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Abstract: Objective: This study aimed to develop polymer-based barrier membranes based on
poly(butylene-adipate-co-terephthalate) (PBAT) with the addition of 1,3,5-triacriloilhexahydro-1,3,5-
triazine (TAT). Materials and Methods: Polymeric solutions were used to produce membranes with
5 wt% and 10 wt% of TAT by solvent casting. Membranes without the addition of TAT were used as
controls. The membranes were chemically characterized by Fourier transform infrared spectroscopy
(FTIR) and thermogravimetry (TGA); surface properties were assessed by profilometry and contact
angle; the mechanical behavior was evaluated by a tensile test, and the biological properties were
assessed by direct–indirect cell viability and antibacterial activity by S. mutans and S. aureus colony-
forming units. Results: TAT was detected in the FTIR and TGA analyses and modified the top surface
of the membranes, increasing their roughness and wetness in both concentrations compared to the
control group (p < 0.05). The addition of TAT, regardless of concentration, reduced the tensile strength
and increased membrane stiffness (p < 0.05). The cell viability of 5 wt% TAT and 10 wt% TAT was
86.37% and 82.36%, respectively. All tested concentrations reduced the formation of biofilm on the
membranes when compared to the control. Conclusion: The addition of TAT successfully resulted in
the antimicrobial ability of PBAT-based barrier membranes, while it maintained acceptable levels of
cell viability in membranes with adequate handling and surface properties.

Keywords: bone regeneration; anti-bacterial agents; triazines; mechanical tests; anti-infective agents

1. Introduction

Barrier membranes are essential for the establishment of conditions for guided bone
regeneration (GBR) [1,2]. The role of membranes involves the maintenance of space for
bone formation by preventing the invagination of soft tissue from the surrounding areas [1].
Although successful clinical outcomes are shown for GBR procedures in bone gain and
dental implant success [3,4], postoperative complications are prevalent, and the rate of soft
tissue complication is around 17% [5]. Acute infection and abscess are included in these
cases and lead to treatment failure, requiring reintervention with the possible need for
systemic antibiotic therapy [6].

The currently used commercially available membranes are known to fulfill the require-
ments for GBR principles but may favor bacterial accumulation due to surface roughness
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and porosity [6]. The control of membrane properties and the establishment of antibac-
terial activity for barrier membranes could contribute to effective GBR by preventing or
limiting the extent of infection at the surgical site. The use of synthetic polymers allows the
production of smooth and non-porous structures with versatile processing, and resorbable
polyesters are known candidates for the development of biomaterials [7]. Poly(butylene
adipate-co-terephthalate) (PBAT) has been recently proposed for the biomedical field [8,9],
showing adequate properties for the application as GBR barrier membranes [10].

The incorporation of antibacterial compounds into the barrier membrane is possible in
the manufacturing of PBAT films to produce barrier membranes with therapeutic activity.
The compound 1,3,5-trimethylhexahydro-1,3,5-triazine (TAT) was selected in the present
study as a known antibacterial compound that has been shown to be effective in materials
applied in the oral environment [11–13]. Triazines are compounds based on nitrogen hete-
rocycles, and antibacterial activity has been shown for different triazine derivates [14,15],
but their effects were not previously studied for barrier membranes and other surgical
devices. As cationic antimicrobial peptides, triazines act on the negatively charged bacteria
membrane, resulting in its fast disruption with limited resistance with a broad spectrum
of activity [16,17], and thus it may hamper bacteria adhesion and biofilm formation in the
surgical site, leading to the production of innovative barrier membranes with therapeutic
effects. Thus, the antibacterial effect of TAT on PBAT-based membranes was explored
in the present study. The developed materials were formulated and evaluated for their
physicochemical and biological properties.

2. Materials and Methods
2.1. Barrier Membrane Production

Barrier membranes were produced by solvent casting. Poly(butylene adipate-co-
terephthalate) (PBAT—1.27 g/cm3 at 23 ◦C density, Ecoflex® F Blend C1200; BASF Cor-
poration, Florham Park, NJ, USA) pellets were mixed in chloroform at 1:7.5 (v/w) for
24 h. Triazine (1,3,5-trimethylhexahydro-1,3,5-triazine (TAT), Merck KGaA, Darmstadt,
Germany) was added to the polymeric solution at 5 wt% and 10 wt% concentrations. Cast-
ing took place in glass slides, and the solvent was allowed to evaporate for 1 h (Figure 1A).
Membranes without the addition of TAT were used as control.

Figure 1. (A) Schematics of membrane fabrication via solvent casting. Chemical characterization of
developed materials by (B) FTIR analysis with the characteristic bands in TAT and (C) the thermal
behavior of experimental barrier membranes before and after immersion in SBF.

2.2. Chemical Characterization

Materials were evaluated through Fourier-transform infrared spectroscopy (FTIR)
to assess the chemical composition of developed membranes. A spectrometer (Vertex
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70-Bruker Optics, Ettlingen, Germany) was used with an attenuated total reflectance device
(Platinum ATR-QL; Bruker Optics). Membranes (4 mm diameter and 1 mm height; n = 1)
were placed in close contact with the ATR device, and the analysis was performed in the
400–4000 cm−1 range with 16 scans for each sample. The thermal behavior of materials was
assessed via thermogravimetric analysis (TGA-Discovery, TA Instruments, New Castle, DE,
USA). Samples were heated up to 600 ◦C at a rate of 10 ◦C min−1 under nitrogen purge
(25 mL·min−1). The weight loss % (TGA) and the differential thermogravimetric (DTG)
were calculated in samples immediately after preparation and after 7, 14, and 21 days of
immersion in simulated body fluid (SBF), prepared according to standard protocol [18].

2.3. Mechanical Behavior

A tensile test was performed with hourglass specimens that were prepared according
to ASTM D638-02 type IV plastics [19]. Samples were tested in a mechanical test machine
(Shimadzu EZ-SX, Shimadzu Corp., Kyoto, Japan) at a 1 mm/min crosshead speed im-
mediately after preparation and after a 28-day immersion in an SBF solution [18]. The
strain–stress behavior was used to calculate the ultimate tensile strength, the Young’s
modulus, and the elongation rate of developed membranes.

2.4. Surface Properties

The sessile drop method was used to measure the water contact angle on the samples’
top and bottom surfaces. A 20 µL distilled water drop was poured into the samples (6 mm
diameter × 0.2 mm height; n = 3) in an optical tensiometer (Theta Line, Biolin Scientific,
Stockholm, Sweden). A high-resolution camera monitored the water’s behavior on the
material surface, and measurements of the contact angle were performed after 10 s by
image software (OneAttension, Biolin Scientific, Stockholm, Sweden), where the angle
between the drop and the sample was calculated for the left and right side of the drop. The
average contact angle in each drop was used, and three measurements were performed per
sample. The surface roughness was measured with optical profilometry (Optical Profiler
ContourGT, Bruker). The samples (6 mm diameter × 0.2 mm height; n = 3) were scanned
with 5× monochromatic light by vertical scanning interferometry on both membrane sides
in a standardized area (1260 µm × 1260 µm). The Ra parameter was measured as the
samples’ arithmetic average of the surface roughness profile.

2.5. Biological Properties

Cell cultures were performed with the preosteoblastic MC3T3-E1 cell line (Banco de
Células do Rio de Janeiro, Rio de Janeiro, Brazil). The MC3T3-E1 cells were cultivated with
α-MEM supplemented with 10% fetal bovine serum and 1% penicillin (Thermo Fischer
Scientific, Waltham, MA, USA) at 37 ◦C at 5% CO2. No additional supplementation was
added to the media, as recommended for this cell line. Cell proliferation was assessed by
the sulphorodhamine B (SRB) assay with a direct–indirect method. Material extracts were
produced with membrane specimens (6 mm diameter × 0.2 mm height; n = 3) immersed in
a culture medium for 24 h. Cells were cultivated at 5 × 103 density in a 96-well plate, and
treatments were performed for 72 h. Cells were fixed and stained with 0.4% SRB solution.
The SRB dye was quantified at 560 nm in a microplate spectrophotometer (Multiskan
GO, Thermo Fisher Scientific, Waltham, MA, USA). The results in wells treated with
extracts were normalized for the absorbance in wells cultivated for the same time without
material immersion.

Antibacterial ability was evaluated against Streptococcus mutans (NCTC 10449) and
Staphylococcus aureus (ATCC 25923). An S. mutans suspension was used after 18 h incubation
in brain heart infusion (BHI) broth, while an S. aureus suspension was used after 24 h in
BHI. Six specimens (4 mm diameter × 1 mm thickness) were immersed in each suspension
in 48-well plates and incubated at 37 ◦C, and biofilms were allowed to grow for 24 h. For
biofilm quantification, three specimens were vortexed for 1 min in a micro-tube containing
900 µL of saline solution, and dilutions were made up to 10−6 before two 25 µL-drops of
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each dilution were platted in BHI agar Petri dishes. Bacteria growth at 37 ◦C took place for
48 h for S. mutans and 24 h for S. aureus. For planktonic analysis, the inocula were collected,
dilutions were made up to 10−6, and bacteria were platted as described for the biofilm
analysis. In this case, a negative control, without material immersion, was used to assess
the bacteria suspension. The number of colony-forming units (CFU) was visually counted
by optical microscopy and transformed to log10 CFU/mL.

2.6. Statistical Analysis

FTIR, TGA, DTG, and representative images of RA were descriptively analyzed. Data
were submitted to the normality test by Shapiro–Wilk. One-way ANOVA was used as a
parametric method to assess the difference between groups in the biological properties
assessment. Two-way ANOVA was used to analyze mechanical behavior and surface
properties data. Tukey was used as a post hoc test in all analyses. All analyses were
conducted at 95% significance.

3. Results

The chemical characterization is shown in Figure 1. FTIR data showed the character-
istic N–H (850 cm−1), C=N (920 cm−1), C=N (1594 cm−1), and C=O (1720 cm−1) that are
assigned to vibrations of nitrogen bonding on the triazine ring and the ester group in the
methacrylate terminals. TGA and DTG (Figure 1C) showed the main weight loss in PBAT
(~370 ◦C–450 ◦C) with a minor loss of 0.95% and 3% between 60 and 150 ◦C in membranes
with 5 wt% and 10 wt% TAT, respectively.

The mechanical behavior of developed materials was presented as the ultimate tensile
strength (Figure 2A), elastic modulus (Figure 2B), and elongation rate (Figure 2C). The
28 days of immersion in SBF increased the tensile strength and elastic modulus of developed
materials in the TAT-containing membranes (p < 0.05). The elongation rate was decreased
after immersion for the control group with comparable values for the membranes with
TAT addition.
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Figure 2. Mechanical behavior of developed barrier membranes. The addition of TAT modified
the tensile strength (A), the elastic modulus (B), and the elongation rate (C) in PBAT films. Bars
are a description of average values, while error bars represent standard deviations. Connected
bars are indicative of statistically significant differences between values. * Indicates statistically
significant differences between TAT concentrations and # between immediate and longitudinal
analyses. * p < 0.05; ** p < 0.01.

No statistically significant difference was observed in the RA values on top of mem-
branes, while the addition of 10 wt% TAT modified the bottom surface in the profilometry
analysis, as observed in Figure 3A,B. The water contact angle was reduced in the membrane
top surface regardless of the concentration, ranging from 74.27◦ in the control group to
37.62◦ in the 10 wt% TAT group.



Polymers 2022, 14, 4482 5 of 9

Figure 3. Surface properties on the top and bottom of developed membranes. (A) Average values for
surface roughness (RA) via profilometry with representative images of the analyzed area showing
the distribution of roughness values for higher values (green to red) and lower values (green to blue)
in a range of −8.5µm to 12.8µm (B). Water contact angle in the developed materials (C). Bars are a
description of average values, while error bars represent standard deviations. Connected bars are
indicative of statistically significant differences between values. * Indicates statistically significant
differences between TAT concentrations and # between immediate and longitudinal analyses.

A reduction in MC3T3-E1 viability was observed in groups with TAT (Figure 4A;
p < 0.05). The cell viability of 5 wt% TAT and 10 wt% TAT was 86.37% and 82.36%, respec-
tively. The antibacterial activity was observed for both S. mutans and S. aureus cultures,
mostly when the biofilm formation was assessed (Figure 4B,D). A 3 log10 UFC/mL re-
duction was observed in the S. mutans biofilm formation in both 5 wt% and 10 wt% TAT
when compared to the control (Figure 4B), while no colony formation was detected on the
S. aureus culture with membranes containing TAT (Figure 4D). A statistically significant
reduction in CFU/mL was observed in S. mutans planktonic bacteria in membranes with
TAT when compared to the control group and negative control.
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Figure 4. Cell behavior and antibacterial activity analysis. (A) Cell viability in MC3T3-E1 cells after
72 h of culture via SRB analysis. Antibacterial activity of experimental barrier membranes against S.
mutans (B,C) and S. aureus (D,E) in log10 CFU/mL. Bars are a description of average values, while
error bars represent standard deviations. Connected bars are indicative of statistically significant
differences between values. * Indicates statistically significant differences between TAT concentrations
and # between immediate and longitudinal analyses.
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Within these results, it is possible to observe that the newly developed membranes
were able to control the biofilm formation when two bacteria strains were tested, maintain-
ing the biocompatibility and physicochemical properties of PBAT-based films to produce
antibacterial barrier membranes.

4. Discussion

Barrier membranes are studied as a possible vehicle for the local delivery of antibacte-
rial compounds in the development of GBR materials with therapeutic activity to control
post-operative complications [20]. In this study, 1,3,5-triacriloilhexahydro-1,3,5-triazine
(TAT) was incorporated into poly(butylene adipate-co-terephthalate) (PBAT) membranes,
and the resultant materials presented antibacterial activity with controlled physicochemical
properties for their application in GBR procedures.

Solvent casting has been a popular manufacturing technique in polymer process-
ing [21], and its application for PBAT membranes has been previously described [10]. The
addition of TAT was observed in the chemical characterization by FTIR (Figure 1B), mostly
related to the presence of nitrogen bonding in the triazine rings [15,22], confirming the
incorporation of antibacterial compounds into the PBAT structure, without compromising
the PBAT characteristic bonding structure [23]. FTIR data also showed that the production
methods successfully removed the solvent used for the polymer, and that it did not modify
the structure of the TAT incorporated into the polymeric structure. The thermal behavior of
developed membranes was shown in Figure 1C and corroborated the FTIR results, as it
showed a characteristic behavior for weight loss in PBAT [24] along with known degrada-
tion that was observed in TAT. The weight loss in PBAT was related to its degradability,
known in several applications [25,26], and it was not modified in the 28-day analysis in
this study. TAT also presented little changes in degradation over time (Figure 1C). The
loss of mass, in this case, may indicate possible degradation of TAT, although this is not
known for this monomer composition, and further analysis may elucidate the degradation
behavior of TAT into resorbable compounds. While no chemical interaction between TAT
and PBAT was observed, the antibacterial monomer is likely to be entrapped into the
polymer network, as evidenced by the little modification observed in TGA analysis after
immersion, as well as by the antibiofilm properties observed for different bacteria species
(Figure 4B,D).

The maintenance of the chemical properties of PBAT was also observed in the mechan-
ical behavior of developed membranes (Figure 2). PBAT is known as a flexible polymer
due to its unique structure comprising adipate and terephthalate units and the control in
the crystallization of these units [8,27]. The addition of TAT maintained the strength and
stiffness in developed membranes in an immediate analysis (Figure 2A,B), and over time an
increase in stiffness was observed for the 10 wt% TAT group, which corroborated the main-
tenance of the PBAT chain structure observed in FTIR, while the modifications over time
could be assigned to TAT degradation, as shown in TGA (Figure 1). The flexibility could
contribute to the application of these materials as barrier membranes in GBR. The handling
and adaptation of membranes depend on the ability of materials to be adapted in the surgi-
cal site, fitting it to the bone defect for tissue regeneration. Moreover, the membrane has a
major role in the occlusion of the defect and space maintenance for bone growth [28,29],
and controlling the strength of these materials may contribute to the establishment of the
core principles of GBR [1,2].

The adaptation of membranes in the surgical site must also consider the wetting in the
developed membranes as an essential aspect to allow the interaction of membranes with
the surrounding tissues. The presence of TAT also modified the surface properties both
in the top and bottom of membranes (Figure 3). The RA values observed on the top and
bottom surfaces are related to the manufacturing by solvent casting. The bottom surface is
in contact with a glass slide, and thus the polymer is expected to present a smoother surface,
while the roughness obtained from the addition of TAT is found on the top of membranes,
as observed in RA average values (Figure 3A) and representative profilometry images
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(Figure 3B). The wetting of samples was also modified by TAT addition and the analyzed
surface (Figure 3C). While the top and bottom surfaces of the control group presented
contact angle values that were suitable for PBAT films [10,30], the presence of TAT reduced
the contact angle. Although an increased interaction is desired when membranes are in
contact with bone tissue, for a good intercommunication with cells and coagulum into the
defect, the need for a barrier effect may be favored by lower wettability in contact with
the soft tissues. The key to successful GBR is to avoid the penetration of soft tissue from
surrounding areas to the bone defect, protecting bone growth [28,31].

The biological behavior of developed materials was assessed by their influence on cell
and bacteria viability, as shown in Figure 4. While PBAT has been recently proposed for
biomedical applications, it is known that no cytotoxic effect is found in vitro [9,10,25], with
no adverse effects found in vivo [9,32]. In this study, the PBAT also did not reduce the cell
viability of a preosteoblasts cell lineage, while a statistically significant reduction in cell
count was found for TAT-containing groups (p < 0.05). Cells were cultivated in complete
α-MEM culture media without osteogenic differentiation to maintain the proliferation
potential in the in vitro cell culture assay. While antibacterial compounds may be related to
cytotoxic effects [33], all groups reached >80% values in the SRB analysis, which is suitable
for materials designed for biological applications [34–36].

The antibacterial effect, known for triazine compounds in different applications [11–
13,15,17,22,37], was observed in this study for Streptococcus mutans, which are among the
most prevalent bacterial in the oral environment [38,39] and was selected in this study
to confirm the ability of these materials to reduce the colony formation of streptococci
species [39]. Staphylococcus aureus cultures were studied as prevalent species in infected sites
in epithelial tissues [40], including the oral mucosa [41], being thus related to post-operative
complications that are related to infections in GBR procedures [5]. For both S. mutans and
S. aureus, we observed a reduction >3 log10 CFU/mL in the biofilm analysis, which shows
that the addition of TAT bactericidal effects may be a tool to control the bacteria adhesion
and consequently the biofilm formation on membranes surfaces. The antibiofilm capacities
of developed membranes are related to the entrapment of TAT into the PBAT structure
and explain the slight antibacterial effect observed for the planktonic bacteria, shown in
Figure 4B,D. This effect shows that antibacterial compounds act on the material surface,
probably not being released on media during the analysis, and thus maintenance of the
effect could be expected in this short-term analysis.

Controlling the bacteria adhesion and biofilm formation on the membrane surface
may be a strategy for the local control of infection in GBR procedures [28]. Antibacterial
barrier membranes could contribute to the maintenance of defect closure during the regen-
erative process, avoiding reinterventions due to post-operative complications related to
infections and reducing the need for systemic antibiotic therapy. More than guaranteeing
the principles of GBR, the potential control of infections after surgical procedures may
contribute to better cost-effectiveness of treatments and control of antimicrobial resistance.
The successful production of a TAT-containing PBAT-based barrier membrane in this study
could contribute to the development of materials with therapeutic activity with a broad
spectrum of antibacterial effects and controlled physicochemical properties.

5. Conclusions

TAT is a candidate to produce barrier membranes with effective control in bacteria
accumulation, and the combination of this compound with PBAT allowed the production
of antibacterial materials with controlled properties for a barrier membrane effect.
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