in Table 2. Table 3
shows that, when using 61 years time series, this effect is
less notorious, since the correlation levels display lower
standard deviations that are independent of the timescale.

As far as VICA and VIAR stations are concerned, the
differences between them disappear when using the
15-years ERA5-SPCI time series. Hence, the original inco-
herency is attributed to the very short timespan of the
GNSS VICA time series, which only covers 8 years. As a
consequence, the short timespan of the GNSS data
(7–15 years in this study) appears to be an inconvenience
for the right computation of the SPCI time series and there-
fore should be addressed or considered when analyzing the
GNSS-SPCI performance. The ERA5-PWV data seems to
solve this problem by introducing long and continuous
PWV time series. It is true that, as long as ERA5 is a
model, its smoothness and its limited spatial resolution
(0.25� � 0.25�, approximately 30 km � 30 km in Southern
Spain) could be a disadvantage when trying to study the
spatial variability of SPCI in a territory with a complex
orography such as Southern Spain. However, when SPCI
is computed, ERA5-PWV is combined with precipitation
data with a higher resolution (1 km � 1 km). Therefore,
the possible influence of the smoothness and coarse resolu-
tion of ERA5-PWV in the SPCI should be studied in more
detail in view of the eventual use of this type of data for
SPCI time series estimation.

Under the more coherent results of ERA5-SPCI, it can
be seen that the best agreement between SPCI and SPEI
can be found for region 1. Fig. 4.c shows that some stations
still deviate from the mean tendency corresponding to this
and MLGA. Although the differences in precipitation are very low, when
he SPCI between the two stations, resulting in very different correlation
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region: these are LEBR, POZO and RUBI, which show a
correlation level around 0.92 for the 24-month timescale
in contrast to the other stations of the region, with correla-
tion coefficients higher than 0.95. The three of them are
located in the most mountainous areas among the stations
of region 1. In region 2, where the topography is very irreg-
ular, the variability of the correlation coefficients is greater
(0.03 points of correlation coefficient standard deviation
independently of the timescale). An intermediate variability
degree is found in region 3 where the topography is quite
irregular too. All this seems to indicate that the SPCI esti-
mates show slightly less agreement with SPEI for many of
the stations located in the mountainous regions.

3.5. Comparison with other global results

The correlation coefficients obtained in this study are
compared to the worldwide results obtained by Zhao
et al. (2020). The worldwide results are based on the com-
putation of GNSS-SPCI time series using IGS ZTD prod-
ucts starting from 2005 to 2016 (12-year timespan), as well
as ERA-Interim-SPCI time series for the global mainland
for the 1979–2015 period (37 years). Table 4 shows the per-
centage of locations on the global mainland with correla-
tion coefficients greater than 0.8 at different month scales,
both for Zhao et al. (2020) and the stations considered in
the present study.

For low time scales, the SPCI performs better in
Southern Spain compared to the general global perfor-
mance. For instance, for the 3-month time scale, while only
about 15% of the world mainland shows a correlation
greater than 0.8, more than 70% of the GNSS stations of
this study reach this threshold (90% if ERA5 61-year time
series is used). For the 9-month time scale, the percentage is
around 50% for the global mainland and 95% to 100% for
Southern Spain. The trends become more similar for the
12-month and 24-months timescales. When the time scale
is increased to 12 months, the global trend increases
significantly to 96–98% of the stations with high correla-
tions, and this trend slightly drops for the 24-months time-
scale. In the case of Southern Spain, the statistics drop at
12- and 24-months timescale for the GNSS data, but
remain high for the SPCI computed using ERA5 61-year
time series.
Table 4
Percent of stations / locations with a correlation coefficient with SPEI greater
Zhao et al. (2020).

Correlation coefficients > 0.8

Global results

GNSS-SPCI(%) ERA-Interim-SP

3 months 15.38 14.35
6 months 21.50 20.94
9 months 53.63 51.35
12 months 97.90 96.06
24 months 96.84 95.26
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These correlation coefficients can also be compared to
more local results. Ma et al. (2021) and Zhao et al.
(2022) study the correlation between SPEI and SPCI for
different stations in Yunnan, China. This region is
described as an arid area, while Southern Spain is generally
considered a semi-arid area. The correlation coefficient val-
ues achieved by Ma et al. (2021) for the 12-months time-
scale are similar to the ones obtained in this study, in the
range of 0.89 to 0.97. Zhao et al. (2022) achieve lower val-
ues, between 0.85 and 0.90, for the same region, possibly
due to the shorter timespan of their time series (8 years).
As for the variation of the correlation coefficients depend-
ing on the timescale, in Ma et al. (2021) they seem to follow
similar trends as the GNSS-SPCI correlations in this study,
although the correlations levels are slightly higher for the
1-month timescale in the case of Yunnan.

Zhao et al. (2020) also test the GNSS-SCPI at the IGS
FAIR station (Fairbanks, USA). In this case, the presented
correlation coefficients, starting at 0.93 on the 1-month
timescale and reaching 0.98 on the 24-month timescale,
are much higher than those obtained in this study.

In conclusion, the SPCI-SPEI correlation levels in
Southern Spain can be considered high when compared
to global mainland correlation levels, especially for low
timescales. This result implies that, despite the atypical
precipitation-PWV correlation, the SPCI can perform sat-
isfactorily and has an interesting potential for drought
monitoring in this region. These suggest that the SPCI
could be an interesting index for drought studies in the
Mediterranean area, although the results cannot be gener-
alized due to the spatial variability that exists in this terri-
tory, and the index should be tested in more Mediterranean
regions.
3.6. Performance of SPCI vs. SPI

In the previous sections the good performance of the
SPCI in Southern Spain has been shown with respect to
the SPEI, which accounts for both precipitation and evap-
otranspiration. The last question that is addressed in this
study is the following: does the computation of SPCI,
based on precipitation and PWV data, constitute any
improvement with respect to SPI time series, which are
only based on precipitation data? To answer this question,
than 0.8 for different time-scales. The global results have been taken from

Southern Spain results

CI(%) GNSS-SPCI(%) ERA5-SPCI(%)

73.2 97.6
92.7 100
95.1 100
92.7 100
90.2 100
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Table 5
Correlation coefficient of ERA5-SPCI and SPI time series with respect to
SPEI for different timescales. Cases in which SPCI outperforms SPI are
highlighted.

6-months 12-months 24-months

SPI SPCI SPI SPCI SPI SPCI

ALGC 0.98 0.89 0.99 0.93 0.98 0.94
ALJI 0.98 0.89 0.99 0.93 0.99 0.94
ALME 0.92 0.90 0.91 0.93 0.90 0.95

ALMR 0.93 0.91 0.91 0.94 0.90 0.95

ANDU 0.95 0.91 0.96 0.95 0.94 0.96

ARAC 0.98 0.92 0.99 0.96 0.99 0.97
AREZ 0.94 0.90 0.94 0.92 0.92 0.93

CAAL 0.96 0.81 0.96 0.83 0.96 0.85
CABR 0.97 0.91 0.98 0.95 0.98 0.96
CARG 0.95 0.91 0.95 0.93 0.95 0.95

CAST 0.98 0.92 0.99 0.96 0.98 0.97
CAZA 0.97 0.91 0.99 0.95 0.98 0.96
COBA 0.96 0.91 0.98 0.96 0.96 0.97

CRDB 0.96 0.91 0.98 0.96 0.96 0.97

GRA1 0.95 0.88 0.95 0.90 0.95 0.88
HUEL 0.96 0.90 0.98 0.96 0.98 0.96
HULV 0.96 0.90 0.98 0.95 0.98 0.95
HUOV 0.95 0.88 0.95 0.88 0.93 0.89
LEBR 0.96 0.88 0.97 0.92 0.97 0.91
LIJA 0.98 0.90 0.99 0.95 0.99 0.97
LOJA 0.97 0.87 0.98 0.88 0.98 0.87
MALA 0.96 0.88 0.98 0.94 0.97 0.95
MLGA 0.96 0.87 0.97 0.92 0.97 0.93
MOFR 0.96 0.91 0.98 0.95 0.98 0.95
MOTR 0.97 0.89 0.97 0.93 0.97 0.94
NEVA 0.98 0.85 0.98 0.88 0.98 0.90
OSUN 0.97 0.87 0.98 0.90 0.98 0.91
PALC 0.96 0.92 0.96 0.94 0.95 0.95
PALM 0.97 0.89 0.98 0.94 0.97 0.95
PILA 0.95 0.87 0.95 0.89 0.93 0.90
POZO 0.96 0.90 0.97 0.93 0.95 0.91
ROND 0.98 0.91 0.99 0.95 0.99 0.96
RUBI 0.95 0.90 0.96 0.92 0.94 0.92
SEVI 0.96 0.90 0.97 0.95 0.97 0.95
SFER 0.96 0.90 0.98 0.95 0.98 0.96
TALR 0.96 0.92 0.97 0.95 0.96 0.95
TGIL 0.96 0.92 0.96 0.95 0.95 0.96

UCAD 0.96 0.90 0.98 0.95 0.98 0.96
UJAE 0.95 0.92 0.96 0.96 0.95 0.97

VIAR 0.95 0.92 0.95 0.94 0.92 0.95

VICA 0.95 0.92 0.95 0.95 0.93 0.96

ZFRA 0.96 0.92 0.97 0.95 0.96 0.96
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the SPI correlation coefficient values have been computed
with respect to SPEI for the 6-, 12-, and 24-month time-
scales and have been compared to those obtained with
ERA5-SPCI. The results are presented in Table 5.

As the results show, for the 6-months timescale the SPI
presents a better performance. When the timescale is
increased to 12-months, the two stations located at Almerı́a
(ALME and ALMR) show a better performance when
SPCI is used with respect to SPI. However, the biggest con-
tributions of the SPCI can be seen at the 24-months time-
scale. For this timescale, for 10 of the 42 considered
stations the SPCI shows higher correlations with SPEI than
the SPI. These stations are: ALME, ALMR, ANDU,
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AREZ, COBA, CRDB, TGIL, UJAE, VIAR, and VICA.
All these stations are located in the same particular region,
at both sides of the easternmost part of the Baetic Moun-
tain Ranges and show rather high SPCI correlation values.
The nearby station PALC also shows very similar correla-
tion coefficients for SPCI and SPI (0.9541 and 0.9539
respectively). In contrast, the nearby station CAAL shows
much lower correlations. The height of this station could
be a factor influencing the lower correlation level of the
SPCI estimates.

The fact that the 24-months SPCI estimations are better
than the SPI for the stations belonging to a given geo-
graphical area suggests that the inclusion of PWV data in
drought indices computation can really bring an improve-
ment on drought monitoring in some cases, and hence con-
stitute a promising data for this purpose. The ways in
which this data could improve and contribute to drought
monitoring can be diverse, as reflected by the different
applications mentioned in Section 1 (Introduction), and is
yet to be studied in depth.

4. Conclusions

The aim of this article is to test the performance of the
SPCI in the region of Southern Spain. This region consists
of an interesting area, on the one hand, due to the atypi-
cally low correlation levels that exist between precipitation
and PWV data and, on the other hand, due to the steep
topography and high climatological variability of this
territory.

The GNSS observations of 44 permanent geodetic recei-
vers have been processed to compute 7 to 15-year GNSS-
ZTD values between 2007 and 2022. For this purpose, a
PPP solution has been computed using the open-source
goGPS software. The goGPS ZTD values have been vali-
dated against IGS and Euref ZTD products, obtaining a
few millimeters level mean differences and standard devia-
tions around 5–6 mm. ERA5-derived pressure and mean
temperature values have been used to compute the PWV
from the ZTD. ERA5-PWV values were also extracted
and used to validate to GNSS-PWV: a mean difference of
�0.3 mm and a standard deviation of 0.7 mm have been
found between the PWV derived from the two datasets.

SPCI time series were calculated using the GNSS-PWV
and ERA5-PWV time series and precipitation data, and
were assessed by computing the correlation coefficients
taking SPEI time series as a reference. In general, high
correlation coefficients were found, with a mean value of
0.67–0.68 for the 3-month timescale and increasing to a
mean value over 0.90 for the 12- and 24-month timescale.
The use of GNSS-SPCI time series have led to some inco-
herencies due to the short timespan of the GNSS time ser-
ies (7 to 15 years). The use of a longer timespan (61-years),
allowed by ERA5-PWV data, have solved this problem
providing more coherent results. Therefore, the use of
ERA5 PWV for SPCI estimation has shown to constitute
a very interesting option that can help to overcome prob-
M. Clara de Lacy, Use of GNSS and ERA5 precipitable water vapor
g in the Mediterranean coast: A first case study in Southern Spain,

https://doi.org/10.1016/j.asr.2023.08.030


Table A1
Correlation coefficients between 15-years GNSS-SPCI and SPEI for
different month scales. All correlations show a high significance level with
p-value less than 0.05, excepting HUOV for the 24-months timescale,
which has been excluded from the mean*.

GNSS-SPCI 1-m 3-m 6-m 9-m 12-m 24-m

ALGC 0.66 0.81 0.85 0.89 0.90 0.89
ALJI 0.73 0.84 0.88 0.90 0.92 0.91
ALME 0.68 0.81 0.83 0.82 0.82 0.81
ALMR 0.69 0.80 0.82 0.84 0.86 0.84
ANDU 0.68 0.87 0.93 0.95 0.96 0.98
ARAC 0.65 0.84 0.90 0.91 0.94 0.95
AREZ 0.71 0.86 0.91 0.92 0.93 0.94
CAAL 0.62 0.69 0.69 0.71 0.77 0.74
CABR 0.67 0.83 0.88 0.89 0.91 0.95
CARG 0.53 0.85 0.91 0.93 0.92 0.97
CAST 0.66 0.82 0.88 0.90 0.94 0.91
CAZA 0.69 0.84 0.90 0.92 0.93 0.94
COBA 0.68 0.83 0.89 0.92 0.94 0.97
CRDB 0.67 0.82 0.89 0.91 0.94 0.97
GRA1 0.69 0.83 0.91 0.94 0.94 0.97
HUEL 0.58 0.80 0.87 0.90 0.92 0.94
HULV 0.58 0.80 0.86 0.90 0.91 0.93
HUOV* 0.68 0.77 0.71 0.59 0.49 0.14

LEBR 0.69 0.80 0.82 0.82 0.82 0.82
LIJA 0.73 0.86 0.93 0.94 0.96 0.93
LOJA 0.67 0.74 0.78 0.79 0.74 0.77
MALA 0.60 0.77 0.83 0.86 0.86 0.81
MLGA 0.61 0.76 0.79 0.80 0.79 0.64
MOFR 0.68 0.79 0.82 0.84 0.91 0.94
MOTR 0.64 0.77 0.82 0.84 0.87 0.93
NEVA 0.64 0.78 0.81 0.83 0.85 0.84
OSUN 0.64 0.79 0.87 0.89 0.91 0.95
PALC 0.69 0.80 0.83 0.86 0.87 0.89
PALM 0.69 0.84 0.89 0.90 0.93 0.94
PILA 0.69 0.83 0.87 0.90 0.90 0.87
POZO 0.66 0.84 0.92 0.93 0.94 0.93
ROND 0.69 0.86 0.90 0.93 0.94 0.92
RUBI 0.66 0.86 0.90 0.92 0.94 0.95
SEVI 0.63 0.81 0.88 0.89 0.91 0.89
SFER 0.68 0.84 0.88 0.92 0.95 0.96
TALR 0.65 0.85 0.85 0.84 0.88 0.78
TGIL 0.73 0.88 0.92 0.95 0.96 0.98
UCAD 0.64 0.82 0.91 0.95 0.96 0.97
UJAE 0.72 0.88 0.92 0.95 0.96 0.96
VIAR 0.75 0.89 0.93 0.94 0.94 0.95
VICA 0.66 0.79 0.81 0.83 0.84 0.83
ZFRA 0.71 0.86 0.93 0.92 0.95 0.95
Mean* 0.67 0.82 0.87 0.89 0.90 0.90
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lems linked to the short timespan of GNSS observations.
The spatial resolution and the ability to account for the
spatial variability of the ERA5-SPCI (obtained by combin-
ing ERA5-PWV and higher resolution precipitation data)
remains unaddressed.

A geographical analysis of the results has been per-
formed. In general, the highest agreement between SPCI
and SPEI seems to be found in the flattest areas of the
region, that is, the basin of the main river Guadalquivir,
reaching correlation levels greater than 0.95 for the
24-month timescale. For more mountainous areas, the cor-
relations still remain high but become more variable, vary-
ing between 0.85 and 0.95 for the 24-months timescale
depending on the station.

When compared to global mainland results, the correla-
tion levels found in this study have turned out to be high,
especially for low timescales where the correlation values
reach mean values of 0.82 and 0.85 (3-month timescale)
and 0.87 and 0.90 (6-month timescale) when using GNSS
and ERA5 PWV values, respectively, while global correla-
tion coefficients remain much lower. This is the first time
that SPCI is tested and studied specifically in an area with
atypically low correlations between PWV and precipitation
and proves that the SPCI can also have a good perfor-
mance in this kind of region.

Finally, the performance of the ERA5-SPCI was com-
pared with that of the SPI keeping the SPEI as a reference.
While for low timescales the SPI performs better, for the
24-month timescale the SPCI has shown to outperform
the SPI for a given region in the eastern part of the Baetic
Mountains Ranges. This result suggests that the PWV data
can really bring an improvement on precipitation-based
drought estimation for some geographical territories and
is worth to be considered and further investigated.
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Table A2
Correlation coefficients between 61-years ERA5-SPCI and SPEI for
different month scales. All correlations show a high significance level with
p-value less than 0.05.

ERA5-SPCI 1-m 3-m 6-m 9-m 12-m 24-m

ALGC 0.67 0.84 0.89 0.92 0.93 0.94
ALJI 0.66 0.84 0.89 0.92 0.93 0.94
ALME 0.69 0.85 0.90 0.92 0.93 0.95
ALMR 0.70 0.85 0.91 0.92 0.94 0.95
ANDU 0.71 0.86 0.91 0.93 0.95 0.96
ARAC 0.70 0.87 0.92 0.95 0.96 0.97
AREZ 0.67 0.85 0.90 0.92 0.92 0.93
CAAL 0.59 0.78 0.81 0.82 0.83 0.85
CABR 0.69 0.86 0.91 0.93 0.95 0.96
CARG 0.64 0.84 0.91 0.92 0.93 0.95
CAST 0.72 0.88 0.92 0.95 0.96 0.97
CAZA 0.71 0.86 0.91 0.94 0.95 0.96
COBA 0.71 0.86 0.91 0.94 0.96 0.97
CRDB 0.71 0.86 0.91 0.94 0.96 0.97
GRA1 0.68 0.84 0.88 0.90 0.90 0.88
HUEL 0.67 0.85 0.90 0.94 0.96 0.96
HULV 0.67 0.84 0.90 0.93 0.95 0.95
HUOV 0.69 0.84 0.88 0.88 0.88 0.89
LEBR 0.69 0.84 0.88 0.91 0.92 0.91
LIJA 0.66 0.85 0.90 0.94 0.95 0.97
LOJA 0.65 0.83 0.87 0.87 0.88 0.87
MALA 0.66 0.82 0.88 0.92 0.94 0.95
MLGA 0.66 0.81 0.87 0.90 0.92 0.93
MOFR 0.69 0.86 0.91 0.93 0.95 0.95
MOTR 0.64 0.81 0.89 0.92 0.93 0.94
NEVA 0.65 0.82 0.85 0.87 0.88 0.90
OSUN 0.65 0.83 0.87 0.89 0.90 0.91
PALC 0.71 0.88 0.92 0.93 0.94 0.95
PALM 0.65 0.82 0.89 0.92 0.94 0.95
PILA 0.65 0.83 0.87 0.89 0.89 0.90
POZO 0.69 0.87 0.90 0.92 0.93 0.91
ROND 0.68 0.85 0.91 0.94 0.95 0.96
RUBI 0.69 0.87 0.90 0.91 0.92 0.92
SEVI 0.67 0.84 0.90 0.93 0.95 0.95
SFER 0.68 0.85 0.90 0.93 0.95 0.96
TALR 0.70 0.88 0.92 0.94 0.95 0.95
TGIL 0.73 0.88 0.92 0.94 0.95 0.96
UCAD 0.70 0.85 0.90 0.93 0.95 0.96
UJAE 0.71 0.87 0.92 0.94 0.96 0.97
VIAR 0.73 0.88 0.92 0.93 0.94 0.95
VICA 0.73 0.88 0.92 0.94 0.95 0.96
ZFRA 0.73 0.88 0.92 0.94 0.95 0.96
Mean 0.68 0.85 0.90 0.92 0.93 0.94
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