
Ecology and Evolution. 2022;12:e9610.	 		 	 | 1 of 13
https://doi.org/10.1002/ece3.9610

www.ecolevol.org

Received:	27	October	2022  | Accepted:	23	November	2022
DOI: 10.1002/ece3.9610  

R E S E A R C H  A R T I C L E

Field- based adipose tissue quantification in sea turtles using 
bioelectrical impedance spectroscopy validated with CT scans 
and deep learning

Sara Kophamel1  |   Leigh C. Ward2 |   Dmitry A. Konovalov3 |   Diana Mendez4 |   
Ellen Ariel1 |   Nathan Cassidy5 |   Ian Bell6 |   María T. Balastegui Martínez7 |    
Suzanne L. Munns1

This	is	an	open	access	article	under	the	terms	of	the	Creative	Commons	Attribution	License,	which	permits	use,	distribution	and	reproduction	in	any	medium,	
provided	the	original	work	is	properly	cited.
©	2022	The	Authors.	Ecology and Evolution	published	by	John	Wiley	&	Sons	Ltd.

1College	of	Public	Health,	Medical	
and	Veterinary	Sciences,	James	Cook	
University,	Townsville,	Queensland,	
Australia
2School	of	Chemistry	and	Molecular	
Biosciences,	The	University	of	
Queensland,	St	Lucia,	Queensland,	
Australia
3College	of	Science	and	Engineering,	
James	Cook	University,	Townsville,	
Queensland,	Australia
4Australian	Institute	of	Tropical	Health	
and	Medicine,	Townsville,	Queensland,	
Australia
5North	Queensland	X-	Ray	Services,	
Townsville,	Queensland,	Australia
6Department	of	Environment	and	Science,	
Queensland	Government,	Townsville,	
Queensland,	Australia
7Department	of	Animal	Medicine	and	
Surgery,	CEU	Cardenal	Herrera	University,	
CEU	Universities,	Valencia,	Spain

Correspondence
Sara	Kophamel,	College	of	Public	Health,	
Medical	and	Veterinary	Sciences,	James	
Cook	University,	1	James	Cook	Dr,	
Townsville	QLD	4814,	Australia.
Email:	sara.kophamel@my.jcu.edu.au

Funding information
James	Cook	University	(International	
Postgraduate	Research	Scholarship);	
North	Queensland	X-	Ray	Services;	
Queensland	Parks	and	Wildlife	Service	
(Department	of	Environment	and	Science,	
Queensland	Government);	Sea	World	
Research	and	Rescue	Foundation,	Grant/
Award	Number:	SWR/6/2019

Abstract
Loss	 of	 adipose	 tissue	 in	 vertebrate	wildlife	 species	 is	 indicative	 of	 decreased	 nu-
tritional	and	health	status	and	is	 linked	to	environmental	stress	and	diseases.	Body	
condition	indices	(BCI)	are	commonly	used	in	ecological	studies	to	estimate	adipose	
tissue	mass	 across	 wildlife	 populations.	 However,	 these	 indices	 have	 poor	 predic-
tive	 power,	 which	 poses	 the	 need	 for	 quantitative	methods	 for	 improved	 popula-
tion	assessments.	Here,	we	calibrate	bioelectrical	 impedance	spectroscopy	 (BIS)	as	
an	alternative	approach	for	assessing	the	nutritional	status	of	vertebrate	wildlife	 in	
ecological	studies.	BIS	is	a	portable	technology	that	can	estimate	body	composition	
from	measurements	of	body	impedance	and	is	widely	used	in	humans.	BIS	is	a	predic-
tive	technique	that	requires	calibration	using	a	reference	body	composition	method.	
Using	sea	turtles	as	model	organisms,	we	propose	a	calibration	protocol	using	com-
puted	tomography	(CT)	scans,	with	the	prediction	equation	being:	adipose	tissue	mass	
(kg)	=	 body	mass − (−0.03	 [intercept] −	0.29	 *	 length2/resistance	at	50 kHz +	 1.07	 *	
body	mass −	0.11	*	 time	after	capture).	CT	 imaging	allows	 for	 the	quantification	of	
body	fat.	However,	processing	the	images	manually	is	prohibitive	due	to	the	extensive	
time	requirement.	Using	a	form	of	artificial	 intelligence	(AI),	we	trained	a	computer	
model	to	 identify	and	quantify	nonadipose	tissue	from	the	CT	images,	and	adipose	
tissue	was	determined	by	the	difference	in	body	mass.	This	process	enabled	estimat-
ing	adipose	tissue	mass	from	bioelectrical	impedance	measurements.	The	predictive	
performance	of	the	model	was	built	on	2/3	samples	and	tested	against	1/3	samples.	
Prediction	of	adipose	tissue	percentage	had	greater	accuracy	when	including	imped-
ance	parameters	 (mean	bias	=	0.11%–	0.61%)	as	predictor	variables,	compared	with	
using	body	mass	alone	(mean	bias	=	6.35%).	Our	standardized	BIS	protocol	improves	
on	conventional	body	composition	assessment	methods	(e.g.,	BCI)	by	quantifying	adi-
pose	tissue	mass.	The	protocol	can	be	applied	to	other	species	for	the	validation	of	
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1  |  INTRODUC TION

1.1  |  Conventional methods for body composition 
assessment

Assessing	 body	 composition	 is	 an	 integral	 component	 of	 ecologi-
cal,	behavioral,	and	evolutionary	studies	in	vertebrate	wildlife.	The	
macro-	composition	of	the	body	(i.e.,	adipose	tissue	and	nonadipose	
tissue)	changes	when	nutritional	intake	is	mismatched	with	the	nu-
tritional	requirements	(Ward,	2018a).	Fat,	primarily	adipose	tissue,	is	
the	primary	energy	store	in	vertebrates.	The	mobilization	of	energy	
reserves	 is	 especially	 important	 in	 vertebrate	 animals	 exposed	 to	
prolonged	fasting,	or	in	females	undergoing	vitellogenesis	(Hamann	
et al., 2002;	Lignot	&	LeMaho,	2012).	The	loss	of	adipose	tissue	has	
also been linked to chronic stressors such as anthropogenic and 
environmental	 threats,	 climate	 change,	 and	 diseases	 (Karasov	 &	
del Rio, 2020;	 Price	&	Valencak,	2012).	 The	 standard,	 field-	based	
method	 for	 assessing	 body	 composition	 in	 sea	 turtles	 is	 to	 deter-
mine	 body	 condition	 indices	 (BCI),	 such	 as	 Fulton's	 condition	 fac-
tor	 (K =	 body	 mass/straight	 carapace	 length3	 *	 10,000;	 Bjorndal	
et al., 2000;	Harris	et	al.,	2017).	These	indices	are	simple	to	obtain	
and	 do	 not	 require	 extensive	 training	 (Harris	 et	 al.,	 2017;	Wilder	
et al., 2016)	but	have	poor	predictive	power	for	quantifying	adipose	
tissue	 (Stevenson	&	Woods	 Jr.,	2006;	Wilder	et	 al.,	2016).	Robust	
alternatives	that	can	be	applied	in	the	field	would	enhance	our	un-
derstanding	of	sea	turtle	population	health.

1.2  |  Bioelectrical impedance spectroscopy

Bioelectrical	 impedance	 spectroscopy	 (BIS),	 which	 falls	 under	 the	
category	of	bioelectrical	impedance	analysis	(BIA)	methods,	is	con-
sidered	 an	 accurate,	 portable,	 quick,	 affordable,	 and	 noninvasive	
method	that	has	been	used	to	predict	body	composition	in	humans	
(Lemos	&	Gallagher,	2017;	Ward,	2018b),	fishes	(Ćurić	et	al.,	2017),	
and	in	domestic	and	laboratory	animal	research	(Muller	et	al.,	2021; 
Ward	 et	 al.,	2009).	 BIS	measures	 the	 opposition	 of	 biological	 tis-
sues	 to	 the	 flow	 of	 an	 electric	 current	 (impedance).	 The	 resulting	
impedance	values	(or	more	correctly	its	component,	resistance)	are	
used,	in	combination	with	body	mass	and	length	measurements,	to	
predict	 nonadipose	 tissue.	 Adipose	 tissue	 is	 then	 calculated	 from	
the	 nonadipose	 tissue	 estimates	 by	 difference	 with	 body	 mass	

(Van	Marken	Lichtenbelt,	2001).	For	additional	 information	on	the	
rationale	behind	the	chosen	impedance	parameters	and	on	how	to	
conduct	 impedance	measurements	on	sea	turtles,	we	refer	the	 in-
terested	reader	to	Kophamel	et	al.	(2023).	The	portability	and	ease	
of	use	of	BIS	devices	make	them	especially	attractive	for	assessing	
threatened	species	in	the	field.	However,	the	successful	application	
of	BIS	 for	wildlife	assessments	 requires	 the	adoption	of	 standard-
ized	protocols,	 identification	and	control	for	potential	confounding	
factors,	and	appropriate	calibration	and	validation	(Haus	et	al.,	2017; 
Kophamel	et	al.,	2023;	Ward	et	al.,	2009).	Noninvasive	methods	for	
body	 composition	 assessment,	 such	 as	 diagnostic	 imaging	 tools,	
were	 found	 to	 strongly	 correlate	 with	 the	 reference	 calibration	
method	(i.e.,	chemical	analyses).	Diagnostic	imaging	tools	are	there-
fore	suitable	for	BIS	calibration	where	chemical	analyses	of	threat-
ened	species	are	undesirable	(Ross	et	al.,	1991;	Wyatt	et	al.,	2015).

Integrating	adipose	tissue	data	in	sea	turtle	monitoring	programs	
could	 help	 to	 identify	 drivers	 of	 population	 declines	 or	 measure	
the	effectiveness	of	a	conservation	program	 (IUCN	–		SSC	Species	
Conservation	 Planning	 Sub-	Committee,	 2017).	 Nutritional	 status	
assessment	 can	 serve	 as	 indicators	 for	 population	 decrease	 and	
population	 viability	 (Deem	et	 al.,	2001;	 Page-	Karjian	 et	 al.,	2020).	
Monitoring	nutritional	status,	 in	combination	with	foraging	ground	
assessments,	population	abundance,	and	demographic	parameters,	
can	provide	an	early	warning	about	potential	anthropogenic	and	en-
vironmental	 threats,	 which	might	 have	 long-	lasting	 consequences	
on	health	status	and	on	the	turtles'	habitat	(Deem	&	Harris,	2017).	
The	combined	and	simultaneous	monitoring	of	both	sea	turtle	habi-
tat	and	nutritional	status	might	thus	provide	a	clearer	picture	of	the	
impacts	of	threats	on	foraging	and	nesting	sites,	and	on	sea	turtle	
population	health.	The	integration	of	monitoring	programs	with	ad-
ipose	 tissue	data	may	also	 serve	as	a	guidance	 for	 state	agencies,	
researchers,	and	NGOs	wishing	to	enhance	conservation	efforts	on	
other threatened species.

The	aims	of	this	study	were	to	conduct	paired	BIS	and	computed	
tomography	 (CT)	measurements	on	 a	model	 species	 (green	 turtle,	
Chelonia mydas),	 to	develop	a	 fully	 automated	process	 for	 adipose	
tissue	identification	and	quantification	from	the	CT	scans	by	using	
a	form	of	artificial	 intelligence	 (i.e.,	convolutional	neural	networks,	
CNN),	 and	 to	 use	 these	 data	 to	 calibrate	 a	 BIS	 body	 composition	
device	for	field-	use.	This	study	also	provides	a	novel	automated	pro-
tocol	for	CT	image	processing	that	can	be	adapted	to	other	sea	turtle	
species	and	to	other	taxa.

BIS	and	to	provide	robust	information	on	the	nutritional	and	health	status	of	wildlife,	
which,	in	turn,	can	be	used	to	inform	conservation	decisions	at	the	management	level.

K E Y W O R D S
adipose	tissue,	Bland–	Altman,	body	condition,	body	fat,	nutritional	status,	sea	turtle
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2  |  MATERIAL S AND METHODS

2.1  |  Animals

This	study	was	conducted	in	North	Queensland,	Australia,	between	
June	2019	and	March	2021.	The	sample	consisted	of	n = 49 green 
turtles	 (Chelonia mydas):	 n =	 25	 wild	 and	 immature	 turtles	 caught	
from	Cleveland	Bay	(19°13′05″S,	146°55′19″E)	and	Toolakea	Beach	
(19°08′40″S,	146°34′40″E),	and	n =	24	captive	turtles	sourced	from	
the	Turtle	Health	Research	Facility	 at	 James	Cook	University	 that	
had	been	transferred	from	Heron	Island	(Queensland,	Australia).	See	
Kophamel	 et	 al.	 (2023)	 for	 husbandry	 details.	 Turtles	were	 trans-
ported	to	shore	immediately	after	capture.	The	sex	of	the	captured	
turtles	was	unknown.	The	 inclusion	criteria	for	all	animals	were	to	
be	clinically	healthy	and	to	have	a	carapace	width	of	less	than	55 cm	
(width	limitation	of	the	CT	scanner	gantry).	A	complete	physical	ex-
amination	was	performed	by	a	qualified	veterinarian	 (SK)	and	only	
animals	that	appeared	healthy,	in	a	good	body	condition	(visual	as-
sessment),	and	without	evident	injuries,	tumors,	or	limb	amputations	
were	used	 in	the	study.	 Impedance	devices	assume	a	constant	hy-
dration	fraction	and	a	certain	body	geometry	(i.e.,	 individuals	with	
four	 limbs	present;	Kophamel	 et	 al.,	2023).	 Lethargic	 animals	may	
not	be	normally	hydrated,	and	turtles	with	missing	limbs	will	have	a	
different	body	geometry	than	turtles	with	all	 limbs	present.	These	
characteristics	could	alter	the	impedance	measurements,	which	un-
derscores	the	importance	of	excluding	dehydrated	animals	and	ani-
mals	with	missing	limbs	when	performing	a	calibration	study	unless	
these	limitations	are	accounted	for	in	the	predictive	models.

The	 health	 status	 of	 each	 turtle	 was	 further	 examined	 with	
biochemical	 and	 hematological	 analyses,	 which	 are	 detailed	 in	
Kophamel,	Rudd	et	al.	(2022).	The	curved	carapace	length	(CCL)	and	
straight	 carapace	 length	 (SCL)	were	measured	 twice	 from	 the	nu-
chal	scute	to	the	caudal	tip	of	the	supracaudal	scute,	to	the	nearest	
millimeter,	with	the	average	value	being	recorded.	Body	mass	was	
measured	to	the	nearest	0.01	kilogram	(kg)	by	suspending	each	tur-
tle	in	a	custom	harness	from	a	digital	hanging	scale.	Body	tempera-
ture	was	measured	using	a	thermocouple	(8402-	20	Thermistor	237	
Thermometer,	Cole-	Palmer	Instruments),	and	by	inserting	the	probe	
5	cm	into	the	cloaca	(Flint,	2013;	Stacy	&	Innis,	2017).	Animal	char-
acteristics	are	detailed	in	the	Appendix	S1,	Table	A2.

All	 experimental	 procedures	 were	 completed	 within	 the	
same	 day	 and	 were	 approved	 by	 Animal	 Ethics	 (permit	 number	
A2525),	 the	 Great	 Barrier	 Reef	 Marine	 Park	 Authority	 (permit	
numbers	 G18/40749.1	 and	 G19/42769.1),	 and	 the	 Department	 of	
Environment	 and	 Science,	 Queensland	 Government	 (permit	 num-
bers	SPP18-	001167	and	SPP18-	001167-	1).

2.2  |  Bioelectrical impedance spectroscopy

Bioelectrical	 impedance	 measurements	 were	 performed	 using	
a	BIS	 device	 (SFB7,	 Impedimed),	 that	measures	 resistance	 and	 re-
actance	to	an	applied	harmless,	alternating	electric	current	at	256	

logarithmically-	spaced	 frequencies	 in	 the	 range	 of	 3–	1000 kHz.	
Device	calibration	was	verified	daily.	BIS	measurements	were	car-
ried	out	1.5 ± 2.0	h	postcapture.	Each	animal	was	first	placed	prone	
on	a	nonconductive	surface	and	their	eyes	covered	with	a	noncon-
ductive	 cohesive	 bandage	 to	 reduce	 stress.	 After	 disinfecting	 the	
skin	with	70%	ethanol,	resistance	measurements	were	taken	by	at-
taching	electrode	 leads	 to	 two	needles	 (27-	gauge × ½	 inch	needle,	
Terumo,	Japan)	inserted	2 mm	sub-	dermally	in	the	right	forelimb	and	
in	the	right	hindlimb	(Figure 1),	following	the	methods	described	in	
Kophamel	et	al.	(2023).	Electrodes	were	3	cm	apart,	with	the	distal	
electrode	applying	the	current	and	the	proximal	electrode	sensing	
the	voltage.	Ten	 sequential	measurements,	with	an	 interval	of	5 s,	
were	taken	without	removing	the	electrodes.	The	complete	proce-
dure,	from	animal	preparation	and	examination	to	impedance	meas-
urements,	took	no	longer	than	15 min	per	animal	and	did	not	require	
anesthetizing	 or	 sedating	 the	 animals.	 See	Kophamel	 et	 al.	 (2023)	
for	 full	details	on	the	BIS	standardization	procedure	and	precision	
(i.e.,	intra-	animal	variability)	estimates	in	sea	turtles.	The	extracted	
data	of	interest	were	resistance	at	infinite	frequency	(Rinf,	predictor	
of	total	body	water	and	nonadipose	tissue);	resistance	at	zero	fre-
quency	(R0,	predictor	of	extracellular	water);	intracellular	resistance	
(Ri,	an	index	of	intracellular	water);	and,	for	comparison	with	stud-
ies	using	the	more	affordable	single-	frequency	(50 kHz)	impedance	
devices,	resistance	at	50 kHz	(R50),	reactance	at	50 kHz	(Xc50),	and	
phase	angle	at	50 kHz	(PhA50).	Resistance	data	are	required	to	es-
timate	nonadipose	tissue,	from	which	adipose	tissue	can	be	derived	
by	difference	in	body	mass.

2.3  |  Computed tomography scans

Each	turtle	was	secured	in	the	prone	position	by	wrapping	loosely	
in	a	towel	and	placing	within	a	cardboard	box	(Figure 2).	Eyes	were	
covered	with	a	cohesive	bandage	to	reduce	visual	stimuli	and	stress.	
Optimal	 soft-	tissue	 contrast	 was	 achieved	 using	 a	 peak	 kilovolt-
age	 (kVp)	 of	 120	 and	 a	 tube	 current	 of	 320	 milliamperage	 (mA).	
Volumetric	 data	of	 total	 body	 scans	were	 acquired	 in	 helical	 scan	
mode,	with	1.25 mm	slice	thickness	and	spacing	between	slices	set	
at	0.625 mm	(Optima	CT660	16	slice	scanner,	GE	Medical	Systems;	
and	Aquilion	Lightning	160).	The	typical	number	of	CT	slices	per	ani-
mal	was	around	1600.	In	this	study,	the	total	number	of	slices	was	
approximately	 80,000,	 and	 approximately	 50,000	 CT	 slices	 were	
used	in	the	final	calculations.	Turtles	were	released	4	to	5	h	postcap-
ture; wild turtles were returned to their capture location, and cap-
tive turtles returned to their usual housing.

2.4  |  Automated adipose tissue quantification

Adipose	 tissue	 Hounsfield	 units	 (HU;	 i.e.,	 attenuation	 ranges)	
were	 identified	 by	 three-	dimensional	 rendering	 using	 a	 commer-
cially	available,	validated	software	for	DICOM	(Digital	Imaging	and	
Communications	 in	Medicine)	 visualization	 and	 body	 composition	
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analysis	(NovaPACS,	Novarad™;	Appendix	S1, Figure A1),	following	
the	methods	described	in	Gibby	et	al.	(2017),	Depersio	et	al.	(2019),	
and	Newman	et	al.	(2019).	The	location	of	adipose	tissue	on	the	CT	
scans	was	confirmed	with	the	previous	necropsy	information	from	
stranded	 and	 euthanized	 animals	 and	 with	 the	 identification	 cri-
teria	provided	by	other	authors	 (Stacy	et	al.,	2017; Valente, 2008; 
Wyneken,	2001).	A	two-	step	hybrid	approach	was	then	implemented	
to	perform	the	fully	automated	adipose	tissue	quantification.

In	 the	 first	 step,	 the	 direct	 per-	pixel	 HU-	thresholding	 yielded	
segmentation	 masks	 with	 negligible	 areas	 of	 false	 negatives	 (i.e.,	
adipose	tissue	areas	 identified	as	nonadipose	tissue),	and	with	sig-
nificant	areas	of	 false	positives	 (i.e.,	nonadipose	 tissue	areas	 iden-
tified	 as	 adipose	 tissue).	 False	 positives	were	 further	 divided	 into	
four	groups	(referred	to	as	ABCD	masks	from	now	on):	(A)	skin	folds,	
eyes,	 the	epidural	space,	and	artifacts	 resulting	from	metal	 identi-
fication	tags;	(B)	transition	from	the	respiratory	tract	to	pulmonary	
soft-	tissue	 areas;	 (C)	 pericardial	 region	 (i.e.,	 heart	 region);	 and	 (D)	
gastrointestinal	tract	(GIT)	contents.	The	CT	scanner	table	was	also	
falsely	identified	as	adipose	tissue.

In	 the	 second	 step,	 the	 deep	 learning	 semantic-	segmentation	
CNNs	 were	 trained	 to	 identify	 the	 false-	positive	 pixels	 (i.e.,	

nonadipose	 tissue)	 using	 the	 widely	 accepted	 U-	Net	 semantic-	
segmentation	CNN	architecture	(Figure 3; Ronneberger et al., 2015).	
An	open-	sourced	machine	 learning	 framework	 (PyTorch)	was	used	
for	 implementing	the	U-	Net	 (Paszke	et	al.,	2019)	and	was	adapted	
from	 Yakubovskiy	 (2020).	 U-	Nets	 were	 trained	 by	 segmenting	
three	 training	 masks	 for	 each	 of	 the	 three	 animals	 representing	
small	(34.4	cm	SCL),	medium	(46.5	cm	SCL),	and	large	size	(56.4	cm	
SCL)	animals.	For	each	of	the	three	animals,	every	second	CT	slice	
was	 enlarged	 two-	fold,	 from	 the	 original	 512 × 512	 pixels	 to	 a	
1024 × 1024	gray-	scale	image,	and	manually	segmented	into	ABCD	
masks	(Figures 2 and 3).	As	the	table-	related	pixels	were	very	sim-
ilar	between	slices,	every	20th	slice	was	segmented	for	identifying	
the	 false-	positive	pixels	 from	 the	CT	 scanner	 table.	 Segmentation	
resulted	 in	 a	 total	 of	 6292	ABCD	masks	 and	151	 table	masks.	U-	
Nets	were	trained	for	the	CT	scanner	table	masks,	the	GIT	masks	(D	
mask),	and	the	combined	ABC	masks.	Due	to	the	simple	geometri-
cal	shape	of	the	CT	table,	an	11-	layer	VGG-	based	(Visual	Geometry	
Group)	CNN	classification	was	used	as	an	 image	 features	encoder	
in	the	CT	table	U-	Net	(vgg-	11bn	PyTorch	ImageNet	pretrained	ver-
sion;	Simonyan	&	Zisserman,	2014).	By	contrast,	a	34-	layer	ResNet	
CNN	was	used	as	the	image	features	encoder	in	the	D	mask	and	ABC	

F I G U R E  1 Anatomical	locations	for	placing	bioelectrical	impedance	spectroscopy	(BIS)	electrode	needles	on	a	juvenile	green	turtle	
(Chelonia mydas),	using	a	handheld	SFB7	BIS	device.	Electrode	placement	was	standardized	at	consistent	anatomic	markers.	Distally	placed	
electrodes	(red	and	black)	introduce	the	current	and	proximally	placed	electrodes	(yellow	and	blue)	record	voltage	using	a	high	input	
impedance	voltmeter.	Current-	receiving	and	current-	introducing	electrodes	are	inserted	2 mm	subdermally	and	placed	≥3 cm	apart	to	avoid	
current	inferences.	Anatomical	positions	of	the	electrodes	are	standardized	using	reference	scales	(orange).	On	the	right	front	limb,	the	
longest	scale	at	the	limb	periphery	is	used	as	a	reference.	The	recording	electrode	(yellow)	is	placed	at	the	medial	side	of	this	scale	and	the	
current-	introducing	electrode	(red)	is	placed	at	the	distal	margin.	In	the	right	hind	limb,	the	scale	medial	to	the	claw	is	used	as	a	reference.	
The	recording	electrode	(blue)	is	placed	at	the	medial	side	of	this	scale,	and	the	current-	introducing	electrode	(black)	is	placed	at	the	distal	
margin.	Figure	sourced	from	Kophamel	et	al.	(2023).
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masks	U-	Nets	(He	et	al.,	2016).	Due	to	the	required	high	segmenta-
tion	accuracy,	each	final	network	version	consumed	approximately	
1 week	 of	 continuous	 training	 on	 a	 single	NVIDIA	GTX1080	GPU	
available	for	this	project.	Technical	details	of	the	training	are	beyond	
the	scope	of	this	publication	and	will	be	published	separately.	Total	
body	volume	and	adipose	tissue	volume	(in	cm3	and	as	%)	were	de-
termined	and	adipose	tissue	mass	(kg)	calculated	by	multiplying	the	
total	body	mass	(as	measured	by	digital	scale)	by	the	fractional	adi-
pose tissue percentage.

2.5  |  Statistical analyses

Data	are	presented	as	mean ± SD	or	median	with	interquartile	range,	
as	appropriate.	The	HU	ranges	for	adipose	tissue	quantification	by	
CT	scans	were	determined	using	generalized	additive	models.	Model	
selection	and	validation	for	HU	ranges	were	conducted	as	described	
below.	Stepwise	multiple	linear	regression	analysis	was	used	to	de-
velop	the	prediction	equations	for	nonadipose	tissue	mass	estima-
tions,	 from	which	 adipose	 tissue	 mass	 was	 derived	 by	 difference	
with	body	mass.	The	dependent	variable	was	adipose	tissue	mass	(%	
and	kg)	as	predicted	by	the	automated	CT	scan	method	(i.e.,	criterion	
method),	and	the	predictor	variables	were	impedance	indices	calcu-
lated	with	SCL	and	CCL	as	measures	for	body	length	(i.e.,	 length2/

Rinf,	 length2/R0, length2/R50, length2/Ri, and length2/Xc50),	 total	
body	mass	 (kg),	and	time	after	capture	 (h)	 (Kophamel	et	al.,	2023).	
Tukey's	post-	hoc	multiple	comparison	tests	were	conducted	to	as-
sess	the	effects	of	predictor	variables	on	the	dependent	variable	(R	
package	emmeans,	α = 0.05; Lenth, 2016).	The	final	model	selections	
were	based	on	the	corrected	Akaike	Information	Criterion	(Barton	&	
Barton, 2015),	on	diagnostic	residual	plots,	and	on	the	fit	of	the	data	
to	the	selected	model.	Predictive	power	of	the	selected	model	was	
examined	by	refitting	the	model	on	a	randomized	subsample	(1/3	of	
the	original	sample	size).	Additional	correlations	between	variables	
were	 assessed	 using	 the	 concordance	 correlation	 coefficient	 and	
Pearson's	correlation	coefficient	(strong	correlation	assumed	when	
p < .05	and	r > .5).

Equation	 accuracy	was	 assessed	 using	 Bland–	Altman	 analyses	
with	95%	 levels	of	agreement	 (LOA),	which	display	mean	bias	and	
LOA	 between	 the	 predicted	 adipose	 tissue	 values	 obtained	 with	
the	CT	and	the	BIS	methods	(Table 1;	Appendix	S1, Figure A2).	The	
Bland	 and	Altman	plot	 assesses	whether	 the	mean	 adipose	 tissue	
value	for	a	population	(estimated	with	the	BIS	method)	is	close	to	the	
measured	reference	adipose	tissue	value	(CT	method).	More	specif-
ically,	 the	 plot	 quantifies	 the	 bias	 (i.e.,	 predictive	 error)	 and	 range	
(i.e.,	 limits)	of	agreement	 that	 includes	95%	of	 the	differences	be-
tween	two	methods	(Altman	&	Bland,	1983;	Bland	&	Altman,	1986).	
Mean	bias	refers	to	the	accuracy	of	adipose	tissue	mass	predictions	

F I G U R E  2 Standardization	protocol	for	calibrating	a	bioelectrical	impedance	spectroscopy	(BIS)	device	for	adipose	tissue	quantification	
in	green	turtles	(Chelonia mydas, n =	49)	using	whole-	body	computed	tomography	(CT)	scans.	The	calibration	consists	of	five	steps,	which	
comprise	(1)	conducting	electrical	conductivity	(i.e.,	body	impedance)	measurements	with	a	BIS	device;	(2)	performing	CT	scans	on	the	
animals	that	were	assessed	with	the	BIS	device;	(3)	training	a	convolutional	neural	networks	(CNN)	model	on	the	CT	scans	to	automate	the	
identification	of	false-	positive	pixels;	(4)	identifying	and	quantifying	the	adipose	tissue	volume	from	the	CNN	model;	and	(5)	assessing	the	
accuracy	of	the	calibration	with	Bland–	Altman	analyses.	For	additional	information	on	the	technical	details	behind	bioelectrical	impedance	
measurements	in	sea	turtles,	we	refer	the	interested	reader	to	Kophamel	et	al.	(2023).
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6 of 13  |     KOPHAMEL et al.

at	 the	population	 level,	 and	 lower	 and	upper	 LOA	 refer	 to	 the	 in-
dividual	level	(i.e.,	an	individual	could	be	anywhere	within	the	95%	
LOA	limits).	Smaller	mean	bias	and	narrower	LOA	values	imply	higher	
accuracy	and	a	lower	magnitude	of	error	for	adipose	tissue	estima-
tion	by	the	BIS	method	at	the	population	and	individual	levels.	If	the	
mean	bias	 is	narrow,	but	 the	LOA	 limits	are	wide,	 accuracy	at	 the	
population	level	will	still	be	high,	but	since	the	margin	of	error	in	the	
predicted	adipose	tissue	value	for	an	individual	is	wide,	the	accuracy	
of	the	adipose	tissue	mass	prediction	at	the	individual	level	will	be	
reduced.	Precision	(i.e.,	intra-	animal	variability)	estimates	of	the	im-
pedance	measurements,	which	determine	whether	BIS	is	suitable	for	
estimating	adipose	tissue	changes	in	individual	turtles	over	time,	are	
detailed	in	Kophamel	et	al.	(2023).

The	accuracy	of	adipose	tissue	predictions	by	the	BIS	method	
was	 further	 compared	 using	 mean	 absolute	 percentage	 error	
(MAPE;	 Table 1),	 Passing	 and	 Bablok	 regressions	 (Appendix	 S1, 
Figure A3),	 and	 maximum	 allowed	 difference,	 which	 indicated	
the	predefined	agreement	level	for	a	sample	size	of	n =	49	at	80%	
power and α =	0.05	 (Table 1).	Differences	below	this	 limit	are	 ir-
relevant	 or	 neglectable	 (Lu	 et	 al.,	2016).	 The	 last	 step	 consisted	
in	extrapolating	the	most	accurate	predictive	model	to	the	whole	
sample	 (n =	 49/49),	which	 resulted	 in	 a	 final	 prediction	 equation	
recommended	for	future	studies.	To	assess	the	accuracy	of	body	
mass	 as	 sole	 predictor	 variable	 for	 adipose	 tissue	 mass	 estima-
tion,	 an	 additional	 model	 using	 body	 mass	 as	 predictor	 variable	

(excluding	impedance	index)	was	created	for	comparison	purposes	
with	the	best-	fitting	model.

All	statistical	analyses	were	produced	with	R	statistical	software,	
using	 the	 package	 ggplot2	 for	 data	 visualization	 (Hadley,	2016; R 
Core	Team,	2019).	The	datasets	for	assessing	the	validity	of	our	work	
(.xlsx,	.ods.,	and	.csv	formats)	are	available	at	James	Cook	University	
Data	Repository	under	the	following	link:	https://doi.org/10.25903/ 
gzf1-	8e56	[doi:10.25903/gzf1-	8e56]	(Kophamel,	Ward,	et	al.,	2022).	
Description	of	the	parameters	used	 in	the	statistical	models	and	a	
list	 of	 abbreviations	 are	 detailed	 in	 the	 appendices	 (Appendix	 S1, 
Figure A2,	and	Appendix	S1,	section	“Description	of	parameters	and	
codes	used	in	the	dataset”).

3  |  RESULTS

3.1  |  Adipose tissue attenuation ranges

The	 neck,	 sub-	carapace,	 mesenteric,	 and	 hindlimb	 regions	
were	 visually	 identified	 as	 the	 main	 contributors	 to	 adipose	 tis-
sue	 mass.	 Individual	 adipose	 tissue	 HU	 ranged	 from	 mean	
HUmin	=	−32.2 ± 33.8	 to	mean	HUmax	=	10.1 ± 16.5	 (n =	49),	and	
mean	 adipose	 tissue	 resulting	 from	 the	 impedance	measurements	
was	estimated	to	be	6.5 ± 3.7%.	Additional	animal	characteristics	are	
displayed	in	the	Appendix	S1,	Table	A2.

F I G U R E  3 Flowchart	and	workflow	to	create	an	automated	adipose	tissue	quantification	in	green	turtles	(Chelonia mydas, n =	49)	using	
whole-	body	computed	tomography	(CT)	scans	and	convolutional	neural	networks	(CNN).	The	workflow	consists	of	(1)	training	the	CNN	
model	for	adipose	tissue	identification	from	the	flowchart	and	workflow	to	create	an	automated	adipose	tissue	quantification	in	green	
turtles	(Chelonia mydas, n =	49)	using	whole-	body	CT	scans	and	CNN.	The	workflow	consists	of	(1)	training	the	CNN	model	for	adipose	tissue	
identification	from	the	CT	scans;	(2)	validating	and	evaluating	the	model	performance;	and	(3)	building	the	final	model,	which	enables	the	
calculation	of	total	adipose	tissue	volume,	from	which	adipose	tissue	mass	can	be	derived.	Please	refer	to	Zopfs	et	al.	(2020)	for	a	detailed	
explanation	of	the	generic	CNN	model	for	adipose	tissue	identification	and	quantification.
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8 of 13  |     KOPHAMEL et al.

3.2  |  Adipose tissue quantification

The	models	generated	to	predict	adipose	tissue	mass	from	nonadi-
pose	tissue	mass	had	an	improved	fit	when	impedance	index	(i.e.,	
length2/resistance),	morphometric	data	(i.e.,	body	mass),	and	time	
after	capture	were	 included	as	explanatory	variables	 (Table 1),	as	
these	variables	have	been	shown	to	alter	impedance	measurements	
in	green	turtles,	 if	not	accounted	for	(Kophamel	et	al.,	2023).	The	
most	 accurate	 equation	 that	 resulted	 from	 the	 prediction	 group	
(n =	33/49)	used	 the	 impedance	 index	SCL2/R50	and	had	a	mean	
bias	of	0.11%	and	LOA	of	−8.52%	to	8.95%	(Equation 1, Figure 3; 
Table 1).

The best- fit equations for predicting adipose tissue mass from 
BIS measurements of impedance indices (a) SCL2/R50 and (b) CCL2/
R50 in the prediction group (n = 33/49) of green turtles (Chelonia 
mydas).	SCL2/R50 and CCL2/R50	are	the	impedance	index	(length2/
resistance	at	50 kHz)	calculated	using	SCL	and	CCL;	body	mass	is	the	
total	weight	(kg);	and	time	after	capture	refers	to	the	hours	that	have	
passed	since	capturing	the	animal.

The	impedance	indices	that	resulted	in	the	lowest	error	ranges	were	
length2/resistance	 at	 infinite	 frequency	 (length2/Rinf),	 length2/re-
sistance	at	50 kHz	 (length2/R50),	 and	 length2/resistance	at	 zero	 fre-
quency	(length2/R0),	which	are	reflective	of	extracellular	water	(Rinf)	
and	total	body	water	(R0,	R50)	(Table 1).	See	Kophamel	et	al.	 (2023)	
for	details	on	how	to	measure	and	interpret	resistance	parameters	in	
sea	turtles.	The	mean	bias	between	CT	and	BIS	estimations	of	adipose	
tissue	ranged	from	0.11%	to	0.61%,	and	LOA	ranged	from	−9.06%	to	
10.24%	 (predictor	 variables	 length2/Rinf,	 length2/R50, length2/R0, 
and length2/Ri; Table 1	and	Appendix	S1, Figure A2).

The	BIS-		 and	CT-	derived	 adipose	 tissue	mass	 estimates	were	
highly	 correlated	 (R2 > 0.99),	 irrespective	of	 the	 tested	 resistance	
parameters	(Rinf,	R50,	R0,	Ri).	Summary	statistics	of	the	equation	
coefficients	 used	 to	 estimate	 adipose	 tissue	 mass	 with	 imped-
ance indices length2/Rinf,	 length2/R50, length2/R0, and length2/
Ri,	 and	 including	 CCL	 or	 SCL,	 are	 included	 in	 Table 1.	 The	 final	
prediction	 equation	 (Equation 2),	 which	 is	 recommended	 for	 use	
in	future	studies	on	green	turtles,	was	generated	by	applying	the	
best-	fit	model	 to	 the	whole	 sample	 (n =	 49/49).	By	 contrast,	 adi-
pose	 tissue	 estimated	 from	 body	mass	 alone	 resulted	 in	 a	 larger	
mean	bias	(6.35%,	measure	of	population-	level	accuracy)	and	wider	
LOA	 (−4.93%	 to	 9.40%,	 measure	 of	 predictive	 accuracy	 in	 indi-
vidual	 animals).	 Furthermore,	 the	BIS	method	was	over	 50	 times	
more	accurate	in	predicting	adipose	tissue	at	the	population	level,	
compared	with	solely	using	body	mass	(mean	biases	of	0.11%	and	
6.35%,	respectively).

Final equations for predicting adipose tissue mass from BIS 
measurements of impedance indices (a) SCL2/R50 and (b) CCL2/R50 
in green turtles (Chelonia mydas).	Equations	(a)	and	(b)	resulted	from	
applying	the	most	accurate	prediction	model	(Table 1)	to	the	whole	
sample	 (n =	 49/49).	 SCL2/R50 and CCL2/R50	 are	 the	 impedance	
index	 (length2/resistance	 at	 50 kHz)	 calculated	 using	 SCL	 or	 CCL;	
body	mass	is	the	total	weight	(kg);	and	time	after	capture	refers	to	
the	hours	that	have	passed	since	capturing	the	animal.

4  |  DISCUSSION

Bioelectrical	impedance	spectroscopy	analysis	enabled	quantifying,	
analyzing,	and	interpreting	body	composition	data	in	green	turtles.	
We	 propose	 an	 automated	 in	 vivo	 quantification	 of	 adipose	 tis-
sue	mass	 using	whole-	body	CT	 scans.	 The	 use	 of	 CNN	 in	 a	 deep	
learning	 approach	 facilitated	 a	 fully	 automated	 body	 composition	
assessment.	 In	 addition,	 our	 suggested	 protocol	 can	 be	 used	 for	
standardizing	adipose	tissue	quantification	in	other	species	and	taxa.

Prediction	 of	 adipose	 tissue	mass	 at	 the	 population	 level	 was	
highly	accurate	(mean	bias	of	0.11%	for	adipose	tissue	estimated	by	
the	BIS	method),	compared	with	assessments	at	the	individual	level	
(95%	limits	of	agreement,	LOA,	of	−8.52	to	8.95%	for	adipose	tissue	
estimated	by	the	BIS	method).	The	BIS	method	is	therefore	partic-
ularly	well-	suited	 for	 field-	based	 population	 assessments.	Despite	
the	larger	LOA	for	individual	measurements	(i.e.,	lower	accuracy	at	
the	individual	level),	since	intra-	animal	variability	was	extremely	low	
and	precision	of	measurement	very	high	(Kophamel	et	al.,	2023),	BIS	
is suitable to assess changes in adipose tissue in individual turtles 
over	time,	such	as	repeated	sampling	of	adult	females	during	nesting	
season	and	turtles	temporarily	held	in	rehabilitation	centres	or	per-
manently	living	in	captivity	(e.g.,	aquaria).	While	the	mean	difference	
between	methods	(bias)	represents	accuracy	at	the	population	level,	
the	 limits	of	 agreement	 indicate	 confidence	 in	method	agreement	
for	an	individual	 (Figure 4; Table 1;	Appendix	S1, Figure A2).	Since	
the	precision	of	the	technique	is	extremely	high,	BIA	can	be	used	to	
assess	adipose	tissue	data	in	individual	turtles	over	time	even	if	indi-
vidual	accuracy	(agreement	with	the	reference	method)	is	relatively	
weak.	As	an	example,	 if	a	 turtle	has	2%	of	adipose	tissue	and	this	
value	increases	to	3%	in	the	next	season,	the	BIS	device	will	still	pick	
up	on	the	1%	increase	even	if	the	estimated	absolute	adipose	tissue	
does	not	match	the	true	absolute	value.	In	other	words,	BIA	can	de-
tect	a	1%	change	in	adipose	tissue,	even	if	the	agreement	to	adipose	
tissue	estimated	by	CT	scans	is	lower	for	individuals,	compared	with	
the	population	level.	Animal	health	professionals	could	thus	use	the	
BIS	 technique	 with	 confidence	 to	 determine	 whether	 the	 turtles	
are	gaining	or	 losing	adipose	 tissue	over	 time.	The	 implications	of	
tracking	adipose	tissue	over	time	are	manyfold:	in	nesting	females,	

(a)Adipose tissuemass (kg)=Bodymass− (−0.06 [intercept]

−0.32∗SCL2∕R50+1.09∗bodymass−0.14∗ time after capture)

(1)
(b)Adipose tissuemass (kg)=Bodymass− (−0.04 [intercept]

−0.30∗CCL2∕R50+1.09∗bodymass−0.14∗ time after capture)

(a)Adipose tissuemass (kg)=Bodymass− (−0.03 [intercept]

−0.29∗SCL2∕R50+1.07∗bodymass−0.11∗ time after capture)

(2)
(b)Adipose tissuemass (kg)=Bodymass− (−0.01 [intercept]

−0.28∗CCL2∕R50+1.07∗bodymass−0.10∗ time after capture)
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    |  9 of 13KOPHAMEL et al.

the link between adipose tissue and reproductive success could be 
further	explored	by	using	BIA;	in	rehabilitating	turtles,	adipose	tis-
sue	might	provide	details	on	treatment	efficacy	and/or	dietary	sup-
plementation;	and	in	captive	animals,	which	commonly	suffer	from	
obesity	 and	 resulting	 liver	 problems	 (Stacy	&	 Innis,	2017;	 Stewart	
et al., 2016),	adipose	tissue	levels	could	be	compared	to	those	of	wild	
animals	to	adjust	their	diet	accordingly.

The	 LOA	 found	 here	 are	 similar	 to	 those	 previously	 reported	
in	 human	 clinical	 studies	 using	 diagnostic	 imaging	 as	 a	 calibration	
method	(Forde	et	al.,	2015; Tewari et al., 2018;	Zopfs	et	al.,	2020).	
Agreement	metrics	 (mean	bias	 and	LOA)	 varied	depending	on	 im-
pedance	parameters;	with	Rinf,	R50,	 and	R0	providing	 the	closest	
agreement.	 We	 suggest	 using	 the	 impedance	 index	 length2/R50, 
since	 this	 can	 be	 obtained	 using	 the	 simpler	 and	 less	 expensive	
single-	frequency	 (i.e.,	 50 kHz)	 bioelectrical	 impedance	 devices.	
Consequently,	Equation 2	 is	 recommended	 for	use	 in	 future	 stud-
ies	 to	 quantify	 body	 composition	 from	 impedance	measurements.	
BIS	 devices,	 in	 contrast	 to	 single-	frequency	 devices,	 use	 a	 range	

of	 frequencies	 to	 measure	 impedance	 and	 allow	 the	 quantifica-
tion	of	body	water	compartment	volumes,	which	 is	of	 importance	
in	 human	 clinical	 studies	 (Kyle	 et	 al.,	2004;	 Yamada	 et	 al.,	2013).	
For	adipose	tissue	estimation	based	on	total	body	water,	however,	
single-	frequency	devices	are	considered	as	suitable	as	BIS	devices	
(Brantlov	et	al.,	2017).

Calibration	of	the	BIS	device	was	conducted	by	using	deep	learn-
ing,	which	enabled	the	automated	adipose	tissue	 identification	and	
quantification.	 Deep	 learning	 approaches	 in	 ecology	 facilitate	 the	
classification,	regression,	and	modeling	of	data	(Borowiec	et	al.,	2022).	
For	example,	deep	learning	has	been	used	to	identify,	classify,	and	es-
timate	the	density	of	 individuals,	populations,	and	species	 (Christin	
et al., 2019).	The	resulting	predictive	models	have	enabled	the	con-
ducting	of	diversity	assessments	and	have	 supported	conservation	
and	 resource	 management	 projects	 (Christin	 et	 al.,	 2019).	 Deep	
learning	approaches	that	were	originally	developed	for	humans	can	
be	 easily	 transferred	 to	 other	 species,	 since	 the	 modeling	 aspect	
would	not	significantly	change	(Ditria	et	al.,	2020).	In	some	cases,	the	
performance	levels	of	vertebrate	wildlife	species	have	outperformed	
those	of	human	studies	(Traore	et	al.,	2018).	 In	comparison	to	con-
ventional	machine	learning	processes,	deep	learning	enables	an	auto-
mated	feature	extraction	from	large	amounts	of	input	data	(e.g.,	CT	
scans),	which	overcomes	the	time	limitations	of	semi-	automated	and	
manual	approaches.	The	multifactorial	applicability	of	deep	learning	
in	ecology	and	the	high	performance	in	identification	and	classifica-
tion	tasks	make	this	technique	highly	attractive	for	developing	and/or	
validating	new	methods	for	threatened	species	research.

BIS	was	over	50	times	more	accurate	in	predicting	adipose	tis-
sue	at	the	population	level,	compared	with	solely	using	body	mass,	
from	which	BCI	is	derived.	Moreover,	the	precision	of	BIS	was	con-
sistent	with	repeatability	values	reported	in	human	clinical	studies	
(Kophamel	et	al.,	2023).	The	high	precision	and	accuracy	of	BIS	 in	
green	turtles	confirm	the	suitability	of	the	technique	for	sea	turtle	
monitoring	programs	and	endorse	BIS	as	a	robust	alternative	to	con-
ventional	morphometric	measures	and	BCI.

4.1  |  Future directions and study limitations

Adipose tissue prediction at the individual level— A	disadvantage	of	
the	BIS	method	is	that	the	accuracy	of	adipose	tissue	prediction	at	
the	individual	level	was	significantly	lower	than	at	the	population	
level.	 Adipose	 tissue	 cannot	 be	 reliably	 determined	 in	 individual	
turtles	when	the	determination	error	is	larger	than	the	typical	abso-
lute	adipose	tissue	value.	Conversely,	the	high	accuracy	of	imped-
ance	measurements	at	the	population	level,	in	comparison	to	solely	
using	body	mass	as	predictor	variable	for	adipose	tissue,	highlights	
its	suitability	to	estimate	adipose	tissue	across	sea	turtle	popula-
tions	or	to	assess	differences	across	foraging	or	nesting	aggrega-
tions.	 However,	 since	 intra-	animal	 variability	 was	 extremely	 low	
and	thus	the	precision	of	measurement	was	very	high	(Kophamel	
et al., 2023),	BIS	can	be	used	to		assess	changes	in	adipose	tissue	in	
individual	turtles	over	time	(i.e.,	repeated	sampling).

F I G U R E  4 Bland	and	Altman	plot	(Altman	&	Bland,	1983; Bland 
&	Altman,	1986)	of	the	differences	between	adipose	tissue	(AT)	
estimates	(%)	from	CT	and	bioelectrical	impedance	spectroscopy	
(BIS	via	SCL2/R50)	(Y	axis)	and	the	mean	of	each	pair	of	AT	
estimates	(kg)	from	CT	and	BIS	via	SCL2/R50	(X	axis)	in	green	
turtles	(Chelonia mydas).	There	was	a	bias	of	0.11 units	(%)	between	
the	two	AT	estimates,	which	is	the	gap	between	the	mean	of	the	
differences	in	AT	estimates	(black	solid	line)	and	the	zero	line	(black	
dotted	line),	representing	no	mean	difference	in	AT	estimates.	The	
95%	limits	of	agreement	(LOA,	black	dashed	lines)	represent	a	95%	
prediction	interval,	such	that	95%	of	differences	in	AT	estimated	
by	the	two	methods	fell	between	−8.52%	and	8.95%.	While	the	
mean	difference	between	methods	(bias)	represents	accuracy	at	
the	population	level,	the	limits	of	agreement	indicate	confidence	
in	method	agreement	for	an	individual.	The	regression	line	(blue	
solid	line)	and	its	95%	confidence	interval	(gray	area)	show	the	
relationship	between	the	dependent	variables	on	the	Y	axis	
(differences	between	AT	estimates	from	CT	and	BIS	measurements)	
and	the	independent	variables	on	the	X	axis	(mean	of	each	pair	of	AT	
estimates	from	CT	and	BIS	measurements).	The	lowest	mean	bias	
and	LOA	were	generated	using	straight	carapace	length2/resistance 
at	50 kHz	(SCL2/R50)	as	predictor	variable	(Table 1).	Please	refer	
to	the	Appendix	S1, Figure A2	for	Bland	and	Altman	plots	using	
other	impedance	parameters,	and	to	Giavarina	(2015)	for	a	detailed	
explanation	on	how	to	use	and	interpret	Bland	and	Altman	plots.
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Animal selection— Our	study	was	limited	to	animals	with	a	maxi-
mum	carapace	width	of	55 cm	due	to	the	gantry	size	of	the	CT	scan-
ner	 (typical	 CT	 scanner	 found	 in	 human	 imaging	 centres;	 limited	
access	to	CT	scanners	with	larger	gantry	sizes	and	close	to	the	turtle	
capture	sites),	and	due	to	the	inability	of	obtaining	body	composition	
data	in	a	nondestructive	manner	by	using	another	method.	We	as-
sumed	that	the	parametrization	of	the	model	would	not	significantly	
change	with	the	inclusion	of	larger	turtles	and	that	any	extrapolation	
of	 the	procedure	 to	 full-	size	 adult	 turtles	would	be	predicated	on	
the	 assumptions	 of	 proportionality	 of	 body	 change.	 Although	 the	
proposed	methods	can	be	transferred	to	larger	animals	and	to	other	
species,	 future	 studies	 might	 benefit	 from	 testing	 the	 calibration	
protocol	across	a	wide	range	of	life	stages	that	represent	the	broad	
range	of	body	sizes	seen	in	the	population.

Sample size and cross- validation—	Funding,	 permitting,	 and	 time	
constraints	 restricted	 sample	 size	and	cross-	validation.	The	 sample	
size	used	in	our	study	was	limited	(n =	49	animals),	and	cross-	validation	
should	 ideally	 be	undertaken	 in	 a	 completely	 independent	popula-
tion.	 Random	 data	 splitting	 was	 used	 instead	 of	 cross-	validation	
(Stevens,	 2013).	 Nevertheless,	 the	 small	 mean	 biases	 and	 accept-
able	LOA	confirmed	 the	accuracy	of	 the	 calibration	 for	 impedance	
indices length2/R0, length2/R50, length2/Rinf,	and	length2/Ri	(Smith	
Jr.	et	al.,	2009).	The	maximum	allowed	difference	indicated	that	our	
sample	size	would	allow	detection	of	a	difference	 in	adipose	tissue	
mass	 of	 <0.8 kg	 for	 impedance	 indices	 length2/R0, length2/R50, 
length2/Rinf,	 and	 length2/Ri	 (Lu	et	al.,	2016).	We	also	confirm	 that	
the	accuracy	of	the	technique	was	especially	high	for	population	as-
sessments	(mean	bias	of	0.11%	to	0.61%	for	impedance	indices).

Calibration against a single reference method— We	calibrated	 the	
BIS	device	against	a	single	reference	method	(i.e.,	CT	scans)	due	to	
species	 constraints,	 funding,	 permitting,	 and	 time	 limitations.	 CT	
scanning	was	chosen	as	a	calibration	method	since	it	shows	a	similar	
accuracy	to	chemical	analyses	and	dilution	methods	for	body	com-
position	assessment	(Ishioka	et	al.,	2005;	Kim	et	al.,	2018;	Kobayashi	
et al., 2013).	 In	addition,	CT	scans	are	noninvasive,	which	is	highly	
advantageous when working with threatened species. Other in vivo 
methods	proposed	for	adipose	tissue	estimation	in	vertebrates	are	di-
lution	methods	using	tracers	(Nagy,	1989;	Pagano	&	Williams,	2019; 
Shaffer,	2011).	The	suitability	of	each	method	depends	on	the	target	
species	and	should	be	determined	with	caution.	Reptiles	in	particu-
lar	pose	additional	challenges,	as	dilution	methods,	such	as	doubly-	
labeled	water	methods,	are	confounded	by	high	water	flux	in	some	
species	(e.g.,	sea	turtles;	Jones	et	al.,	2009;	Price,	2017).	Additional	
ethical	or	regulatory	(access	 in	protected	species)	constraints	such	
as	 the	 degree	 of	 invasiveness,	 the	 need	 for	 anesthesia,	 and	 sam-
pling	duration	might	further	hinder	the	collection	of	biological	data.	
Diagnostic	 imaging	 tools	 such	as	CT	 scans	or	magnetic	 resonance	
imaging	 are	 increasingly	 used	 as	 alternative	 methods	 to	 estimate	
the	 body	 composition	 of	 wildlife	 and	 companion	 animals	 (Barba	
et al., 2018; Clelland et al., 2018;	 De	 Persio	 et	 al.,	 2019;	 Eastick	
et al., 2021;	Gimmel	et	al.,	2020;	Kim	et	al.,	2018).	CT	is	widely	es-
tablished	in	human	and	veterinary	medicine	and	provides	reliable	re-
sults	for	adipose	tissue	mass	estimation	(Mattsson	&	Thomas,	2006; 

Zopfs	et	al.,	2020).	Due	to	these	reasons,	we	decided	to	use	CT	scans	
as	the	calibration	method	of	the	BIS	device.

Accuracy of the CNN architecture— The	 trained	U-	Net	 semantic-	
segmentation	 CNN	 architecture	 is	 only	 as	 accurate	 as	 the	 masks	
they	were	trained	on.	The	creation	of	highly	accurate	training	masks	
is	 a	 very	 time-	consuming	 process	 (i.e.,	 an	 operator	 might	 need	
2–	3 weeks	of	full-	time	work	per	animal).	Segmentation	of	CT	images	
was	therefore	trained	on	only	three	animals	 to	ensure	the	highest	
possible	training	quality.

Misclassified tissue areas— Due	 to	 similar	 tissue	 densities,	 areas	
of	 the	 gastrointestinal	 tract	might	 have	 been	misclassified	 as	 adi-
pose	tissue,	and	adipose	tissue	areas	of	the	mesenteric	region	might	
have	been	missed.	This	is	a	clear	limitation	of	the	CNN	approach.	To	
address	this	issue,	all	adipose	tissue	masks	resulting	from	the	CNN	
procedure	were	visually	confirmed	for	each	animal.	Masks	that	did	
not	correctly	display	the	adipose	tissue	areas	were	edited,	and	the	
algorithm	was	 re-	fit	until	 the	visual	 assessment	of	 the	 final	masks	
was	satisfactory.	Therefore,	the	number	of	misclassified	pixels	can	
be	assumed	negligible.

5  |  CONCLUSIONS

The	 proposed	 BIS	 method	 represents	 an	 improvement	 over	 cur-
rent	methods	 due	 to	 its	 quantitative	 nature,	 higher	 accuracy,	 and	
tissue-	specificity	 for	 body	 composition	 assessment	 in	 sea	 turtles	
and	potentially	other	 species.	Bioelectrical	 impedance	devices	are	
extremely	time-	efficient	once	the	final	prediction	equations	for	the	
target	 species	have	been	established	and	are	 relatively	 affordable	
($1–	10 k	AUD	for	a	portable	device).	Our	approach	will	help	to	iden-
tify	changes	in	nutritional	status	across	populations	and	can	support	
timely	and	effective	conservation	action	in	sea	turtles	and	other	ver-
tebrate	wildlife.
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