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Abstract

Lipids are involved in many biological processes and their study is constantly increas-

ing. To identify a lipid among thousand requires of reliablemethods and techniques. Ion

Mobility (IM) canbe coupledwithMass Spectrometry (MS) to increase analytical selec-

tivity in lipid analysis of lipids. IM-MS has experienced an enormous development in

several aspects, including instrumentation, sensitivity, amount of information collected

and lipid identification capabilities. This review summarizes the latest developments in

IM-MS analyses for lipidomics and focuses on the current acquisitionmodes in IM-MS,

the approaches for the pre-treatment of the acquired data and the subsequent data

analysis. Methods and tools for the calculation of Collision Cross Section (CCS) values

of analytes are also reviewed. CCS values are commonly studied to support the identi-

fication of lipids, providing a quasi-orthogonal property that increases the confidence

level in the annotation of compounds and can bematched in CCS databases. The infor-

mation contained in this review might be of help to new users of IM-MS to decide the

adequate instrumentation and software to perform IM-MS experiments for lipid anal-

yses, but also for other experienced researchers that can reconsider their routines and

protocols.
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1 INTRODUCTION

In recent years there have been several advances in lipidomic analy-

ses because of the great difficulty of lipid characterization given their
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overwhelming complexity and structural heterogenicity [1, 2]. One of

the recent innovations to deepen expertise about them has been the

coupling of ion mobility (IM), a chromatographic technique, typically

liquid chromatography (LC), and mass spectrometry (MS), providing a

third dimension of separation that has been demonstrated to improve

the confidence level in lipid identification [3–6]. Furthermore, IM has

provided the possibility of separating isomers that previously were

not able to be measured separately [7–10]. It works by separating

ions in the gas phase according to their mobilities in a way that big-

ger and more extended ions reach the detector at different times than

the smaller and more compact ones. Many IM instruments allow for
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F IGURE 1 Schematic representation of commercially available IM analyzers. (A) DTIMS, (B) TWIMS, (C) TIMS, (D) FAIMS or DMS.

the calculation of the cross-section (CCS), an instrument independent

physical property of ions that measures the shape and the size of the

molecules, which can be used to increase the confidence on compound

identification and in the creation of libraries [11, 12].

There are different commercially available IM-MS systems whose

main principles have been thoroughly covered in specific reviews [11,

13–15].As anoverview, current IM instrumentation canbedivided into

three types: time-dispersive; confinement and selective release; and

space-dispersive [11].

Time-dispersive: In which ions travel through the same path

and reach the detector at different times. The main common time-

dispersive instruments are Drift Tube IM (DTIMS) and TravellingWave

IMS (TWIMS) (Figure 1A,B). DTIMS consists of several ring electrodes

stacked alongside each other filled with an inert static gas through

which ions move directed by a uniform electric field. This is the only

system in which CCS can be directly calculated from the arrival times

via the stepped-field method. TWIMS has a similar configuration to

DTIMS, but it works with a non-uniform electric field creating voltage

waves that move the ions along the IM cell. Another difference in prac-

tice between TWIMS and DTIMS is that the CCS cannot be obtained

directly by TWIMS instrumentation as DTIMS does. Then to calculate

the CCS in TWIMS of the analytes in sample, it is necessary the cal-

ibration using compounds with known CCS, which, at the same time,

must be structurally similar calibrants (refer to section CCS calculation

for more details). Time-dispersive is the most common type of separa-

tion for untargeted lipidomics, as it permits the analysis of all the ions

present in a sample. Nonetheless, it has relatively low resolving power

compared to other systems, which limits the detection of low-intensity

signals and the separation of isomers [14, 16–19]. To increase resolving

power, new systems based on TWIMS have been developed, in which

drift paths are greatly increased to promote collisions with the buffer

gas and improve ion separation. These are structures for lossless ion

manipulations (SLIM)which are reduced printed circuitwith up to 13m

total length path [20]. Another alternative is the cyclic TWIMS (cIM),

which enhances resolution by performing several ion passes through

the closed-loop drift cell included in the instrument [21]. DTIMS instru-

ments are typically attached to Q-TOF instruments, such as the 6560

fromAgilent Technologies or the SYNAPTXSand theCyclic series from

Waters.

Confinement and selective release in which ions are trapped by an

electric field as they are pushed forward by a moving buffer gas. By

decreasing the electric field, they are selectively released in a contrary

manner to time-dispersive, so ions of bigger size and smaller mobility

are eluted first. Trapped Ion Mobility Spectrometry (TIMS) is the main

confinement and selective release instrument (Figure 1C). It is very

selective and has a higher resolving power than time-dispersive instru-

mentation which makes it a great candidate for isomer separation.

However, changes in the conditions, such as shorter trapping times, for

a more untargeted approach can be made. Just as in TWIMS, CCS can-

not be determined directly except if a calibration is performed [22, 23].

As in DTIMS, the typical setup for TWIMS includes an LC separation

before the IM and aQ-TOF after.

Space-dispersive in which ions are pushed by a buffer gas, travel-

ing through different paths as high and low electric fields are applied

between two electrodes. It acts as a mobility filter where a specific

compensation voltage is applied to guide an ion of a particular mobil-

ity to the detector whilst all the other ions are lost. In this group,

we can find Field Asymmetric Waveform Ion Mobility Spectrome-

try (FAIMS), otherwise known as Differential Mobility Spectrometry

(DMS) (Figure 1D). Because of the use of high and low voltages, CCS

cannot be determined, rather, compensation voltages (CV) or compen-

sation field (Ec) are used as mobility descriptor [9, 24]. However, a

recent approach for the CCS calculation has been developed, which is

discussed in theCCS calculation section, below. This type of separation

is very selective, it highly reduces chemical noise, and it has a very high

resolving power, so it is the most useful for isomer separation. How-

ever, it is not themost suitable for untargeted lipidomics, as only ions of

a specific mobility are analyzed at a time [25]. For this reason, Q-TOFs
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in FAIMSare usually avoided, being the triple quadrupoles orOrbitraps

the detectors of choice for space-dispersive IM.

Someof thebenefits of using IM-MSoverMS-only include increased

peak capacity and separation power of isomers and isobars, reduc-

tion of chemical noise, a superior quality spectra acquisition and a

higher confidence level of identification by including the CCS as a

quasi-orthogonal property [3, 26–28]. Nonetheless, there are some

limitations, like low duty cycles and relatively low resolving power,

mainly in time-dispersive instrumentation [29]. Additionally, the great

complexity and large amounts of generated data remarkably reduce

the possible software available for data treatment and analysis, as well

as significantly increase the necessary computer requirements and the

processing time [30–32]. The review discusses on the current instru-

mentation and the newest alternatives for treatment and analysis of

data. We focus on commercial instruments and free software, since

these are the available options for the general IM-MS user. We also

discuss on the added value of the CCS value for lipid identification,

including the different CCS databases and software available for iden-

tification purposes that are currently available and have recently been

developed. Besides, we expect this review can be of help and guide for

the IM-MS analysts, helping them in the decision-making process in

lipidomic workflows.

2 DATA ACQUISITION

As part of an analytical technique containing an MS stage, an IM-

MS instrument can be operated in the common MS modes: scan and

MS/MS modes with electrospray ionization as the most common ion-

ization source used either in positive or negative mode. In the scan

ions of an m/z range transverse the IM reaching the detector while

in MS/MS mode some selected ions are fragmented in a collision cell,

reaching the detector all their products or some selected ones. In this

section, we focus on the different acquisition modes in IM-MS, which

might entail significant differences due to the existence of the IM

stage compared to the equivalent analysis in MS. The advantages and

disadvantages of those approaches are also discussed.

2.1 Scan mode

This mode permits to monitor ions in a desired mass range. It is used

to obtain a broad view of the composition of a sample, as the system

will record abundances and arrival times for all measured m/z values.

Typically used in untargeted approaches, scan analyses will result in

large, datasets composed of many unknown features, which makes the

interpretation of the data a complicated task.

The fact that only a small proportion of the ions generated in the ion

source can enter the IM, while all the others are lost, affects the sensi-

tivity of the analysis, reducing the ions that are effectively used in the

acquisition, or duty cycle. Using a trapping cell before the IM stage in

which ions are accumulated and released, is a partial solution [33]. This

will increase the number of ions reaching the detector, thus increasing

duty cycle, but it can affect quantitation of low m/z ions and result in

detector saturation, especially with increasing trapping times [34]. An

alternative is to split the ion packets into smaller ones that are pulsed

into the IM, reducing the ion losses, and reaching up to 50% increase in

duty cycle [35]. This is knownasmultiplexing the IMsignal in time (tem-

poral multiplexing) and can be performed in pulsed time dispersive IM,

such as DTIMS and TWIMS. Multiplexing has shown important advan-

tages compared to single pulse acquisition modes. Ions are trapped

for shorter times in the trap cell than in single pulse IM and they are

released in a pseudo-random pulsing sequence (PRS). A multiplexed

analysis results in as many signals as ion packets are pulsed in the PRS.

For example, in a 4-bit PRS, when an ion is visualized in an abundance

map showingm/z and the arrival time, eight signals will be shown at dif-

ferent arrival times following the random pulsing pattern (Figure 2).

However, for CCS calculation and data interpretation, data must be

combined and deconvoluted by tracing back the pattern used in the

PRS using specific software [34, 36].

Theadvantagesof amultiplexedover single pulse analysis havebeen

extensively covered inproteomics analysis and includenoise reduction,

increased sensitivity, lower probability of peak saturation, extended

working linear ranges and increased duty cycle [33, 35, 36]. For amino

acids andothermetabolites,Causonet al. [34] demonstrated thatwhen

performing a 4-bit multiplexing analysis of a yeast extract, there was

9-fold sensitivity increase and an evident noise reduction over the

single-pulse mode with the same trapping times, in particular for m/z

below 250. Most recently, an evaluation of the effects on lipid analysis

of different trapping times in single pulse and multiplexed modes was

performed by da Silva et al. [37]. Results from high trapping timeswere

concordant with previous findings for other molecules, in which high

trapping times increased signal intensity and duty cycle at the expense

of possible detector saturation. On the other hand, in multiplexing

mode, different trapping times did not significantly change sensitiv-

ity, especially for lipids of m/z over 300. Moreover, it was found that

divergent sensitivities using the aforementioned modes appear to be

influenced by the lipid structure, as multiplexing mode increased sen-

sitivity in fatty acids, but single pulse did so in carnitines. Surprisingly,

when making the same comparison in complex samples like HepaRG

cell extracts, there was no signal intensity gain for most lipids in mul-

tiplexing mode. Nonetheless, lipidomics analysis in complex samples

can still benefit from multiplexing in means of detector saturation and

noise reduction that can increase peak deconvolution, feature finding

and as a result provide a more confident lipid annotation, especially of

low abundant lipids such as oxylipins [37].

2.2 MS/MS fragmentation mode

MS/MS analyses are widely used, providing essential information for

structural elucidation and lipid identification [38, 39]. MS/MS anal-

yses can be categorized into two groups: targeted and untargeted.

In targeted MS/MS, a list of ions of interest is created by the user

and the system filters those masses being subsequently fragmented.

Untargeted approaches do not need prior knowledge about the sample
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F IGURE 2 (A) Representation of a single pulse in IM, in which ions are pulsed from left to right, towards the detector. (B) Representation of a
PRS. The eight blue bands represent the eight ion packets pulsed, with the ion gate open (1), while the blurred bands represent events in which ions
are not released (0). Higher trapping times in single pulsed IM compared tomultiplexed IM are represented by a wider band of ions. (C) Result of a
4-bit multiplexed analysis for am/z in which the eight packets can be observed along 70ms following a PRS. (D) Same data after demultiplexing in
which all the packets are combined by software in one having a single arrival time, around 38ms.

composition and ionswill be fragmented in data-dependent acquisition

(DDA) or data-independent acquisition (DIA) modes [40]. Including IM

separation before MS/MS analyses has shown advantages based on

the extra separation, such as background noise reduction and con-

sequently more reliable spectra interpretation, which improves the

sensitivity in the analysis of lipid mixtures. Moreover, the quadrupoles

used for MS/MS analysis have much less resolution than a TOF and

artifacts are commonly introduced into the collision cells. IM can filter

these artifacts according to the arrival times, providing cleanerMS/MS

spectra that are free of interference and enhances its interpretation

[26, 28, 40, 41]. Figure 3 shows the differences of the MS/MS spectra

when incorporating IMto the analysis regarding the samespectra using

LC-MS/MS.

∙ In DDA analysis, two types of analyses are performed consecu-

tively. First, in an IM scan, the most abundant ions are selected

by the software. Then, in a second analysis, those ions are iso-

lated one by one by the quadrupole and successively fragmented

to obtain the MS/MS spectra. While DDA is an automated process,

the main disadvantage is the repeated fragmentation information

that generates. For example, if various lipids coelute showing differ-

ent intensities, only those with higher intensity will be selected and

recurrently fragmented. This is reflected as a low coverage of ana-

lytes compared to other approaches. To avoid this, iterative analysis

of a sample can be performed [42]. For this, the sample is injected

multiple times and the ions selected in one scan are excluded from

the subsequent ones (Figure 4). However, as far as we know, itera-

tive analysis has not been introduced in IM-MS/MS analysis so far.

Alternatively, manual exclusion lists should be created, as done by

Pezzatti et al. [43], in which the fragmented ions from the first anal-

ysis were manually excluded in a second analysis, increasing the

number of covered analytes by 20%–25% of all annotated metabo-

lites. However, the creation of manual lists is highly time-consuming

and might not be so effective in increasing the analyte coverage,
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F IGURE 3 In LC-MS, the separation of metabolites using a second separation technique cleans the acquiredMS/MS spectra from artifacts
previously co-eluting in the chromatographic column, thus easing its interpretation and resulting in a higher confidence level of themetabolite
identification.

F IGURE 4 Comparison of DDA and iterative DDA. In DDA, only
themost intense ions (A, B, and C), while the less abundant (D and E)
are not fragmented. In iterative DDA, A, B and C can bemanually
excluded in IM after the first run andD and E are fragmented in the
second one.

when comparedwithDIA analyses. This and the fact that not all ven-

dors offer the possibility of DDA-IM analysis might explain why DIA

seems to be the preferred untargetedMS/MSmode in IM.

∙ In DIA analysis ions are fragmented without any previous selec-

tion. It is more frequently used in untargeted workflows than DDA

due to its wider coverage of analytes and its availability. DIA also

executes two consecutive types of analysis, alternating low and high

collision energies. In the first analysis all the ions are transferred to

the detector without fragmentation (low collision energy) while in

the next one, fragmentation occurs (high collision energy) at fixed

energy. To achieve this, the quadrupole does not filter any masses,

acting just as an ion guide. Therefore, assigning product ions to their

precursors is not as straightforward as in DDA, as multiple precur-

sors are fragmented at the same time. This has been considered the

main disadvantage attributed to DIA [43]. But, when IM separation

happens before fragmentation, precursor and product ions can be

aligned according to their mobility behavior, helping in the product-

precursor assignation (Figure 5). However, data might require IM

time alignment since precursor and product might show different

mobilities due to the induced energy applied during the fragmenta-
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F IGURE 5 Representation of a DIA analysis in which low energy and high energy fragmentation are performed for all ions generated in the ion
source. Matching precursors and products is possible thanks to the IM information, which is the same for both. tA: Arrival Time.

tion [44]. Even more, if coeluting isomers and isobaric forms have

different mobility behavior, their product ions can be discriminated,

like it was done by Hellhake et al. [45] with two isomeric oxylip-

ins in human plasma. The fact that a fixed energy is used for the

fragmentation on DIA is another disadvantage in these analyses,

since the fragmentation cannot be adjusted for eachmolecule,which

often results in poor fragmentation spectra, when the energy is not

enough to fragment the ion.

DIA in IMhasbeen successfully used for the identificationof lipids in

different studies. LikeHinz et al. [46] to study the formationof different

adducts and clusters in oxylipin standards in human platelets or Hines

et al. [28] to identify different lipids in Escherichia coli samples.

Besides, the integration of IM before the collision cell permits the

elimination of in-source fragmentations and therefore cleaning of the

MS/MS spectrum. These fragments that commonly occur in lipids, are

introduced in the IM and reach the detector since the quadrupole is

not working in DIA. Eliminating them, by drift time filtration, has pro-

vided more accurate annotations in DIA with IM. Although a higher

number of rightly annotated compounds was be obtained, many sig-

nals were be lost when comparing to an analysis without IM due to the

decreased sensitivity in these analyses. This was seen by Pezzatti et al.

[43] in human plasma samples when analyzing the whole metabolome,

including lipids andbyPlachaka et al. [47] in humanurine sampleswhen

analyzing steroid doping agents.Most recently, thanks to the drift time

filtration in DIA-IM, Kirkwood et al. [48], created an accurate lipid

library with clean fragmentation spectra from human plasma samples

without the need of standards. This was later used by Odenkirk et al.

[49] for lipid identification in brain samples.

There are some exceptions in DIA in which not the whole ion

population is fragmented. They can be categorized by IM type:

∙ Q-BBI and Q-RAI in DTIMS: New and improved instrumentation

is being developed in DTIMS to include the quadrupole selection

after the IM separation in DIA workflows, improving the acquisi-

tion efficiency and the clarity of the obtained spectra. Two simi-

lar approaches have been made so far: a prototype Ion Mobility

directed Quadrupole Broad Band Isolation (IM-Q-BBI) and an Ion

MobilityQuadrupole ResolvedAll Ions (IM-QRAI). In IM-Q-BBI [50],

the quadrupole isolation window (the m/z range) is correlated with

the mobility of the ions. In other words, the window is quickly

ramped up to fit with the increasing drift times of the precursor ions

in one IM event. To perform IM-Q-BBI a few optimizations must

be done before the analysis to properly correlate the mobility of

ions and the quadrupole selection. IM-QRAI [51] uses a wide isola-

tion window (up to 100 Da), which is ramped in a timeframe of one

millisecond. Considering that the correlation of mobility and mass

in lipids has been demonstrated [52, 53], the application of these

approaches to lipidomic analyses is very well-suited since it permits

lipid class identification. Both approaches resulted in the removal

of unwanted interferences in the MS/MS spectrum at higher levels

than a regular DIA-IM analysis, therefore enhancing the annota-

tions’ confidence level. Another advantage is the higher efficiency

of the mass analysis in the quadrupole analyzer, which increases the

duty cycle. Also, these approaches have been associated to improve

the linearity and a higher number of working ranges. As a draw-

back, they cannot be combined with multiplexing, since the IM is

used in different ways, losing all the advantages of the multiplexed

operation.

∙ CTS and TAP in TWIMS: TWIMS in Synapt systems from Waters

permits alternative fragmentation approaches that provide valu-

able information that can be useful for metabolite annotation. The

following approaches use a first stage of quadrupole filtering for

product fragmentation and IM separation of the products. The fact

that a quadrupole is used in a first instance permits targetedMS/MS

and nontargeted DIA analysis. The utility of Concerted Tandem

(CTS) analysis has been demonstrated in the identification of lipids

based on the unique mobility of the product ions and their exact

mass in complex mixtures [54–56]. Time–Aligned Parallel Frag-

mentation (TAP) performs two fragmentations: a first one before

IM separation and a second one after it. This provides first and

second-generation fragment ions that are aligned based on drift
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time, enhancing the structural information of analytes [57]. It has

been used for the localization of fatty acyl and double bond position

in phosphatidylcholines (PC) in plasma samples [57] and to provide

information on the cis/trans geometry of the double bonds [58].

∙ PASEF in TIMS: In a conventional TIMS-MS/MS analysis, the

quadrupole selects just one m/z for its fragmentation in each

TIMS separation, whilst all the other ions that continue to elute

are not fragmented, losing and estimated 90% of the acquisition

efficiency [42, 59]. To improve the acquisition efficiency, Paral-

lel Accumulation–Serial Fragmentation (PASEF) was developed by

Meier et al. [59] and it was later included in timsTOF Pro by Bruker

Daltonics [60]. In PASEF, the quadrupole is set to isolate as many

precursors as possible by changing the selected m/z for each ion

that elutes from TIMS, greatly increasing the number of precursors

selected and the fragmentation information provided [60]. Besides,

DDA-PASEF can be operated in iterative mode, covering even more

precursor ions [42]. The performance of PASEF in lipidomics was

evaluated by Vasilopoulou et al. [42] in human plasma, mouse

liver tissue and HeLa cells samples. The use of PASEF increased

the number of fragmented features 11.5 times compared to stan-

dard TIMS-MS/MS, with an average of 15 fragmented precursors

per PASEF scan. The number of identified lipids augmented more

than 3 times, establishing PASEF as a great tool for high coverage

lipidomics. Most recently PASEF was used for the identification on

chain level of lipids in spleen tissue. This permitted to characterize

not just nonisomeric lipids, but to identify two coeluting glyc-

erophosphoglycerols (PG), PG(18:1_18:2) and PG(16:0_20:3), that

otherwise would not have been distinguished, by providing a CCS-

filtered fragmentation spectra [61]. This approach is a DDA mode,

but diaPASEFhas been implemented aswell. For it, a quadrupolem/z

isolation window is used which, based on the mobility of the ions, is

automatically adjusted. This method has shown promising results in

proteomics but is yet to be used in lipids [62].

It can be inferred from the available working modes in IM that dif-

ferent approaches for sample analysis are currently available. Some of

them are relatively complementary (DDA and DIA) while some oth-

ers are exclusionary (e.g., multiplexing IM-QRIA is not possible). Each

approach has its own characteristics resulting in particular advan-

tages and disadvantages in metabolite identification and structural

elucidation. To make the most of IM-MS/MS, combined DDA and DIA

analysis is suggested. By combining both analyses, a higher coverage

of the lipidome is potentially achieved [40]. A hybrid DDA and DIA

has recently been reported utilizing a Vion IM-QTOF, with a full IM

scan, DIA-IM of all precursors and DDA-IM of the most abundant pre-

cursors [63]. This approach improved peak capacity, selectivity, and

resolution of coeluting compounds, along with higher quality spec-

trum, higher coverage of analytes and faster structural elucidation. It

is important to highlight that most of the lipidomics approaches are

done with a previous LC separation, which provides additional infor-

mation about the analytes as RT data. This supports the identification

of some analytes, including lipid isomers, while increases the amount

and complexity of the generated data. Much more information can

be extracted from a combined approach (LC-DIA-DDA-IM-MS/MS),

resulting also in a higher amount of data that hinders its interpretation.

Manual analysis and inspection of all the generated data are there-

fore unfeasible. Moreover, the fact that many of these working modes

have been recently introduced predicts the arising of innovative com-

putational solutions in the following years for an analytical field that

increases data complexity. The IM-MS analysis shall rely in effective

software that assists in the processes of data pretreatment and data

analysis.

3 DATA PRE-TREATMENT

As reviewed in the previous section, IM produces large sets of data

that can be, at the same time, of different types depending on the

acquisition modes used. Some of this data must be treated and pre-

pared before it can be further analyzed and investigated. Particularly,

we refer here to the demultiplexing of multiplexed files and other

preprocessing steps, and to the subsequent CCS calculation. Differ-

ent proprietary software has been developed by the vendors, which

is exclusive for their users. For that reason, we will focus here and

in the next section on free software offered by research groups and

organizations.

3.1 Demultiplexing and other pre-processing
tools

Multiplexing provides several advantages in terms of improved signal-

to-noise and detector saturation. However, to visualize these benefits,

multiplexed data files must be demultiplexed. This can be made via

a proprietary software or a new and accessible software like the

PNNL PreProcessor [30], developed by the Pacific Northwest National

Laboratory. This uses an improved Hadamard-transform to perform

demultiplexing and reconstruct data which also removes data artifacts

[33]. Besides, PNNL PreProcessor is not just a demultiplexing tool,

but it provides different modules for other preprocessing steps includ-

ing the IM dimension, like smoothing, noise reduction, and saturation

repair, among others. All of this is aimed at file simplification, user con-

venience and time saving as data complexity has drastically increased

with IM [31, 32]. The preprocessing options that it includes can be used

forDTIMS and SLIManalyses, in either scan or fragmentation data, and

the preprocessing output files can be used for further analyses like fea-

ture finding and CCS calculation. The use of some of its features have

been proven to be very practical in LC-IM-MS lipidomics by increas-

ing the number of annotated lipids and decreasing processing time.

For example, an increase of 19.4% in the number of lipid annotations

was found when applying smoothing, noise reduction and saturation

repair, furthermore, processing time was reduced by half [30]. In a dif-

ferent study, the number of detected features in human plasma, serum

and HepG2 cells was about 20% more than in raw data when applying

PNNL Preprocessor’s smoothing, and noise filtering [64]. These results

highlight the importance of a good and efficient data preprocessing
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step in lipid annotation, especially when a complex third dimension is

added to the analysis. PNNL Pre-Processor has also been used in other

lipidomic studies within the last 2 years for demultiplexing and satura-

tion repair [65–70], which shows a good acceptance of the software for

these studies using IM-MS.

3.2 CCS calculation

TheCCS is auniquephysical propertydeterminedby the size and shape

of a molecule and the chemical and physical nature of the interaction

with another molecule [71]. The CCS is defined as an “effective area”

that quantifies the likelihood of a scattering event occurring when two

species collide, in this case, the molecule analyzed and the buffer gas

molecule, under the influence of an electric field. It is typically denoted

as σ or Ω and measured in units of area. Ions with a larger CCS are

going to present more interaction with the gas, meaning that they will

travel slower than those with smaller CCS values. Furthermore, the

electric force experienced by an ion is proportional to their charge

state, hence, ions with higher charge state will travel at a higher veloc-

ity. The arrival time, along with the specific conditions, can be directly

translated into the CCS of the molecule using the Mason-Schamp

equation [13, 19]:

Ω =
3ze

16NK0

√
2𝜋
𝜇kBT

; K0 =
L
tAE

P
P0

T0
T

whereΩ is the rotationally averaged CCS, kB the Boltzman constant, T

the temperature of the buffer gas, μ reduced mass of the analyte ion

and the buffer gas, tA the corrected arrival time, ze the charge state

of the analyte ion, E the electric field, L the length of the drift cell, P

the pressure in drift cell, N the number density in the drift cell, K0 the

reducedmobility, andP0 yT0 the pressure and temperature in standard

conditions, respectively.

One of the advantages of CCS values is their high reproducibil-

ity across different laboratories and instruments, making it a great

measurement for lipid annotation [72]. The introduction of CCS to

MS analyses helps in the task of reducing the number of misidenti-

fications and increasing the confidence level of the different anno-

tations using m/z, ideally distinguishing between different isomers.

It is important to note that CCS and m/z are related so they are

not completely orthogonal, providing the composite CCS-m/z data

a lower confidence level than the m/z-MS/MS [43]. This can be

observed in lipidswith increasingmasses, such as fatty acids, lyso forms

of phospholipids and triglycerides, which have also increased CCS

values.

CCS values can be calculated in DTIMS, TWIMS, TIMS. However,

few facts must be considered for this calculation. First, the use of

a trap cell before the IM, besides increasing the duty cycle, allows

pulsing ion packets separated by a few milliseconds in a way that an

arrival time (tA) can be assigned to each of the ions reaching to the

detector, obtaining an arrival time distribution. This arrival time is the

time for each ion to reach the detector and includes the time spent

in trespassing sectors of the IM-MS that are not only the IM stage

(t0), such as quadrupoles, collision cells or the TOF stage [18]. The

arrival time must be subsequently corrected to assign each ion to the

corresponding time spent in traversing only the electric field of the IM,

what is called in DTIMS as drift time (td):

tA = td + t0

Second, all parameters involved in theCCScalculationmust be accu-

rately known. In DTIMS, for example, these parameters are drift time,

gas temperature, gas pressure in the drift cell, voltages, tube length. . .

Although the tube length is constant and very similar among different

produced units and the voltage is accurately controlled with precision

electronics, slight variations can be observed in the gas pressure and

the gas temperature. This is particularly important in long sequences of

analyses in which the room temperature can significantly vary affect-

ing the gas temperature. Third and last, in TWIMS the field is dynamic

and nonuniform, and this affects theCCS calculation of ions.Moreover,

the ion heating experienced at higher fields also affects the accuracy

of the CCS value in TWIMS [73]. To overcome these limitations, a CCS

calibrationwith ions of knownCCS values is performed by infusion of a

calibrant mix in the IM-MS system for correction. Two CCS calculation

methods are distinguished here:

∙ Primary methods: Based on experiments with several field values

and called “stepped-field” calibrations for that reason, these cali-

brations are based on plotting the different tA obtained versus the

inverse drift voltages, only in DTIMS. A linear regression is calcu-

lated, from which t0 is calculated from the intercept and K0 (the

reduced mobility used for interlaboratory comparisons) is propor-

tional to the slope [74]. At least six different fields are used for

this purpose [18]. These calibrations provide very accurate and

reproducible CCS values with very high precision in interlaboratory

comparisons. ThiswasevaluatedbyStowet al. 2017 [19] in threedif-

ferent laboratories, providing RSD values of 0.29% for several types

of molecular classes in DTIMS. However, CCS values must be calcu-

latedonebyone for the compoundsof interest,which typically limits

its use to the definition of CCS values for new compounds.

∙ Secondary methods: These methods can be done in DTIMS, TWIMS

and TIMS and use a linear regression, reference compounds of

known CCS values and a single field measure. For that reason, it

is more practical and has been more widely accepted for CCS cal-

culation [74, 75]. However, it provides less accurate CCS values

having been shown to provide RSD values of 0.54% in DTIMS in the

interlaboratory evaluation afore mentioned [19], while in TWIMS

the deviations are higher for the reasons explained below. Still,

these methods are found for most of the IM-MS applications, for

comparisons and for CCS-assisted annotation.

The CCS should be reported as stated by McLean and Gabelica,

including the drift gas and the instrument type in the terminology

such as DTCCSN2 (for values obtained in DTIMS using N2 as drift gas)

or TWCCSN2 (for values obtained in TWIMS using N2 as drift gas), as
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well as including whether they were determined using a primary or

secondary method [74, 76]. This is relevant since the CCS calibration

entails important differences among DTIMS, TWIMS, TIMS. For

example, DTIMS shows lower RSD in the determination of CCS than

TWIMS.Moreover, TWIMS requires the use of compoundswith similar

structures to the ones whose CCS wants to be calculated. This poses

an important problem, considering that a wide variety of compounds

can be found in a single sample. This was evaluated by Hines and

collaborators [77], whose work evaluated the use of different CCS

calibrants for the determination of the CCS in lipids, from the generic

poly-Ala used in TWIMS to more specific phospholipids. The authors

observed higher accuracies when phospholipids were used as cali-

brants, which has higher similarity to the analytes than poly-Ala, which

gave less accurate CCS values. Moreover, the authors observed better

calibrations in positive ionization mode using phosphatidylcholines

and in negative ionization mode using phosphatidylethanolamines.

Although this greatly overcomes the problem of the accuracy in the

CCS values obtained in TWIMS, entangles a problem of correctly

choosing the calibrant in TWIMS. A recent approach allows the CCS

calculation in DMS using a machine learning-based calibration [78].

However, these are not experimentally calculated CCS values, but

based on predictive models, providing CCS within 2.6%mean absolute

percentage error. In this case, the type of molecules used for the

training set of the predictive model also affect in a great extent the

calculated CCS and different models should be used for different

analytes. This makes this approach, although feasible, far from being

a routine process for the CCS calculation. Summarizing, the type of IM

used and the experimental conditions during the calibration greatly

affect the accuracy of the estimated CCS value. For more detailed

information about CCS calibrations in different IM systems, refer to

more specific literature on the topic [3, 72–74, 77, 79].

In a routine IM-MS analysis CCS values are not determined man-

ually, but they are usually determined using proprietary software

provided by the vendors such as IM-MSBrowser fromAgilent and Pro-

genesis QI fromWaters, which somehow can limit the accessibility and

possibilities of analysis. Different freely available software has been

developed to make CCS calculations more convenient and open like

PIXiE [80] and AutoCCS [75] which are further discussed below.

PIXiE is an open-source tool for CCS calculation based on primary

methods. The fact that secondary methods are not supported was jus-

tified by the desired accuracy of the reported CCS values by PIXiE

[80]. Their creators further developed PIXiE into what was later called

AutoCCS. This upgraded version can perform CCS calculations for

Agilent (DTIMS) 6560, stepped-field and single-field methods, as well

as for Waters SynaptG2s-i (TWIMS) and for Bruker timsTOF Pro™
(TIMS). It is worth noting that for DTIMS single-field calibration, two

methods are available, one of them offeringmore accurate CCS values,

since it accounts for temperature and pressure variations that typically

occur during the analysis to correct them. Its performance was tested

on Agilent’s tune-mix ions for all the calibration methods and for some

metabolites and peptides in stepped-field and single-field methods in

DTIMS. The obtained CCS values with AutoCCS were compared to 3

reference sets of CCS values, being the error (%) always below 1%.

Data including the list of IM-MS features can be uploaded as MZmine

and csv files, among other proprietary formats. The main advantage of

AutoCCS, apart from the fact of accepting open-source format files for

data input and being usable with IM-MS data from any instrument, is

the time saving during the generation of the CCS values through an

automatedworkflow [75].

4 DATA ANALYSIS

4.1 IM-MS computational resources for
metabolite identification

The CCS values obtained and calculated by IM means have been

included in the process of metabolite annotation since it provides a

quasi-orthogonal property of the analyzed molecules. Furthermore,

the high reproducibility of the CCS among different laboratories [19]

makes its use trivial to use as a filter since this property might be used

to perform metabolite annotation and reduce the false positive anno-

tation rate [3, 66, 79]. An effort to outline the standards to report the

IM-MS measurements was done by Gabelica et al. [74] with the goal

of exploiting the CCS values obtained in different experiments, and a

number of metabolomic databases have reported or included the CCS

values of their compounds. As the CCS value will vary depending on

the adduct formed, the databases should provide them for the most

common ones.

4.2 CCS experimental databases

Table 1 summarizes the current metabolomic databases providing

experimental CCS values that are accessible through a programmatic

way or in an easily readable format. This aspect is relevant for the use

of the CCS libraries to create models able to predict the CCS of com-

pounds yet to experimentally analyze, since the experimental analysis

of all themetabolomes is unfeasible. CCSCompendium [52] is a unified

compendium of about 3800 experimentally CCS values; the IM confor-

mational lipid atlas for high confidence lipidomics [1], accessible from

LipidMaps; the IM collision cross-section atlas, known as AllCCS by its

web interfacewas released in 2020 and published about 5000CCSval-

ues [67]; the database from CCSBase created in order to train a model

for predicting CCS values [81]; and finally the one recently announced

byXCMS fromtheGarySiuzdak groupof Scripps,which contains above

10,000 reference compounds with their corresponding experimental

CCS values and its accessible under a payment license through the

XCMSOnline [82].

4.3 CCS predicted databases and predictive tools

The databases containing experimental data are always preferred by

the researchers, but the lack of experimental CCS values makes the

prediction of them a must to annotate metabolites in experiments
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TABLE 1 Characteristics of metabolomic databases with experimental CCS values

CCS compendium CCS base

Pacific northwest

national

laboratory LipidMaps AllCCS

Size of data set 3,728 values (1,714

compounds)

12,577 values (5,077

compounds)

>500 values 456 values (217

compounds)

3359 values

(2193

compounds)

Number of

adducts

18a 45b 9c 7c 15d

Diversity of

compounds

14 superclasses, 80

classes and 157

subclasses

Small molecules, lipids,

peptides and

carbohydrates

Primary and

secondary

metabolites and

xenobiotics

7 lipid classes 14 classes, 144

classes and

257 subclasses

Meassurement

technique

DTIM and TWIM DTIM and TWIM DTIM DTIM DTIM and TWIM

Buffer gas Nitrogen Nitrogen Nitrogen Nitrogen Nitrogen

Format CSV file CSV, SQL dump and

web interface

TSV XSLX, web

interface and

Rest API

Web interface

Downloadable

Compendium

Contained in

other

compendiums

Access Free Free Free Free Free, requires

registration

aAdducts: [M-2H]2-, [M-2H+Na]-, [M-Br+O]-, [M-Cl+O]-, [M-H-H2O]
-, [M-H]-, [M-H+H2O]

-, [M]+ , [M+2H]2+ , [M+2H+K]3+ , [M+3H]3+ , [M+4H]4+ ,

[M+5H]5+ , [M+Cu]2+ , [M+H-H2O]
+ , [M+H]+ , and [M+Na]+ .

bAdducts: [M-2H]2-, [M-2SO3-2H2O+H]
+ , [M-CH3]

-, [M-H]-, [M-H2O-H]-, [M-H2O+H]
+ , [M-H2O+HCOO]-, [M-SO3-3H2O+H]

+ , [M-SO3-H]
-, [M-SO3-

H2O-H]-, [M-SO3-H2O+Cl]
-, [M-SO3-H2O+H]

+ , [M-SO3-H2O+HCOO]-, [M-SO3+Cl]
-, [M]+ , [M+2H]2+ , [M+2K]2+ , [M+2Na-3H]-, [M+2Na-H]+ , [M+3H]3+ ,

[M+4H]4+ , [M+CH3COO]-, [M+Cl]-, [M+Cs]+ , [M+H-2H2O]
+ , [M+H-H2O]

+ , [M+H]+ , [M+H2O-H]-, [M+H3C2O2]
-, [M+HCOO]-, [M+K-2H]-, [M+K-H+Cl]-,

[M+K-H+HCOO]-, [M+K]+ , [M+Li]+ , [M+Na-2H]-, [M+Na-2H2O]
+ , [M+Na-H]+ , [M+Na-H+Cl]-, [M+Na-H+HCOO]-, [M+Na-H2O]

+ , [M+Na]+ , [M+NH4]
+ ,

[M+OAcO]-, and [M+Rb]+ .
cAdducts: [M+H]+ , [M+Na]+ , [M-H]-, [M+2H]+2, [M]+ , [M+CH3COO]-, [M+HCOO]-, [M-Br+O]-, and [M-Cl+O]-.
dAdducts: [M+Na]+ , [M+2Na-H]+ , [M+H]+ , [M+K]+ , [M-H]-, [M+Cl]+ , [M+HCOO]-, [M+Na-H2O]

+ , [M+H-2H2O]
+ , [M+H-H2O]

+ , and [M+Na-2H2O]
+ .

using IM as a separation technique. Thus, a considerable number

of alternatives to predict them has been developed. Historically, it

has been several methods that calculate the CCS using different

theoretical models, such as MOBCAL [83], Sigma Suite [84], WebPSA

[85], IMPACT [86], CCS [87], Collidoscope [88], ISiCLE [89], or

HPCCS [90]. Most of them have a better performance the larger the

molecule is and, therefore, they are mostly used in the proteomics

field.

Recently, with the publication of several experimental data sets

previously mentioned, different machine learning models have arisen.

MetCCS [91], LipidCCS [92], DeepCCS [93], CCSBase [94], AllCCS [67],

or DarkChem [95] are some of the examples, all showing median rela-

tive errors below 3% in the calculation of CCS. Some of them provide a

web interface that ease the use of researcherswith a small background

in computer programming. The high precision of these solutions helps

toovercome the lackof experimental databases,whichare slowlybeing

published. Thecharacteristics of thesepredictive tools arepresented in

Table 2, excluding the alternatives whose source code or any interface

to use themwere unavailable [96–99]. Furthermore, some of the most

used databases to annotatemetabolites such asHMDB [100] orMetlin

[82] (under payment) have incorporated CCS values to filter the anno-

tations based on them/z and the CCS values, and optionally to perform

similarity spectra searches.

4.4 CCS identification software tools

Regardless the high precision of the IM instrumentation, the growing

number of CCS databases for known structures and the improve-

ment in the computational tools to predict the CCS, it does not

seem that the experimentally collected data will be enough during

the next few years to distinguish a unique structure among iso-

mers with a highly similar structure. This is especially noticeable in

those cases where the sample only contains one of them and it is
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F IGURE 6 The inclusion of a quasi-orthogonal dimension like CCS provides evidence to support or refute an annotation, resulting in the
increasing of the precision and the recall of the annotatedmetabolites, especially for novel researchers that do not have the expertise to interpret
RT information.

necessary to elucidate the right identification. TheCCS similaritymight

provide evidence to support or to refute one or several structures

from the others, but the precision of the current instrumentation

is not sufficient to uniquely identify one. Figure 6 shows an exam-

ple of how two lipids could be differentiated using their CCS values.

The low reproducibility of RT hampers its interpretation, but the

high reproducibility of CCS makes the difference (ΔCCS) between the
experimental CCS and the reference ones (contained in databases

or predicted by computational tools) ideal for novel researchers that

might not have enough experience to use the RT to identify the ana-

lyzed features, but they can easily interpret the ΔCCS. Thus, the CCS
similarity increases the confidence in the annotation of putative can-

didates of features, although the high correlation between the CCS

and the m/z values [14, 48, 53, 101] hinders the unique identification

of metabolites using the information coming from LC-IM-MS experi-

ments. TheCCSvalue togetherwith them/z is not sufficient to uniquely

identify features, especially in biological samples with a large num-

ber of metabolites present without prior knowledge, but it provides

hints about which one is more plausible. Thus, the configuration LC-

IM-MS/MS has become the most common setup when incorporating

IM to the metabolomics and lipidomics workflows resulting in the

improvement of the MS/MS spectra quality and easing the identifica-

tion using all the orthogonal information available (m/z, RT, CCS and

MS/MS fragments). This comes at the cost of analyzing a larger amount

of information fromeach feature, but theeffort hasbeendemonstrated

worthy.

There is an extensive literature bibliography where the use of IM

permits the profiling and the quantification of isomers and isobars [3,

102], but the expert knowledge from the researchers has been applied

to create a methodology that permits to analyze the experiments to

reach that. Particularly, correlations between the dimensions of a 2D

separation create trend lines that depend on structural or chemical

characteristics of the compound class and thus facilitate classification

of unknowns. This broadly applies to conventional IM-MS, where the

major biomolecular classes (e.g., lipids, peptides, nucleotides) occupy

different trend line domains [4, 18, 48, 53, 103]. Lipids occupy differ-

ent spaces, showing some lipid classes a larger CCS respecting some

other ones [3, 79]. The degree of unsaturation of fatty acyl chains also

affects the CCS, reducing the drift time about 1%–5% for each double

bond [104].

A promising alternative to analyze information coming from dif-

ferent orthogonal properties in this configuration (m/z, RT, CCS and

MS/MS fragments) is the creation of expert systems that provide

evidence to support or refute the annotations [13]. Computational

tools like MS-Dial [105], SIFTER [106], Lipid4DAnalyzer [66], Sky-

line [107] or CEU Mass Mediator [108] are a promising approach to

incorporate the CCS information to its knowledge base in addition to

other dimensions such as the Kendrick Mass Defect, the RT and/or
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TABLE 3 Summary of the publications in which CCS values were used for lipid identification

Analyzer

Lipid

identification Lipid Class(es)

Confidence

Level byMSI Biological Sample Cite

Synapt G2HDMS,

Waters

Experimental Level 2 Brain tissue [3]

Agilent 6560Drift

Tube-Ion

Mobility-Q-ToF

Experimental and

predicted

DG, PC, TG, LPE,

SM

Level 3 Bovinemilk [4]

Waters Synapt G2-Si

HDM

Experimental MG, DG, DGDG,

CL, PA, lysyl-PG

Level 2 Enterococcus faecalis , Staphylococcus aureus
and Corynebacterium striatum

[6]

Agilent 6560Drift

Tube-Ion

Mobility-Q-ToF

Experimental Oxylipins Level 2 Mouse lung tissue [10]

Agilent 6560Drift

Tube-Ion

Mobility-Q-ToF

Predicted DG, PC, TG, LPE,

SM

Level 3 Human plasma samples, NIH 3T3 samples (a

mouse embryo fibroblast cell line), and

mouse brain tissue samples

[31]

Agilent 6560Drift

Tube-Ion

Mobility-Q-ToF

Experimental and

predicted

Level 2 and 3 HepaRG cells [37]

Agilent 6560Drift

Tube-Ion

Mobility-Q-ToF

Experimental Oxylipins Level 2 Plasma, serum and cells [45]

Agilent 6560Drift

Tube-Ion

Mobility-Q-ToF

Experimental Oxylipins Level 2 Salmonella typhimurium - infectedmurine bone

marrow derivedmacrophages (BMDM) and

thrombin activated human platelets

[46]

Agilent 6560Drift

Tube-Ion

Mobility-Q-ToF

Experimental Level 3 Human plasma and bronchoalveolar lavage

fluid (BALF)

[48]

Agilent 6560Drift

Tube-Ion

Mobility-Q-ToF

Experimental Level 2 Rat brain tissue [49]

Agilent 6560Drift

Tube-Ion

Mobility-Q-ToF

Experimental Level 2 Human serum [52]

Synapt G2-S instrument Experimental PC, PE, PI, PA, PS,

SM

Level 2 and 3 Human serum [54]

timsTOFfleX Bruker Experimental Level 3 Mouse spleen tissue [61]

Agilent 6560Drift

Tube-Ion

Mobility-Q-ToF

Predicted Level 3 Human plasma, human serum andHepG2 cells [64]

Agilent 6560Drift

Tube-Ion

Mobility-Q-ToF

Experimental Sterols Level 2 Mouse brain tissue [65]

Agilent 6560Drift

Tube-Ion

Mobility-Q-ToF

Experimental GP, SP, GL, FA and

25 lipid classes

Level 2 Human plasma, 293T cells, mouse liver and

brain tissues

[66]

Waters Synapt G2-Si

HDMS

Experimental Level 2 Neuroblastoma [79]

Waters Synapt G2-Si

HDMS

Experimental and

predicted

Level 3 Methicillin-resistant Staphylococcus aureus
(MRSA)

[81]

Agilent 6560Drift

Tube-Ion

Mobility-Q-ToF

Experimental PC Level 2 Human cell pellets, mouse tissue and human

plasma

[92]
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the fragmentation spectra to improve the metabolite annotation and

identification inmetabolomics.

∙ MS-DIAL 4 [105] shows that the inclusion of the CCS informa-

tion (together with RT, m/z, isotropic ions, adduct information and

MS/MS fragmentations) increases confidence annotating and semi-

quantifying8051 lipidswith a1%–2%estimated falsediscovery rate.

CCS information combined with the new acquisition and data pro-

cessing approaches enables 8051 lipids from 117 lipid subclasses

to be identified between Level 1 (identified by standard compound)

and Level 3.2 (accurate mass spectrum and number of carbons

confirmed).

∙ Skyline [48, 107] was updated to support IM-MS data to permit an

automated data analysis of the huge datasets generated by these

systems. Skyline supports scan and MS/MS data, including DIA and

DDA and some specific acquisition modes, such as DIA-PASEF or

DIA-SWATH.TheproposedworkflowbySkyline focuseson targeted

or semitargeted metabolomics. The lipidomic annotation workflow

consists in the creation of a personal library created by the user

(semitargeted), or the human plasma lipid library published by its

team consisting of 516 unique lipids. Libraries can include MS/MS

spectra, name, formula, adduct, m/z, RT and CCS values. Skyline

offers data visualization to inspect chromatograms and spectra by

filtering by the DT which permits an intuitive data visualization due

to the IM filtering of noise, isomers and isobars.

∙ Lipid4DAnalyzer, previously known as LipidIMMS [66], is an expert

system processing multidimensional information from the mass

spectrometer (m/z), the separation techniques (RT, CCS) and the

fragmentation spectra (MS/MS) for lipid identification. The tool cov-

ers 4 superclasses, 25 classes and 267,716 in silico lipid structures.

For each lipid the CCS values were predicted using LipidCCS; RTs

were predicted using a Random Forest (RF) algorithm; and MS/MS

spectrawere predicted using fragmentation rules. Then, it compares

the experimental data with the generated one using a parametriz-

able rule-based approach that permits ranking the candidates for

identification.

∙ SIFTER [106] presented a machine learning algorithm to identify

compoundsbasedon them/z, theCCSand theKendrickMassDefect

instead of another separation technique. The main novelty of this

approach is the usage of the Kendrick Mass Defect to predict the

chemical class, thus providing evidence to support the identification

of functional group isomers. It claims a right category classification

around 80%.

There are several publications that have already used the IM tech-

niques and the CCS property to perform metabolite identification.

Table 3 summarizes those publications according to the instrumenta-

tion used, the metabolite identification confidence level, the metabo-

lites type, and the tissue where the metabolites were identified is

shown.

Thegrowingnumberof experimentally collectedCCSdatabases and

libraries will aid the development of improved models to predict the

CCS of molecules, as well as they will help to create the expert sys-

tems to incorporate knowledge regarding a new orthogonal property,

but the high similarity between some isomers hampers the direct use

of the CCS to distinguish them. This limitation does not reduce the

potential of the inclusion of IM in metabolomic experiments. LC-IM-

MS/MS experiments (1) permit the separation of otherwise coeluting

compounds, thus permitting the proper analysis of the separated fea-

tures and the acquisition of a higher qualityMS/MS spectra; (2) provide

a reproducible orthogonal property to properly identify among iso-

merswith a considerable different shape and size structure; (3) provide

evidence to support or refute the candidate structures; and (4) thus

results in providing a higher confidence level with (confidence level

1) or without the use of reference standards (confidence level 3). The

community as a whole should work in facilitating the communication

between the different tools providing APIs and free access to the tools.

As the IM-MS field is still in an early stage, we shall focus on the open-

science, providing all source codes, documentation and data, so other

researchers can contribute to the field.

5 CONCLUSIONS

When coupled toMS instrumentation, IM has shown to be a great tool

to enhance the confidence level in metabolite identification, especially

in lipidomics studies. Continuous improvements in data acquisition

approaches, mainly in the direction of a higher resolution and a higher

quality spectrum, are enabling a more comprehensive lipidome cov-

erage. New DDA and DIA MS/MS such as PASEF, TAP of QRAI and

other fragmentationmethodologies provide novel tools for better lipid

characterization. In combination with new hardware like SLIM and

cyclic TWIMS for HRIM and the multiple possibilities of front-end

separation techniques permit the in-depth analysis and elucidation

of lipids and their isomers. IM-MS is evolving fast and the emer-

gence of new instrumental designs, acquisitions modes and software

tools for data treatment, analysis and feature identification are con-

tinuously being developed. The combination of different approaches

multiplies the generated data in a way that studying it manually in

detail becomes an unfeasible task in most lipidomics studies. For

that reason, new developments in software and data treatment have

come to help the researchers analyzing and interpreting their data.

The high reproducibility of the CCS across different laboratories and

instruments and the increasing experimental databases, with themore

refined in silico prediction tools and annotation software tools such as

Lipid4DAnalyzer, MS-DIAL 4 or SIFTER considerably aid in the identi-

fication of lipids. Moreover, software tools that help automatize data

analysis are making this technique more accessible to researchers not

just in academia, but in industry and clinical settings [109].

Most of these developments have appeared recently, therefore it is

reasonably expected that innovative advances in IM-MS will expand

during the next years. However, the number of open-source compu-

tational tools for the IM-MS data analysis is relatively low. Most of

the data analysis in IM-MS experiments is performed using proprietary

tools provided by the vendors. On the contrary, it seems that specific-

task tools are slowly being released. Skyline might be an exception,

 16159861, 2022, 15-16, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/pm

ic.202100328 by R
eadcube (L

abtiva Inc.), W
iley O

nline L
ibrary on [20/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



15 of 18

providing a complete software tool for the IM-MS/MS data analysis.

The creation and adoption of a standard file format from the vendors

seemsagood solution to enhance the interoperability of tools. The ana-

lytical community shall work in the creation of standard routines to

acquire and analyze the data obtained.
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