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Abstract: Currently, the development of resistance of Enterobacteriaceae bacteria is one of the most
important health problems worldwide. Consequently, there is a growing urge for finding new
compounds with antibacterial activity. Furthermore, it is very important to find antibacterial com-
pounds with a good pharmacokinetic profile too, which will lead to more efficient and safer drugs.
In this work, we have mathematically described a series of antibacterial quinolones by means of
molecular topology. We have used molecular descriptors and related them to various pharmacolog-
ical properties by using multilinear regression (MLR) analysis. The regression functions selected
by presenting the best combination of a number of quality and validation metrics allowed for the
reliable prediction of clearance (CL), and minimum inhibitory concentration 50 against Enterobacter
aerogenes (MIC50Ea) and Proteus mirabilis (MIC50Pm). The obtained results clearly reveal that the
combination of molecular topology methods and MLR provides an excellent tool for the prediction of
pharmacokinetic properties and microbiological activities in both new and existing compounds with
different pharmacological activities.

Keywords: pharmacokinetics; antibacterial; multilinear regression (MLR); computational chemistry;
molecular topology; molecular connectivity; topological indices; quinolones; QSAR

1. Introduction

The increasing emergence of resistance to known antibiotics is one of the most impor-
tant problems that have appeared in recent years in the treatment of infectious diseases
nowadays [1]. The emergence of resistance is associated not only with complications from
infections in terms of morbidity and mortality, but also represents an increase in healthcare
costs [2]. In this context, rapid and inexpensive methods are necessary for the immediate
expansion of the therapeutic arsenal that we currently have [3].

Traditionally, in order to develop a drug, it was necessary to synthesize and evaluate
the activity of hundreds to thousands of compounds with the intention of proving their
biological activity, selectivity, and bioavailability, as well as their low toxicity. On average,
this process of discovering new drugs involves, in addition to a high economic cost, several
years of duration before, hopefully, finding a drug with the right characteristics to boost its
commercialization [4].

Virtual screening along with combinatorial chemistry appear as a solution to this prob-
lem by allowing researchers to identify molecules that are likely to be active from a virtual
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chemical library [5]. Given that these virtual libraries usually have many components,
it is common to apply filters to discard molecules with a low probability of becoming a
drug. In this sense, Lipinski was the first to apply these filters when describing the “Rule
of Five” [6]. This standard predicts that a compound is “non-pharmacological” if it has too
many hydrogen bond donors or acceptors (5 and 10 respectively), its molecular mass is
greater than 500 and its calculated partition coefficient (ClogP) is greater than 5. With these
rules, Lipinski created the first pre-filter prior to drug screening [7].

This rule has been revised based on data obtained from studies in rats [8]. Since
then, other rules have appeared and been modified, such as the Rule of Three [9], used
in “fragment-based” discovery, which classifies fragments as “drug-like” those with
an average molecular weight ≤ 300 Da, a calculated partition coefficient (ClogP) ≤ 3,
≤3 hydrogen bond donors, ≤3 hydrogen bond acceptors, and <3 rotatable bonds. Another
similar example is the “Rule of 3/75”, which was described after analyzing 245 preclinical
Pfizer compounds. This rule states that a compound will be 2.5 times safer in in vivo assays
when its ClogP is <3 and the topological polar surface area (TPSA) > 75 [10].

Within drug screening, it is also necessary to highlight the rise of QSAR (Quantitative
Structure-Activity Relationship) methods, which have been the foundation of the design
and development of new molecules with pharmacological activities [11]. QSAR modelling
is a technique that allows the interdisciplinary exploration of knowledge in compounds
covering chemical, physical, biological, and toxicological aspects. It also provides for-
malisms for the mathematical development of models based on chemical characteristics
and the activity of structurally similar compounds. This context is defined by mathematical
algorithms and provides a reasonable foundation for creating a prediction model [12].

The use of QSAR methods for obtaining and developing new drugs is a key tool since
it provides a noteworthy saving of time and resources, considering that many pharma-
cological activities of compounds can be predicted without having been synthesized by
virtue of its rational approach [13,14].

There are numerous examples of drug designed molecules with very different pharma-
cological activities which have followed the application of QSAR techniques in combination
with other in-silico methods, such as zanamivir, tirofiban, imatinib, raltegravir, donepezil,
boceprevir, norfloxacin, captopril and dorzolamide, all of them approved by the US Food
and Drug Administration [15].

Our research group uses molecular connectivity or molecular topology (MT), devel-
oped by Kier and Hall in the mid-1970s [16], a method derived from the QSAR techniques,
which is based on the calculation of molecular descriptors or topological indices (TIs) from
the structure of a molecule. These methods play an important role, since they provide
useful information for the rational design of new molecules with minimal cost and are an
alternative and effective tool in view of the reduction of investments by the pharmaceutical
industry in the area of antibiotics [17,18].

By using MT, we can classify a compound as active or not active against a certain phar-
macological activity using pattern recognition techniques such as multilinear regression
(MLR), discriminant linear analysis, neuronal networks, random forests, support vector
machines or principal component analysis [19].

All Gram-negative bacilli of the Enterobacteriaceae family, are resistant to common
antimicrobials, such as penicillin, oxacillin, methicillin, macrolides, glycopeptides, line-
zolid, and clindamycin, among others [20]. Moreover, the World Health Organization
(WHO) on its “WHO PRIORITY PATHOGENS LIST FOR R&D OF NEW ANTIBIOTICS”
considers this family a critical or first priority pathogen [3]. Both bacteria studied in this
work, Proteus mirabilis and Enterobacter aerogenes, are Gram-negative bacilli that belong to
the Enterobacteriaceae family, and are an important cause of community and nosocomial
infections, representing a major clinical and public health challenge due to the limited
therapeutic arsenal and well-established resistances [21,22].

In this study, by combining MT and MLR after extending a thorough bibliographic
research on physicochemical and biological properties on antibacterial quinolones from a
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previous study [23], we developed three linear regression functions capable of predicting
clearance and minimum inhibitory concentration 50 against Enterobacter aerogenes and
Proteus mirabilis. We selected quinolones to build these equations, which can be applied
to other quinolones not used in the study, as well as to molecules that share no structural
relationship, seeing as the selection of hits or leads considers mathematical-topological
similarity patterns, despite the possible core-structure diversity [24]. Thus, the obtained
functions can be used as filters in the search process of new antibacterials in large databases
of molecules. Examples of some commonly used chemical libraries where new molecules
could easily be found on which to apply these techniques are ZINC, Benchmark DUD,
PubChem, ChemBank, ChEMBL, DrugBank and Inter-bioscreen [15].

The first quinolone to be used clinically was discovered in 1962 by G. Lesher et al.,
who, during the purification of the antimalarial chloroquine from mother liquor, found 7-
chloroquinoline, a by-product with antimicrobial activity. Starting from this lead, nalidixic
acid was obtained. Despite the good tolerance and ease of synthesis of this compound,
its use has been restricted to the treatment of some urinary infections due to its tendency
to select resistance and to concentrate mainly in urine. From this discovery, derivatives
with similar structures were developed, with still moderate activity against Gram-negative
bacteria, but which were very valuable in uncomplicated urinary infections [25].

Pipemidic acid appeared in 1975, the first quinolone with a piperazine ring, with
favorable activity, spectrum, and pharmacokinetics, which allowed the administration
of lower doses. The appearance of bacterial resistance during treatment and side effects
were also lower [26]. A year later, flumequin was discovered, which, by incorporating a
fluorine atom in position 6 of the core double ring, was able to amplify its spectrum within
Enterobacteriaceae, including some resistant strains and slightly improve the activity against
Gram-positive bacteria [27].

These facts motivated the beginning of an active chemical synthesis campaign to refine
the structure-activity relationships. The aim was to improve activity while optimizing the
pharmacokinetic properties and reducing the toxicity and interactions with other drugs.
This led to the consolidation of the second-generation quinolones, which differ from the
classical quinolones in two characteristics common to all of them: the presence of a fluorine
atom in position 6 and a substituted piperazine or pyrrolidine ring at position 7 of their
core structure [28].

The first second-generation quinolone to be patented, in 1978, was norfloxacin, whose
improved potency against Gram-negative bacteria was already in the natural antibiotics’
range, in addition to having a longer half-life (3–4 h) and shorter protein binding (50%)
than its predecessors [29]. Shortly after, ciprofloxacin was introduced, being for many years
the most potent fluoroquinolone against Gram-negative bacteria and the most widely used
quinolone [30]. This generation of quinolones has a much higher activity against aerobic
Gram negatives and some important Gram-positive pathogens, as well as more favourable
toxicological profiles and good absorption through the gastrointestinal tract [28].

In the 1990s, several quinolones, mostly di- or tri-fluorinated, were approved. They
are the third-generation quinolones, which have a greater structural complexity than their
predecessors. One of the first modifications was the introduction of an amino group at
position 5, which caused an increase in the general activity against Gram-positive bacte-
ria [28]. All of them have advantages in their bioavailability compared to second-generation
quinolones, since the substituted rings at position 7 give them greater lipophilicity, resulting
in longer elimination half-lives and greater tissue penetration [31].

In recent years, a new class of quinolones has been synthesized, since the optimization
of the substituents in different positions of the core structure has allowed the suppression
of the fluorine atom in position 6, thus avoiding possible toxic effects, without necessarily
reducing its activity [32]. Probably, the most prominent examples of these novel des-
fluoro(6) quinolones are garenoxacin (initially known as BMS-284756) and DX-619, which
due to their high affinity for type II topoisomerases, have shown high intrinsic activity
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against most Gram-negative, Gram-positive and anaerobic microorganisms with a low
resistance selection potential [33,34].

The good pharmacokinetic profile of quinolones, as well as their high antibacterial
activity and broad spectrum of action, makes their therapeutic indications very varied.
In fact, quinolones are used in the treatment of many infections, both in the hospital
setting and in outpatient clinical practice. More than ten thousand quinolones have been
registered. Therefore, it has probably been the most widely used thoroughly studied class
of chemotherapeutic agents [35,36]. For all these reasons, we thought that quinolones were
the most suitable antibacterial family to be the focus of our study.

QSAR models have been widely attempted, using homologous and congeneric series of
active compounds, obtaining excellent results for the correlation of fluorescent [37], antitu-
mor [38], anti-HIV [39], antifungal [40] and antibacterial [41,42] properties, amongst others.

2. Results

We performed Y-randomization, inter-correlation, and leave-one-out (LOO) cross-
validation tests on all equations. On the one hand, a representation of correlation coefficient
(r2) versus cross-validated correlation coefficient (r2

cv) could show the presence of chance
correlations. On the other hand, compounds that do not fit the selected function could be
easily spotted by a representation of the Y-randomization analysis.

Hence, we rejected those equations with highly dependent indices (correlation co-
efficient greater than 0.8 or smaller than −0.8 between indices), suspected randomness
(r2

vc smaller than 0.5 for the selected equation) or outliers in the compound set (dissimi-
lar residual values between the selected and the cross-validated equation for one of the
compounds, which is indicative of instability).

We also considered adjusted linear coefficient of determination (r2
a), which is repre-

sented by:
r2

a = r2 − (p(1 − r2)/(N − p′))

where N is the number of observations; and p is the number of dependent variables selected
in the RF (p′ = p when the y-axis intersect is zero and p′ = p + 1 when it is different from
zero). The correlation will be better the closer this value gets to unity.

Therefore, we finally selected three descriptor-independent regression functions (RFs)
with high predictive capacity and significant statistical parameters:

RFCL = 8981.08 + 1596.686χch − 109.481S>N- − 2637.68NI2
(1)n = 12 r = 0.95939 F = 30.85 p = 0.0001

SEE = 65.42953 r2 = 0.92043 r2
a = 0.89059 r2

cv = 0.79791
RFMIC50Ea = 0.410929 − 0.123037S-CH2- + 0.0685818SaCa + 0.0569394S-NH-

(2)n = 13 r = 0.95930 F = 34.62 p = 0.0000
SEE = 0.033071 r2 = 0.92025 r2

a = 0.89367 r2
cv = 0.83270

RFMIC50Pm = 0.376001 + 27.66769χV
ch + 0.0650158S-CH3 − 0.0889109S>N-

(3)n = 16 r = 0.91837 F = 21.54 p = 0.0000
SEE = 0.076808 r2 = 0.84340 r2

a = 0.80425 r2
cv = 0.70282

In Tables 1–3 we can find all the important information regarding the RFs for each
of the compounds: the value of each independent variable or TI; the dependent variable
or experimental value for each property; the predicted value for each property; and the
residual values (difference between experimental and predicted value).

We can note that one of the calculated values is negative (Clinafloxacin, Table 2) and, of
course, this is an impossible value for a MIC value. This fact can happen in compounds with
a dependent variable’s value very close to zero, since the linear regression function may
calculate a predicted value for that compound just below the x-axis, i.e., just below zero.
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Table 1. Prediction results obtained for the CL property (mL/min).

Compound 6χch S>N- NI2 ExpCL a CalcCL b Res c

Moxifloxacin 0.1741 3.803 3.319 14.8 88.2486 −73.4486
Amifloxacin 0.1842 5.5294 3.262 31.0 65.715 −34.715
Garenoxacin 0.169 1.6095 3.408 86.1 85.4983 0.6017

Pefloxacin 0.1842 5.8196 3.262 106.716 33.9436 72.7724
Trovafloxacin 0.2245 2.731 3.392 106.8132 93.5342 36.2154

Fleroxacin 0.1741 4.5829 3.265 127.126 145.2989 23.0078
Levofloxacin 0.2296 5.8165 3.219 198.0 220.1923 38.148
Temafloxacin 0.2523 2.9448 3.352 206.6 220.0219 38.5829
Sitafloxacin 0.0907 3.1603 3.261 263.0 178.4345 42.066

Clinafloxacin 0.0907 3.4961 3.146 368.857 445.0039 −76.1469
Enoxacin 0.203 3.3811 3.166 562.875 584.1476 −21.2727

Ciprofloxacin 0.203 3.7812 3.17 617.945 529.7932 88.1518
a Experimental value of the CL property for each compound. b Calculated value of the CL property for each
compound. c Residual value of RFCL for each compound.

Table 2. Prediction results obtained for the MIC50Ea property (µg/mL).

Compound S-CH2 SaCa S-NH- ExpMIC50Ea a CalcMIC50Ea b Res c

Clinafloxacin 3.5533 0.1483 0 0.019 −0.0161 0.0351
Ciprofloxacin 4.8443 0.7434 3.2252 0.0351 0.0495 −0.0145
Tosufloxacin 1.5749 −2.6064 0 0.045 0.0384 0.0066
Gemifloxacin 2.7854 −0.3502 0 0.0465 0.0442 0.0023
Trovafloxacin 1.0072 −3.2996 0 0.048 0.0607 −0.0127
Levofloxacin 3.2033 0.6381 0 0.06 0.0606 −0.0006
Sparfloxacin 2.2119 −3.1814 3.3 0.084 0.1085 −0.0245
Fleroxacin 0.7962 −2.8908 0 0.09 0.1147 −0.0247

Norfloxacin 3.4104 0.6027 3.2081 0.1633 0.2153 −0.052
Enoxacin 3.1429 −0.1195 3.1803 0.2083 0.1971 0.0112

Amifloxacin 3.0361 0.3878 2.8144 0.25 0.2242 0.0258
Lomefloxacin 1.7121 −2.1985 3.2023 0.29 0.2318 0.0582

WIN-57273 1.8278 1.6636 0 0.29 0.3001 −0.0101
a Experimental value of the MIC50Ea property for each compound. b Calculated value of the MIC50Ea property
for each compound. c Residual value of RFMIC50Ea for each compound.

Table 3. Prediction results obtained for the MIC50Pm property (µg/mL).

Compound 9χV
ch S-CH3 S>N- ExpMIC50Pm a CalcMIC50Pm b Res c

Clinafloxacin 0 0 3.4961 0.0225 0.0652 −0.0427
Sitafloxacin 0 0 3.1603 0.03 0.095 −0.065
Ciprofloxacin 0 0 3.7812 0.0426 0.0398 0.0028
Levofloxacin 0 3.8877 5.8165 0.06 0.1116 −0.0516
Flerofloxacin 0 1.8996 4.5829 0.12 0.092 0.028
Tosufloxacin 0 0 2.8277 0.12 0.1246 −0.0046
Gemifloxacin 0 1.437 3.3757 0.165 0.1693 −0.0043
Gatifloxacin 0 3.4792 3.6897 0.198 0.2741 −0.0761
Trovafloxacin 0 0 2.731 0.199 0.1332 0.0658
Amifloxacin 0 3.6197 5.5294 0.25 0.1197 0.1303

Enoxacin 0 1.8106 3.3811 0.25 0.1931 0.0569
Sparfloxacin 0 3.8376 3.0307 0.25 0.356 −0.1060
Lomefloxacin 0 3.6201 2.9493 0.29 0.3491 −0.0591
Garenoxacin 0.0049 2.0568 1.6095 0.5 0.5022 −0.0022
Moxifloxacin 0.0132 1.4781 3.803 0.5 0.4992 0.0008
WIN-57273 0 3.684 1.7957 0.583 0.4559 0.1271

a Experimental value of the MIC50Pm property for each compound. b Calculated value of the MIC50Pm property
for each compound. c Residual value of RFMIC50Pm for each compound.

3. Discussion

Only those functions with a significance greater than 99.99% (p≤ 0.0001) were selected.
The incorporation of more than three independent variables was studied in order to improve
the statistical parameters but this was not achieved with any of the properties studied.
Finally, the best statistical data were obtained with the presence of three independent
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variables in each function, which indicates that all the indices provide important structural
information to quantify each of the properties studied.

In all cases, the residual value for each compound was less than twice the standard error
of estimation (±2SEE), indicating that the selected equations have high predictive ability.

The cross-validated correlation coefficient (r2
cv) was determined to study Y-randomization.

A function is considered to be non-randomly obtained when its r2
cv > 0.5 [15]. In the three

selected equations, the value of this coefficient was higher than 0.7028, which explains more
than 70.28% of the variance of the group. The probability of finding a random sequence
that fits the prediction model is very low since in the three selected equations they had
significantly higher r2

cv values than the non-selected equations (Supplementary Section S1).
All these data guarantee the robustness of the selected equations.

For the clearance (CL) property, a connectivity index [43], which considers sixth order
chain type graphs (6χch), increases its value. This means that the presence of 6-member
cycles increases this property. One the other hand, an electro-topological index (S>N-) [44]
and an information-theory index (NI2) [45] have a negative effect on the RF’s value. The
first one increases with a high number of tertiary amine groups, so the presence of this
group decreases the CL value. The latter can be applied to a molecule to quantify its atomic
diversity [46].

For the minimum inhibitory concentration 50 against Enterobacter aerogenes (MIC50Ea),
two electro-topological indices increase its RF’s value. The first one (SaCa) increases with
a high number of aromatic carbons, while the second one (S-NH-) increases with a high
number of secondary amine groups. Thus, it should be noted that the presence of aromatic
carbons and/or secondary amine groups have a negative effect on the activity against
E. aerogenes, since the property in this case is MIC. On the contrary, another electrotopologi-
cal index (S-CH2-), which increases with an increasing number of methylene groups, helps
decreasing the RF’s value and, hence, improves the activity against E. aerogenes.

For the minimum inhibitory concentration 50 against Proteus mirabilis (MIC50Pm), a
connectivity index and an electro-topological index increase its RF’s value. The valence-
connectivity index [47] considers ninth order chain type graphs (9χV

ch), present in
garenoxacin and moxifloxacin, which present weak activity against P. mirabilis compared
to most of the compounds in that data set. This is consistent with the structure-activity
relationships established by Domagala et al. [48], which state that a 9-member bicycle at the
quinolone’s R7 position enhances activity against Gram-positive bacteria but is detrimental
for Gram-negative bacteria such as P. mirabilis. Since this bicycle is present in only two
compounds, the possibility of developing the RF ignoring this index was studied, but in all
the attempts, the statistical consistence significantly decreased. The connectivity index’s
value (S-CH3) increases with an increasing number of methyl groups, so we could state that
an excessive amount of methyl groups in the quinolones’ structure decreases the activity
against P. mirabilis. In fact, most of the most active compounds from this data set lack
this functional group, i.e., have a zero value for this index (see Table 3 for the MIC, 9χV

ch
and S-CH3 values and Supplementary Section S2 for the quinolones’ chemical structures).
Nevertheless, an electro-topological index decreases the RF’s value, i.e., enhances activity
against P. mirabilis. Such is the case of S>N-, which increases with a high number of tertiary
amine groups. Therefore, we could state that a good proportion of tertiary amine groups in
the quinolones’ structure enhances the activity against P. mirabilis.

4. Materials and Methods
4.1. Compound Selection

Data were collected for a total of 85 physicochemical, pharmacokinetic, pharmaco-
dynamic and microbiological properties of antibacterial quinolones (see Supplementary
Section S2).

Experimental procedures for the obtention of experimental values of each property
were studied. To select a property, it had to have been obtained with comparable experimen-
tal procedures for at least 10 compounds. Sufficient data for a total of 27 microbiological
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properties (activities against different microorganisms measured as different MICs) were
obtained from in vitro assays performed according to CLSI protocols [49] and 9 pharma-
cokinetic properties obtained in assays performed in healthy subjects.

Due to the diversity of bibliographical data found regarding a given property for each
of the selected molecules, we considered the average of those data whose values were of
the same order of magnitude for the study and development of the prediction equations.

4.2. Topological Descriptors

A total of 41 different quinolones were topologically characterized using DESMOL13 [50]
and MOLCONN-Z [51] programs. We removed indices with value 0 for every compound
and with identical values for all compounds, leaving a total of 140 topological descrip-
tors specific to each molecule (see Supplementary Section S3). These descriptors were
computed from the adjacency topological matrix obtained from the hydrogen-depleted
chemical pseudographs, drawn with the ChemBioDraw Ultra 12.0 drawing program of the
ChemBioOffice 2010 program package. The molecular descriptors used are described in
Supplementary Section S4 along with their definitions and references.

4.3. Multilinear Regression

We used the statistical package BMDP module 9R [52] to perform the MLR analysis.
This program is based on the Furnival-Wilson algorithm [53], which uses Mallow’s Cp
parameter [54] to assess how well a set of observations fit a given RF. Its purpose is to find
the best combination of indices from all the possible ones to generate this RF. This statistical
parameter can be depicted as:

Cp = PRESS/s2 − (N − 2p)

where PRESS is the squared sum of the residual values of the dependent variables; s is the
residual mean obtained in the RF; p is the number of dependent variables selected in the
RF; and N is the number of observations.

In principle, the equation with the lowest Mallow’s Cp value will be the optimal one.
However, the residual sum of squares always decreases as dependent variables are added
to the equation. Consequently, we will always select the equation with the highest number
of indices if we aim for the minimum residual sum values.

However, we must always bear in mind that the predictions made from a linear
regression function are not reliable if there is not a high degree of linear correlation between
the independent and dependent variables. In addition, its statistical quality must be
analyzed and the higher it is, the more reliable and accurate the prediction will be.

It is also recommended that the number of independent variables chosen be well
below the number of observations, to avoid possible fortuitous correlations, so that the
optimal relationship between them is the one that achieves a better prediction with the
minimum number of descriptors possible, in order to avoid random variation as much
as possible [55]. Randomness tests were also carried out to identify possible fortuitous
regressions. To do this, the property value of each compound is randomly permuted and
linearly correlated with the selected independent variables. This process is repeated as
many times as necessary. The result of the randomness test is expressed by graphically
representing the correlation coefficient (r2) versus the prediction coefficient (r2

cv).
For all those reasons, the number of observations (size of the set), the effect of the

different independent variables and the degree of correlation between them will influence
the selection of RFs under the criterion of this algorithm.

5. Conclusions

The increase of resistant Enterobacteriaceae bacteria such as E. aerogenes and P. mirabilis
is one of the major challenges that have appeared in recent years in infectious disease
treatments. Therefore, the urge to find new compounds with antibacterial activity has not
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ceased to grow. It must also be noted that the pharmacokinetic profile of a compound is
essential in determining the clinical outcome of an antibiotic treatment.

We have designed and developed three statistically significant, descriptor-independent
regression functions with a high predictive capacity, which will aid us obtain theoretical
values for the pharmacokinetic and microbiological properties selected. The results of
the predictions obtained are supported by internal validation studies performed on all
selected properties, as well as by all the statistical parameters, which can be classified as
very satisfactory in all cases.

These equations, used as predictive models or as filters, can be extremely useful to find
new molecules with antibacterial activity and even for their use in drug repositioning, where
we find thousands of candidate compounds, which will have most certainly endured toxico-
logical assays, to be screened in a short time for the search of safe antibacterial compounds.

We can conclude that the prediction functions obtained confirm molecular topology as a
useful and efficient tool in the prediction of pharmacokinetic and microbiological properties.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ph15020122/s1. Supplementary Section S1: Internal validation results for each of the selected
equations; Supplementary Section S2: Compounds used in the realization of the equations: molecule
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