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Abstract: In this paper we will study the topology of the singular set of stable Gauss maps from
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1. Introduction

A geometrical description of surface curvature is provided by the Gauss map. This
concept has several applications, we will highlight the relationship with visibility or ac-
cessibility maps that are used to develop algorithms for geometric applications to robotics
path planning, numerical matching of a surface, mould design, and computer vision as
shape operators [1–3].

From the point of view of Singularities Theory, a classical problem is to search invari-
ants to classify stable maps, which allows variable changes in the domain and the image of
the maps through diffeomorphisms.

The singularities of a stable Gauss map of a surface generically immersed in 3-space,
in Whitney’s sense, was described in [4]. The fold curves with isolated cusp points, are
the parabolic set that configures the singular set. Each of these parabolic curves divides a
hyperbolic region from an elliptic region of the surface.

In order to investigate the global classification of the topological type of its regular
set of stable Gauss maps, graphs of stable Gauss maps were introduced in [5] to provide a
combinatorial description of the topology of the singular set, separating the regular regions.
This graph, with weights on its vertices, describes the position of the singular and regular
sets on the surface (see Figure 1). In [6], the authors studied the singularities of a stable
Gauss map of a surface generically immersed in Euclidean 3-space.

Figure 1. Example of graphs of stable Gauss maps from sphere.
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Quine used differential topology techniques to proof the Theorem 4 for the case of
stable maps between two closed surfaces, using differential topology techniques. We
present a new proof of Theorem 4 using graphs of maps between closed and oriented
surfaces, introduced in [7]. In this paper we extend the results obtained in [8] to the case
of stable Gauss maps, achieving results comparable to those obtained for stable maps in
the sphere.

The aim of this paper is to study the Gauss maps of closed orientable surfaces im-
mersed in the 3-space, and to obtain and derive a relation between the Euler Characteristic,
cusps, and the degree of stable Gauss maps (Theorem 4). We will use an inductive construc-
tive process to prove this result, beginning with simple graphs of well-known examples and
applying suitable codimension one transition (see [9]). The codimension one transitions of
their singularities are determined by studying the height function families associated with
generic 1-parameter embedding families.

To properly understand the action of such a transition, we will separate beak tran-
sitions in different cases: when the cusps number increases, there are changes in the
regular components (positive or negative) or genus of the regular components (positive
or negative).

This paper is organised as follows: in Section 2, we introduce the notation, definitions
and basic preliminary results related with the stable Gauss maps. In Section 3, we will
study beak and lip transtitions and how it affects to the regular set. Finally in Section 4, we
will show the proof of the Theorem 4.

2. Graphs of Stable Gauss Maps

We will denote by M a connected, smooth and closed orientable surface. In the
sense of Guillemin–Gulubisk ([10]), we say that two smooth maps f , g ∈ C∞(M, N) are
A-equivalent if there are orientation-preserving diffeomorphisms, l and k, such that
g ◦ l = k ◦ f . We say that a map f ∈ C∞(M, N) is stable if all maps g ∈ C∞(M, N) are
sufficiently close to f (in the Whitney C∞-topology) and are equivalent to f . A point of the
source surface M is a regular point of a stable map f if f is a local diffeomorphism around
that point and singular otherwise.

The singular set of a stable map f , denoted by Σ f , according to Whitney (see [10]),
consists of curves of fold points, possibly containing isolated cusp points and the branch
set f (Σ f ), consists of a collection of curves immersed in N with possible isolated cusps and
whose self-intersections (double points).

The immersion f : M→ R3 and its perturbation defines the concept of stability for a
Gauss map.

Let be M a closed orientable surface in R3 and let N f ,Ng : M → S2 be two Gauss
maps associated to the maps f , g ∈ C∞(M,R3).

In terms of Guillemin–Gulubisk ([10]), when there is a correspondence between the height
function of the mapsN f andNg then we say that the functions are A-equivalents ([11]).

The regular points ofN f are elliptic or hyperbolic points of M and singular points of
N f are parabolic points of M, i.e., points where the height function in the normal direction
has a non-stable singularity. In this case, we may have: fold point of N f , corresponding to
a A2 singularity of the height function in the normal direction or cusp point of N f when
the height function in the normal direction has a singularity of type A3 (see [6,9]).

Definition 1 ([6]). A Gauss fold map is a stable Gauss map with zero cusp points.

The singular set of N f , denoted by ΣN f , is the parabolic set of M associated to the
immersion f . The non-singular set (elliptic or hyperbolic points), which is immersed in the
surface S2 by the map N f , consists of a finite number of regions.

Figure 2 displays three stable Gauss maps of the torus with two non-singular regions:
(a) the map shows the elliptical region with genus 1 and the parabolic curve has 6 cusp
points: in (b), the elliptical and hyperbolic regions have zero genus and the parabolic curves
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have 4 cusp points; in (c) the hyperbolic region has genus 1 and the parabolic curve has
6 cusp points (see [4]).

a)                                     b)                                     c)  
Figure 2. Example of graphs of stable Gauss maps from torus.

If M is a closed surface, then the singular set ΣN f , of a stable Gauss map
N f : M −→ S2, is a finite number of closed parabolic curves which separate the ellip-
tical regions from hyperbolic regions in M.

The singular sets of two equivalent maps are equivalent in the sense that there is a
diffeomorphism carrying one singular set onto the other and similarly for the branch sets.
Thus, any diffeomorphism invariant of singular sets or branch sets will automatically be a
topological invariant of the map. Clearly, both the number of connected components of the
singular set and the topological types of the regions are topological invariants.

This information was coded in a weighted graph in [5,6], where the pair (M, ΣN f )
may be reconstructed (up to diffeomorphism).

We build a weighted graph from a stable Gauss map N f (see Figure 2) (following [6])
identifying the following characteristics which are from a graph (see Figure 2):

1. The edges correspond to the path-components of the parabolic set of M.
2. The vertices correspond to the different regions of the surface with a non-vanishing

Gaussian curvature.
3. A weight is defined as the genus of the region that it represents and it is attached to

each vertex.
4. A vertex has positive (or negative) label depending on whether the region that it

represents has positive (or negative) Gaussian curvature.

Notation: We refer to this graph as G(V, E, W), where E, V, and W correspond, respec-
tively, the number of edges, the number of vertices, and the total sum of the weights in
the vertices.

The maps in Figure 2 correspond to the following graphs: (a) and (c) are G(2, 1, 1). In
(b) is G(2, 2, 0). If N : M −→ S2 is a stable Gauss map without singular point then N is
equivalent to a trivial map. As a result, the graph of this map has a unique vertex with
weight null.

In [5], the following result was proved.

Theorem 1. Any weighted bipartite graph G(V, E, W) can be realized by a stable Gauss map N :
M −→ S2. where M is a (connected) closed orientable surface in R3 with genus
g(M) = 1−V + E + W.

As it was seen in [5], if M is orientable, each point of the parabolic set is on the border
of both a positive region of M+

N and of a negative region in M−N , and consequently, the
associate graph is bipartite.

Corollary 1. The Euler Characteristic of M is given by χ(M) = 2(χ(G) −W), where χ(G)
denotes the Euler number of G.
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Given a Gauss map N : M→ S2, we denote by M+
N (M−N , respectively) the union of

all the elliptical (respectively hyperbolic) regions including their boundaries. Clearly, M+
N

and M−N meet at their common boundary, the singular set of N f , i.e., any singular curve of
ΣN f lies on the border of a component of M+ and a component of M−N .

Let us denote by V+
N (V−N , respectively) the number of vertices, corresponding to the

components of M+
N (M−N , respectively), by W+ (W−, respectively) the total sum of the

weights in the vertices with positive (negative, respectively) label, correspond to the genus
of M+

N (M−N , respectively).

Definition 2. Let N : M −→ S2 be a stable Gauss map. The Euler Characteristic of M±N will be
denoted by χ(M±N) and the difference will be denoted by

θχ(N ) = χ(M+
N )− χ(M−N ).

Definition 3. Let G(V, E, W) be a graph associated to a stable Gauss map N : M −→ S2, where
M is a closed orientable connected surface in R3. By using the above notations we denoted by

1. θV(N ) = V+ −V−, is the difference between the number of positive vertices and the number
of negative vertices.

2. θW(N ) = W+ −W−, is the difference between the total positive and total negative weight,
3. β1(G) = 1−V + A, is the number of cycles of G(V, E, W).

Lemma 1. If N : M −→ S2 is a Gauss fold map with degree d(N ) then θχ(N ) = 2d(N ).

Proof. The degree of a Gauss fold map N : M −→ S2 is given by d(N ) = 1− g(M) ≤
1 ([5,12]). Since M is closed, then N is surjective. Firstly, if ΣN = ∅, then M = M+ and
θχ(N ) = χ(M+) = χ(S2) = 2. Let us suppose that ΣN 6= ∅. Then the sets M− and M+

are non-empty. We denote by S0 = S2 \ BN , The set formed by the connected regions in
the complement ofN (ΣN ), image of the parabolic set. We denote by M±0 = N 1(S0)∩M±,
the set formed by the inverse images of the regions of S0 on M±.

If d(N ) > 0, then for each region R−i contained in M−0 , exists a copy of R−i contained
in M+

0 , that we denoted by R+
i . We have χ(R+

i ) = χ(R−i ) and M− =
⋃

i R−i .
The union of the regions M+ \ ⋃i R+

i on S2, forms d regions that cover S2. Then
χ(M+ \⋃i R+

i ) = 2d. In this case , d = 1 and M = S2.
If d(N ) ≤ 0, for each region R+

i contained in M+
0 , there is a copy of R+

i contained in
M−0 , that we denoted by R−i and M+ =

⋃
i R+

i . Then χ(M− \⋃i R−i ) = −2d.
In all cases, we have χ(M+) − χ(M−) = 2d(N ) and the result follows from the

Definition 2, θχ(N ) = χ(M+)− χ(M−).

Lemma 2. Let G(V, E, W) be a graph of a stable Gauss map N : M −→ S2. Then
θχ(N ) = 2(θV(N )− θW(N )).

Proof. The Euler number of M±i is given by χ(M±i ) = 2− 2w±i − E±i , where w±i and E±i
denote (respectively) the genus and the number of boundary components for each surface
M±i . Thus, χ(M±) = ∑V±

i=1 χ(M±i ) = 2V± − 2W± − E. Then, it follows from Definition 2,
θχ(N ) = χ(M+

i )− χ(M−i ) = 2(θV − θW).

The next result provides the necessary condition for a given graph to be associated to
a fold Gauss map from a closed and orientable surface.

Theorem 2. Let G(V, E, W) be a graph of a fold Gauss map N : M −→ S2. Then
d(N ) = θV − θW .

Proof. It follows immediately from Lemmas 1 and 2.
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Corollary 2. If N is a Gauss fold map, then 1 − g(M) = θV − θW . Consequently,
2(V− −W−) = E.

3. Beaks and Lips Transitions

Our purpose in this section is to study codimension one transitions and their effects
on the topology of the regular set and the singular set from a global point of view.

Definition 4. A cusp point x ∈ ΣN is called positive (respectively negative) if its local mapping
degree, in a neighbourhood Ux of x is +1 (−1, respectively) with a fixed orientation.

Definition 5. Let N : M −→ S2 be a stable Gauss map. Consider the next global invariants of N
IE: is the number of parabolic curves.
IC+ : is the number of cups with positive sign.
IC− : is the number of cups with negative sign.
IV+ : is the number of elliptic regions.
IV− : is the number of hyperbolic regions.
IW+ : is the total sum of genus of elliptic regions.
IW− : is the total sum of genus of hyperbolic regions.

Let I be an invariant of stable Gauss maps. If N ,N1 : M → S2 are two stable Gauss
maps. Then N and N1 can be joined by a generic homotopy, in the sense that it only passes
through codimension one transitions, because the two maps have the same degree that
depends on g(M). The difference I(N )− I(N1) is called increment of I and denoted by

θI(N ) = I(N )− I(N1).

Then, we can compute θI(N ) starting from θI(N1) and add the increment ∆I along
the path from N1 to N The total sum of all the increment of I along a path between two
stable Gauss maps that only passes through codimension one transitions is denoted by
∆I = ∑i ∆I(ηi), where η1 . . . ηk denotes a sequence of co-dimension one transitions from
N∞ to N . These transitions can change the numbers of cusps, double points, singular
curves, and regular regions.

Definition 6. Let N : M −→ S2 be a stable Gauss map of a closed orientable surface M inmersed
in R3. Let us denote by C+ (C−, respectively) the number of positive cusp points (negative cusp
points, respectively) and by C = C+ + C− the total number of cusps of N . The difference between
the number of cusp points positive and negative will be denoted by θC(N ) = C+ − C−.

Let M be a closed orientable surface inmerse inR3 andN its corresponding Gauss map.
(i) Lips transitions: The generic transitions in one-parameter families of height func-

tions (defined by generic one-parameter families of embeddings) together with their effects
on the corresponding Gauss maps have been described in [9] both in the local and multi-
local situation (see [6] for more information). The lips transition corresponds to a Morse
transition of maximum or minimum type in the parabolic curve.

It may be done in a region with a positive curvature (or negative curvature) X of
M, giving rise to a new region with a negative (positive) curvature of Z. Their common
boundary is a connected component of the parabolic set, whose image given by the Gauss
map is a closed curve with two cusp points on S2.

Following the notation of [6,8], we denote the lips transition by Lγ
v±, where γ cor-

responds to the sign (“+” if positive and “−” if negative) of the pair of cusps that are
born with the lips transition (see Figure 3). We introduce the subindex v± to indicate
if the number of vertices are being changed V±. The transition L±v∓ occurs in a region
X ⊂ M± and always increases the number of singular components and the number of
regular components of M∓. The effect of this transition L±v∓ on the graph of N is to add
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a new edge in E and a new vertex in V∓, which corresponds with the initial region, now
renamed X∓1 .

Figure 3. Lips transitions.

(ii) The beaks transition, corresponds to a Morse transition of saddle type in the
parabolic set. Such a transition occurs as we approach two arcs of the parabolic set until
they meet at a common point (beaks point) and break, giving a new pair of arcs. As a result,
a couple of cusp points are introduced in the branch set. This procedure, from the global
point of view, increases the cusp points.

Following the notation of [6,8], a subindex ± was added to indicate if the number of
vertices V± or the weight W± are being changed.

Beak transitions (locally) can be categorised into into eight distinct cases, as shown in
Figure 4. Table 1 displays the increments of edges, numbers of cusps, vertices, and weight
according to lip transitions and beak transitions.

1. B+,±
v± : the transition increases by 1 the number of vertices in V∓ and the number of

edges E.
2. B−,±

v∓ : the transition decreases by 1 the number of vertices in V± and the number of
edges E.

3. B+,±
w± : the transition increases by 1 the weight in W± and decreases by 1 the number

of edges E.
4. B−,±

w∓ : the transition decreases by 1 the weight in W∓ and increases by 1 the number
of edges E.

Let us remark that the genus of the surface is a constant, (V+ −W+) + (V− −W−) =
1− g(M) + E. As all transitions change E, so the left side will always change.

 

(a) (b)

(c) (d)

(f)(e)

(g) (h)

Figure 4. Beaks transitions in M. (a–h) Regions X, X1, Y, Z, Z1 and Z2 separated by the curves
arcs 1 and 2 denote (locally) the regular regions where the transitions hold. The numbers 1 and 2
represents the number of singular curves. If the two arcs have the same number, it shows that the
arcs belong to the same singular curve.
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Table 1. Increments of lips and beaks transitions.

Trans
Invar L+

v− L−
v+ B−,−

v− B+,+
v− B−,+

v+ B+,−
v+ B+,+

w+ B−,−
w+ B+,−

w− B−,+
w−

∆E 1 1 −1 1 −1 1 −1 1 −1 1

∆C+ 2 0 0 2 2 0 2 0 0 2

∆C− 0 2 2 0 0 2 0 2 2 0

∆V+ 0 1 0 0 −1 1 0 0 0 0

∆V− 1 0 −1 1 0 0 0 0 0 0

∆W+ 0 0 0 0 0 0 1 −1 0 0

∆W− 0 0 0 0 0 0 0 0 1 −1

A consequence of Table 1 is the following result:

Proposition 1. Let N : M→ S2 a stable Gauss map, then:

(i) θC(N ) + θV(N ) + θW(N ) = 1 mod 2.
(ii) IE + IC+ + IC− + IV+ + IV− + IW+ + IW− = 0 mod 2.

Figure 5a–d shows examples about the effects of beaks and lips transitions. Let us
remark, the map (d) is obtained only passing from L+ to −B−,+

v+ . Figure 5e–h illustrates
beaks transitions in a sequence of stable Gauss maps on the torus, where the first and the
last map are Gauss fold maps. The first with 4 singular curves, separating two elliptic
areas of two hyperbolas, and it finishes with two singular curves that separate two areas
homeomorphic to the cylinder (see [6]).

a)                        b)                        c)                        d)

e)                        f)                          g)                       h)
1 1

Figure 5. Example of beaks and lips transitions.

Let ξ ∈ {L±v∓, B±,±
v± , B±,±

w± } a codimension one transition. We denote by ξ the increment
corresponding to ξ along the path that connects two stable Gauss maps.

Analogous to the case of maps between surfaces (see [8]), we have the following results
for Gauss maps.
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Lemma 3. If N1 and N2 are two stable Gauss maps, then the increments of the number of cusps,
of the number of parabolic curves, elliptic and hyperbolic regions, of the total genus of the regions,
along with a path between two stable Gauss maps, are given by

∆C± = 2(|B+,±
v∓ |+ |B

−,±
v± |+ |B

+,±
w± |+ |B

−,±
w∓ |+ |L±v∓|),

∆E = (|L+
v−|+ |L−v+|+ |B

+,+
v− |+ |B

+,−
v+ |+ |B

−,−
w+ |+ |B

−,+
w− )| − (|B−,+

v+ |+ |B
−,−
v− |

+|B+,+
w+ |+ |B

+,−
w− |),

∆V± = |L∓v±|+ |B
+,∓
v± | − |B

−,±
v± |,

∆W± = |B+,±
w± | − |B

−,∓
w± |.

Proof. Equalities can be deduced from Table 1.

Lemma 4. If N1 and N2 are two stable Gauss, then the increments of θC, θV , and θW are given by
∆θC(N ) = 2(|L+

v−|+ |B
+,+
v− |+ |B

−,+
v+ |+ |B

+,+
w+ |+ |B

−,+
w− |)− 2(|L−v+|+ |B

+,−
v+ |+ |B

−,−
v− |

+|B+,−
w− |+ |B

−,−
w+ |),

∆θV(N ) = (|L−v+|+ |B
+,−
v+ |+ |B

−,−
v− |)− (|L+

v−|+ |B
+,+
v− |+ |B

−,+
v+ |),

∆θW(N ) = (|B+,+
w+ |+ |B

−,+
w− |)− (|B+,−

w− |+ |B
−,−
w+ |),

∆θχ(N ) = 2[∆θV(N )− ∆θW(N )] = −∆θC(N ).

Proof. Let us remark ∆θC = ∆C+ − ∆C−), ∆θV = ∆V+ − ∆V−) e ∆θW = ∆W+ − ∆W−).
The result is directly deduced from Lemmas 2 and 3.

Theorem 3. Let N1,N : M −→ S2 be two stable Gauss maps. If N1 is a fold Gauss then

θχ(N ) + θC(N ) = θχ(N1).

Proof. If N1 is a fold Gauss map then θC(N1) = 0 and θC(N ) = ∆θC(N ). The equality
holds θχ(N ) = θχ(N1) + ∆θχ(N ) and Lemma 4.

Corollary 3. If N1 and N are two fold maps θC(N ) = 0 then θχ(N ) = θχ(N1).

4. Global Invariant of Stable Maps

We now see the relation between θχ, θC and d for a stable Gauss map from closed
orientable surfaces in the 3-space.

Theorem 4. Let N : M −→ S2 be stable Gauss map of a closed orientable surface M. If N has
degree d(N ), then

θχ(N ) + θC(N ) = 2d(N ).

Proof. According to Lemma 1, for a fold Gauss map N1 we have θχ(N1) = 2d(N1).
If N1 is a Gauss fold map, by Theorem 3, θχ(N ) + θC(N ) = θχ(N1) = 2d(N1).
Then the result follows from the relation between the degrees of N and N1, namely

d(N ) = d(N1). Note that the result does not depend on the choice of N1.

Note that for a stable Gauss map N : M −→ S2, we have

θχ(N ) = χ(M)− 2χ(M−N )

and θC(N ) is the total sum of the signs of the cusps of N . Thus, we can see that the
Theorem 4 is equivalent to the Quine’s Theorem (for N = S2), which was proved in [13].
Here we give a new proof, for this particular case, based on the previous results.

Theorem 5. Let G(V, E, W) be the graph of a stable Gauss map N from closed orientable surfaces
M. If d is a degree of N then 2(θV − θW) = 2d− θC.
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Proof. If G(V, E, W) is a graph of a stable Gauss map N , according to Theorem 4, we have
θχ(N ) = 2d(N )− θC(N ) and by Theorem 2 , we have θχ(N ) = 2(θV − θW). Then, the
result it follows from these two equalities.

Corollary 4. If G(2, 1, 0) is a graph of a stable Gauss map N with degree d, then 2θW = θC − 2d.

The next result establishes that the limit for θC depends on the genus of M and the
degree of N . We present a brief proof of the result proved in [14].

Definition 7. An apparent contour of a stable map f ∈ C∞(M, N) is said to be irreducible if Σ f
has only one connected component.

Theorem 6 ([14]). LetN : M −→ S2 be a stable Gauss map with degree d. IfN has an irreducible
contour, then

−2(g(M)− d) ≤ (θC) ≤ 2(g(M) + d).

Proof. If N has irreducible contour, then E = 1. We apply Theorem 1 to get
g(M) = W+ + W−. Let us remark θW = W+ −W− = g(M) − 2W−. According to
Corollary 4, we have 2g(M) = 4W− + θC − 2d.

For d > 0, as W− ≥ 0, then 2g(M) ≥ θC − 2d, consequently,

θC ≤ 2(g(M) + d). (1)

On the other hand, if d < 0, as g(M)−W+ = W−, we have 2g(M) = 4W+ − θC + 2d.
Since W+ ≥ 0, we have 2g(M) ≥ −(θC − 2d). Then

− 2(g(M)− d) ≤ (θC). (2)

Thus, the result follows from the Equations (1) and (2).

The sphere has g(M) = 0 and d = 1. If the singular set is empty, then
(θC) = 0 ≤ 2(g(M) + d). Going through a transition L+, then (θC) = 2 and the equality
holds.

This inequality can be seen in Figure 6, which illustrates other examples of surfaces
with some beaks associated to weighted graphs (V, E, W):

(a) g(M) = 2, fold Gauss map with d = 1− g(M) = −1 and (V, E, W) = (5, 4, 2). Two
of the curves are borders of simply connected elliptical regions and also borders of
cylindrical hyperbolic regions (homeomorphic to the cylinder). The other two curves
are boundaries of the bitorous with two edge curves (bitorus minus two disks).

(b) A graph with (V, E, W) = (3, 2, 2) is realized by a stable Gauss map obtained of (a) by
2(B−,+

v+ ), creating four positive cusps and joining the three elliptic regions.
(c) A graph of (3, 2, 2) type is realized by a fold Gauss map obtained of (b), removing

the cusps and joining the two elliptic regions, by −B+,+
v− followed by −B−,+

v+ , which
separates the elliptic region into two, one with genus 2 with a hole and another
homeomorphic to the disc. The hyperbolic region is homeomorphic to the cylinder.

(d) A graph with (3, 2, 2) is equivalent to the map (c).
(e) g(M) = 3, fold Gauss map with d = 1− g(M) = −2 and (V, E, W) = (4, 4, 2). The

singular curves separate two cylindrical hyperbolic regions from elliptical regions,
one of this region is cylindrical and the other is a bitorous with two boundary curves.

(f) A graph with (V, E, W) = (3, 2, 3) is realized by a stable Gauss map obtained from (e)
by B−,+

v+ which creates two cusps joining the two elliptic regions and by B+,+
w+ , creating

two new cusps, joining two parabolic curves that separate the elliptic region of genus
three from two hyperbolic regions each homeomorphic to the disc.

(g) A graph of (2, 1, 3) type is realized by a stable Gauss map obtained from (f) by −B+,+
v−

which eliminate a pair of cusps and joins the two hyperbolic regions.
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(h) A graph with (V, E, W) = (3, 2, 3) is realized by a fold Gauss map obtained from (g)
by −B−,+

v+ removing the two cusps, and thus separating the parabolic curve into two
which separate a hyperbolic region homeomorphic to the cylinder and the two elliptic
regions, one with genus three and another homeomorphic to the disc.

Figure 6. Example of beaks on bitorous and tritorous.
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