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Abstract: The aim of this in vitro study was to investigate the compressive strength and the bulk
porosity of a bidirectional (bFRC) and an experimental bidirectional spiral winding reinforced fiber
composite (bswFRC). Cylindrical-shape specimens were prepared for each material group and
processed for the evaluation of compressive strength after different storage conditions (dry, 1 and
3 months) in distilled water at 37 ◦C. The specimens were also assessed for the degree of bulk
porosity through X-ray tomography. A scanning electron microscope (SEM) was used to determine
the fracture mode after a compressive strength test. Data were statistically analyzed using Two-Way
Analysis of Variance (ANOVA). A significantly lower compressive strength was obtained in dry
conditions, and after 1 month of water immersion, with the specimens created with bFRC compared
to those made with bswFRC (p < 0.05). No significant difference (p > 0.05) was found between
the two groups after 3 months of water immersion. However, the presence of water jeopardized
significantly the compressive strength of bswFRC after water storage. The type of fracture was clearly
different between the two groups; bswFRC showed a brutal fracture, whilst bFRC demonstrated
a shear fracture. The bswFRC demonstrated higher pore volume density than bFRC. In conclusion,
bswFRC is characterized by greater compressive strength compared to bFRC in dry conditions,
but water-aging can significantly decrease the mechanical properties of such an innovative FRC.
Therefore, both the novel bidirectional spiral winding reinforced fiber composites (bswFRC) and the
bidirectional fiber reinforced composites (bFRC) might represent suitable materials for the production
of post-and-core systems via CAD/CAM technology. These findings suggest that both FRC materials
have the potential to strengthen the endodontically treated teeth.

Keywords: bidirectional reinforced fiber composite; bidirectional spiral winding reinforced fiber
composite; post-and-core materials; compressive strength
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1. Introduction

A successful endodontic treatment relies on several technical factors such as good
shaping, proper irrigation, and optimal tridimensional filling of the root canal system [1–3].
Furthermore, a clinician must be able to choose the most adequate restorative approach
to restore endodontically treated teeth (ETT), as these latter become more vulnerable to
fracture than vital teeth [4]. Indeed, during endodontic treatments, a great amount of dental
tissue may be removed, especially due to the preparation and disinfection steps; this may
represent the key cause for the tooth structure to become weak [5,6].

Different types of restorative approaches have been advocated to reconstruct and
reinforce ETT. For instance, crowns are often used when the coronal structure is sufficient
to provide enough retention. Conversely, fiber or metal posts can be employed to increase
the retention of crown to the root canal. Post-and-core systems can adapt very well to root
canal morphology, and these are also used to achieve greater aesthetic results in anterior
teeth [7–10]. On the other hand, the purpose of endo-crown restorations is to allow the
reconstruction of the root canal system, to replace missing dental tissues, restore coronal
morphology and tooth function, as well as to provide the necessary strength to prevent
tooth fracture during mastication [11]. Different criteria play an important role in the
clinical success rate of restorations, such as the amount of residual coronal structure, the
restorative technique, and the materials employed during the treatment [12,13].

Among all the materials that can be used in this field, prefabricated posts do not
seem to be properly adapted to residual dental structure, and therefore these cannot be
adapted to the size and shape of the root canal properly [9]. Teeth restored using this
latter approach are often characterized by voids within the adhesive interface and by
a considerable amount of cement required to fill such a lack of adaptation between the post
and the root canal walls [9,14]. Unfortunately, a thick layer of the cement may lead to loss
of retention, with consequent detachment and failure of the post [15]. Moreover, due to
their different moduli of elasticity, post and coronal restoration causes an inhomogeneous
distribution of the intra-oral torque forces to the root dentin, with a consequent increase in
the risk of fracture [16,17].

The post-and-core (PaC) is a “one-piece” system generated using specific technology
such as CAD/CAM in order to obtain a custom-made product, which can adapt well to
the morphology of the root canal walls [18,19]. The presence of less cement thickness and
voids represent the main advantages of this technique [20].

Several materials can be used to construct PaC systems, such as metal, ceramic or
fiberglass [11,19,21,22]. The choice is based on the strength and aesthetic recommendations,
and it also depends on the tooth and its location in oral cavity (e.g., posterior or anterior
teeth). However, some of these materials, such as metal or ceramic, may increase the
risk of fracture in the remaining tooth structure due to their high modulus of elasticity,
and they may produce gray discoloration of the crown [18]. Conversely, fiberglass post-
and-core systems present a modulus of elasticity similar to that of dentin, which may
provide favorable results in terms of biomechanical and aesthetic properties [5,23]. PaC
systems can be manufactured in different angulations, sizes, and shapes with high precision
and efficiency using CAD/CAM technology [23]. Different structures of fiber-reinforced
composites are introduced in the dental market [24].

Recently, bidirectional spiral winding glass fiber reinforced composites have been
introduced [25] in dental practice, but there is no study in the literature about such
novel materials.

Therefore, the aim of the present study was to evaluate the compressive strength
and porosity level of two fiber reinforced composite systems known as bidirectional fiber
reinforced composite, “bFRC”, and bidirectional spiral winding fiber reinforced composite,
“bswFRC”. The hypothesis of this study was that there would be significant differences
between the tested systems.
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2. Materials and Methods
2.1. Materials

Bidirectional fiber reinforced composite “bFRC” and bidirectional spiral winding
fiber reinforced composite “bswFRC” (Bio Composants Médicaux, Auvergne-Rhône-Alpes,
France) were used in the present study. All specimens were prepared using CAD/CAM
equipment “INDEX 35I Pro” (imes-icore GmbH, Eiterfeld, Germany) with WORKNC
software (Hexagon, Charnay-les-Mâcon, France) in order to obtain 20 cylinders (4 mm in
diameter and 4.5 mm in height) for each group.

2.2. X-ray Tomography

The internal structure of the specimens created with bFRC and bswFRC was inspected
in 3D by means of micro-computed X-ray tomography (µCT) (EasyTom 160 from RX
Solutions, Chavanod, France). Imaging was conducted at a voltage of 45 kV and a current
of 160 mA, using a micro-focused tube equipped with a tungsten filament. The source-
to-detector distance (SDD) and the source-to-object distance (SOD) were adjusted in such
a way to obtain a voxel size of around 2.3 µm. The volume reconstruction was executed
through the software Xact64 (RX Solutions) after applying treatments such as geometrical
corrections and ring artefact attenuation. The image treatment was performed with Avizo
software (ThermoFisher, Waltham, MA, USA) that enabled us to (i) de-noise the images
with a median filter, (ii) segmentate the image intensity to reveal the objects of interest
(here the pores), (iii) remove insignificant small objects (below a size of 10 pixels) from the
segmented 3D data, and (iv) determine the 3D geometrical aspects of the objects of interest
(volume and equivalent diameter) [26].

2.3. Compressive Strength Test

The specimens (n = 15) were submitted to a compressive strength test. Three different
periods (0 h “dry conditions”, 1 month, and 3 months) of storage in distilled water at 37 ◦C
were evaluated (5 specimens each period). The specimens were tested using a universal
testing machine (Instron Machine 5969, High Wycombe, UK) equipped with a 50 kN load
cell, which recorded the load applied to the specimens at a crosshead speed of 0.5 mm/min.
The specimens were placed between two steel plates and the compression tests were
performed until failure. The values were recorded for the maximum force applied at
fracture. The compressive strength was calculated in megapascals (MPa) according to
the formula:

σc = 4P/πD2

where P is the recorded load during the test and D is the initial sample diameter.

2.4. Scanning Electron Microscopy Observation (SEM) for Fracture Types

After fracture, the specimens were ultrasonically cleaned for 3 min, immersed in
100% ethanol for 2 min, air dried, mounted on metal stubs, and then sputter-coated with
a gold–palladium alloy (20/80 wt.%) using a Hummer JR sputtering device (Technics, San
Jose, CA, USA). These were analyzed using a Quanta 250 FEG (field emission gun) scanning
electron microscope “SEM” (FEI Company, Eindhoven, The Netherlands), with an electron
acceleration voltage of 10 kV and a working distance of 10 mm [27] to determine the type
of fracture and to observe the direction of the fracture into the fibers.

2.5. Statistical Analysis

Data were analyzed with SigmaPlot release 11.2 (Systat Software, Inc., San Jose, CA,
USA). Two Way Analysis of Variance including multiple comparison procedures (Holm-
Sidak method) was used to determine whether significant differences existed in the com-
pressive strength values. A statistical significance level was set at α = 0.05.
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3. Results

A significantly lower compressive strength was obtained for bFRC compared to
bswFRC in dry conditions (p < 0.05). Moreover, the same tendency was observed at
1 month of immersion in water at 37 ◦C, where the compressive strength of bFRC was
significantly lower than that of the specimens created with bswFRC (p < 0.05). In contrast,
at 3 months of immersion in water, no statistically significant difference was found between
the compressive strength of the two tested groups (p > 0.05) (Figure 1 and Table 1). Concern-
ing bswFRC, the compressive strength significantly decreased over time (p < 0.05), whilst
the compressive strength of bFRC presented no significant difference over the different
periods of water storage (p > 0.05) (Figure 1 and Table 1).
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Figure 1. Compressive strength values (mean and standard deviations “MPa”) for bFRC and bswFRC
at three aging periods in water at 37 ◦C (T = 0 “dry conditions”, T = 1 month, T = 3 months). * p < 0.05.

Table 1. Evolution of compressive strength (mean ± standard deviations “MPa”) for bFRC and
bswFRC in dry conditions, and after immersion in water at 37 ◦C for 1 month and 3 months. p < 0.05.

Group Dry 1 Month 3 Months Statistical Analysis
(p < 0.05)

bFRC 338 ± 19 311 ± 18 321 ± 23 No
bswFRC 684 ± 92 484 ± 21 378 ± 36 Yes

Statistical analysis (p < 0.05) Yes Yes No

Subsequent to the compressive strength test, all the specimens were observed using
SEM in order to investigate the type of fracture and the propagation of the fracture in the
different composites. The most common fracture observed in the specimens created with
bswFRC was an oblique fracture (Figure 2). Conversely, the specimens created with the
bFRC presented prevalently a shear fracture in the middle of the bulk material with the
exposed fibers (Figure 2, black arrow).

The X-ray tomography analysis showed that bswFRC material had higher pore volume
density than bFRC (Table 2 and Figure 3). In the 3D observations, the resin and fiber layers
could be detected and distinguished for bFRC (Figure 3, 3D observation); in contrast,
in the specimens created with bswFRC, it was impossible to clearly discriminate such
different layers.
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Table 2. Pore volume density (%) of bFRC and bswFRC as calculated from X-ray
tomography imaging.

Group Pore Volume Density (%)

bFRC 0.60
bswFRC 1.23
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4. Discussion

Restoration of endodontically-treated teeth with optimal crown retention is still
a challenge due to the important loss of dental hard tissues that endodontists usually
have to face in seriously caries-compromised teeth [6]. Besides fiber or metallic posts,
post-and-core systems (PaC) may represent a suitable restorative solution in such a clinical
scenario; they have the advantage of being better adapted to the root canal morphology [11].
Indeed, PaC can be designed and fabricated using different approaches (e.g., CAD/CAM)
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and materials such as resin with glass fibers (composite), with elastic modulus similar to
that of dentin [23].

In the current study, two different types of innovative PaC materials (bidirectional, and
bidirectional spiral winding, fiber reinforced composites) were characterized by evaluating
their compressive strength and the overall bulk porosity through X-ray tomography. It was
interesting to observe the presence of significant differences between both materials, thus,
the hypothesis tested in this study must be accepted.

The tested materials were tested in dry conditions and after two different storage peri-
ods (1 and 3 months) in distilled water at 37 ◦C. This aging protocol was used exclusively
to stress hydrolytically the tested materials and evaluate their mechanical properties. In
clinical situations, these materials are not exposed to saliva or water in the oral cavity, thus,
the aging protocol used in the present study may not be a relevant criterion for a clinical
scenario. Moreover, the post-and-core part must be protected by the crown and by cement
in the root canal; therefore, the presence of water is typically quite rare.

According to the manufacturer, both materials tested in this study have the same
percentage of resin (41 wt.%) and glass fiber (59 wt.%) [25]. Therefore, the results of
compressive strength could be related to the different arrangement of fiber within the
resin matrix of both materials. Indeed, the 3D observation demonstrated no clear resin
layer between the glass fiber layers in bswFRC (spiral winding) (Figure 3). In contrast,
bFRC showed a net interface between resin and glass fiber layers (Figure 3). A stable
fiber–resin interface allows a smooth stress transfer between the material phases (fiber and
matrix). Hence, when the stress is uniformly distributed within the material, the material’s
strength reaches high and stable values. Conversely, after the water-aging, the stress is
not homogenously distributed within the material. We hypothesize that the reason the
water-aging affects bswFRC more than bFRC is probably due to the higher porosity of the
bswFRC material. This porosity, as well as the water-aging, create zones where stress is
more concentrated and the mechanical properties are altered.

As mentioned previously (Figure 1), water had no effect in the specimens in the bFRC
group (p > 0.05) up to 1 month of storage, while bswFRC demonstrated a decrease in
the compressive strength over time in water (p < 0.05). No significant difference was
found between the compressive strength of both materials after 3 months of immersion in
water (p > 0.05).

In order to understand these results, X-ray tomography was performed on the spec-
imens of both groups (Figure 3), and it was interesting to observe a higher porosity in
bswFRC compared to bFRC. We can hypothesize that the higher porosity of bswFRC could
be responsible for greater water uptake within the internal structure of the materials, which
in turn jeopardized the mechanical properties. Indeed, as these materials consist principally
of resin (urethane dimethacrylate) and glass fiber, it may be possible that the water could
have affected the integrity of the interface resin–fiber due to hydrolytic degradation [28,29].
Moreover, Paturel et al. [30] demonstrated that water sorption could affect the properties of
similar materials (glass–fiber/resin composite). Water can induce degradation of the resin
network and the interface between fiber and resin increases [31].

Regarding the fracture mode, the type of fracture was different in bswFRC compared
to bFRC. A typical out of plane compression fracture was observed in the specimens
created with bswFRC. A brittle longitudinal fracture (45◦), without layer displacement in
the middle of the cylinders (Figure 2), was reported for bswFRC. For this material, the
fibers were probably subjected to a high shear stress due to the characteristic structure in
the interweave zone of the composite (Figure 4) [32]. In addition, such fibers may have
undergone an unexpected extension due to the Poisson effect [32]. Once the fiber bundles
were subject to a tensile or shear failure (Figure 4), the resin in and around the fiber bundles
also developed cracks [32].
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target across this bundle zone.

For bFRC, the crack occurred in the resin layer between the glass–fiber layers. Thus,
a shear force between the different layers is observed (slippage between the layers). The
crack propagated in the resin layer (more delicate) and a horizontal fracture finally occurred
(Figure 2). In addition, the SEM images showed exposed fibers in the middle of the cylinders.
As well as for bswFRC, the fibers of bFRC were subjected to tensile–shear loading, but we
speculate that the presence of a thick resin layer between fiber-woven layers in the bFRC
group may have prevented a proper stress distribution during the compression test, so that
the stress concentrated at the resin layer where the fracture occurred.

These findings suggest that in clinical practice, CAD/CAM indirect fiber post-and-
cores could be considered as the favorite choice and as clinically promising to restore ETT,
due their high fracture strength with less risk of nonrepairable tooth fracture [33]. This
technology could be an option for dentists to use digital technology [34] with a CAD/CAM
system and materials such as bFRC and bswFRC, which can strengthen ETT. The adaptation
of this technology to tooth structure plays an important role in the longevity of tooth restora-
tion, which provides clinical success [35]. Accompanying the evolution of CAD/CAM
technology, materials companies continue in the development of stable, esthetic and higher
resistance materials in order to attain an optimal restoration using CAD/CAM technology
in an oral environment.

Manufacturing post-and-cores via CAD/CAM technology and using bswFRC material
is an innovative idea under development for the dental market. Our experimental setup
has helped to determine the compressive strength before and after water aging in both
materials. Indeed, the values obtained showed a constant load resistance for the bFRC
group, and a considerable decrease for the bswFRC group due to water aging.

5. Conclusions

The bswFRC presented superior results in compressive strength compared to bFRC
in dry conditions, but water-aging can significantly decrease the mechanical properties
of such an innovative FRC. Therefore, both the novel bswFRC and bFRC may represent
suitable materials for the production of PaC systems via CAD/CAM technology.

However, further studies are recommended to test these materials in teeth, and under
different conditions and different thermo-mechanical and hydration aging.
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