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A B S T R A C T

Post-processing meshing algorithms are widely used to achieve the desired quality in quadrilateral meshes.
Assuming that the mesh quality depends on the distortion and the size error of each of its convex quadrilaterals,
deficiencies arise by considering solutions based in minimizing either the distortion or the size error. To solve
this undesirable situation, in this paper we propose a new smoothing post-processing meshing algorithm. This
procedure provides a good compromise between the distortion and the size of each element in the mesh. It is
formulated by using an elasticity-based argument and allows to be implemented either in sequential or parallel
form. Moreover, it provides a good quality output compared with some of the usual smoothing post-processing
meshing algorithms.
1. Introduction

In CAD a mesh can be seen as the discrete geometric representation
of a given physical domain given by a particular set of individual
elements such as 2D triangles or quadrilaterals (in 2D geometries) and
tetrahedra or hexahedra (in 3D geometries). Thus, considered as a
geometric approximation of the physical domain, the mesh quality has
a direct impact on the simulation robustness, accuracy and efficiency.
Aspects to be considered in order to improve mesh quality are the mesh
resolution, mesh geometry, mesh topology, mesh smoothness, the type
of elements in the mesh and, if any, the order of the element basis func-
tions. In any case, the practitioner should be concerned with the quality
of the mesh to be used. Sometimes, the quality of the mesh is assessed
by visual related techniques, that is, by means mesh diagnostics and/or
values of quality metrics. Two basic categories of methods for mesh
quality improvement can be considered, node movement and mesh
topology. Usually, ‘‘mesh quality improvement’’ is often interchanged
with ‘‘mesh optimization’’. However, mesh optimization should include
a numerical optimization method in which the initial vertex coordinates
are changed, and hence a node movement is produced, to minimize a
function that also depends on vertex coordinates and is related with a
mesh quality measure.

Reinforced by practitioners in engineering and architecture, quadri-
lateral mesh generation has been a critical research problem in the last
decades. However, quadrilateral meshing algorithms provide an output
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which – in order to achieve a target quality – usually requires the use
of a post-processing operation [1,2]. This procedure that can fall in
one of the following two categories. The first one, comprises the so-
called clean-up algorithms. They are able to modify the mesh topology
by creating, removing, and reconnecting nodes and elements. The
second category, constitutes the smoothing algorithms. They proceed by
modifying the coordinates of the interior nodes and maintaining the
mesh topology. Obviously, by just displacing nodes it is not possible
to fix topology issues, thus, if we wish to avoid employing clean-up
algorithms, we must take care that the meshing algorithm already
provides a proper topology, before the post-processing procedure starts.

Concerning quality measures, two types can be considered, qual-
ity measures for isotropic and anisotropic elements. We recall that
an isotropic element is defined as a straight-side element for which
all angles within a face are equal. Otherwise, we will say that it is
a anisotropic element. In particular, in 2D we have the equilateral
triangle and the square as isotropic elements. They are used when the
application has isotropic physics or is the best element shape for it.
Then to quantify the quality of a given element we need to define an
ideal element that represents a configuration benchmark (for example,
the unit square).

The goal of this paper is to introduce a meshing post-processing
algorithm for the quality enhancement of quadrilateral elements. Along
this paper we assume that a structured mesh is a mesh whose interior
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nodes, that is, the nodes that are outside the domain’s boundary, are
the vertices of exactly four sides. Before introducing the post-processing
stage, our starting point is the quadrilateral meshing algorithm intro-
duced by Sarrate and Huerta [3]. The aforementioned procedure pro-
vides a satisfactory topology (the obtained output is either a structured
mesh, when it is used over in a suitable contour, or an unstructured
mesh otherwise). This fact allows to propose a smoothing-only post-
processing, avoiding the use of a clean-up method. We also use the
following characteristics and assumptions to construct our procedure:

• It does not require an initial triangle mesh (it is a direct method).
• It is a recursive subdivision algorithm. It chooses the best splitting

line by assigning a cost line to each possible candidate and then
picking the optimal one (hence, it is easy to be implemented).

• It avoids the use of specific treatments with the only exception
of 6 sided contours. However, following [4], a simple mapping is
performed for subdividing them with some minor modifications.

• We avoid to solve complex geometrical situations (and hence dif-
ficult cases that frequently arise in advancing front and paving [5]
approaches).

Fig. 1(a) shows an output obtained by a meshing algorithm im-
lemented following the above considerations. It is applied to a two
imensional region with a boundary combining rectangular and cir-
ular areas in order to test the behaviour from straight to curved
erimeters. Moreover, it has a gradation over the elements size (near
he curved border they have a side length around the half of the
pposite side straight border). To conclude, observe that the contour
s symmetric with respect to the horizontal axis — when the initial
ontour is symmetric, the procedure provides a symmetric mesh.

The result given in Fig. 1(a) satisfies some of the expected require-
ents of a quadrilateral mesh with of a topology endowed by square

lements: (a) whenever it is possible, it favours a structured meshing,
b) it respects element size gradation when it is variable across the
eshing domain, (c) it only uses quadrilateral elements, (d) it works
ell over arbitrary contours, and (e) the elements tend to inherit the
irections of the perimeter (in this example, he quadrilaterals arriving
o the circular border acquire a radial directionality). We point out that
he above requirements have been achieved without intervention of the
nd-user.

On the other hand, this mesh is still far from the shape quality
hat we shall expect. Some quadrilaterals are noticeably distorted, and
ot all the elements have their size accordingly set to the place they
re located within the domain. While the resulting mesh topology is
ood, some node coordinates need to be modified for achieving the
esired quality. More precisely, Fig. 1(b) provides an example of the
uality improvement that can result after applying a smoothing post-
rocessing. Now, it seems to be clear that before proceeding we need
o define a performance measure for the ‘‘quality’’ of the mesh topology.
ome questions arising from this framework are: Can the ‘‘quality’’ be
uantified? if the answer is positive, will it depend on one or in several
riteria? and, if it depends on several criteria, will they be mutually
iverging?

In a close look at Fig. 1(a), we can observe the following two cases
or poor quality elements (Figs. 2(a) and 2(b)):Either they are too
istorted (Fig. 2(a)), or have an inadequate size (Fig. 2(b)). Thus, we
hall get a mesh with the desired quality by applying a post-processing
hat fixes these two deficiencies. A natural procedure for improving the
uality issues in Figs. 2(a) and 2(b) would be to minimize the distortion
f the involved quadrilaterals (we fix the distortion of a square to
e zero), which would help reduce the deficiencies in Fig. 2(b); and
o minimize the elements’ size error, which would address the issues
rom Fig. 2(a). If we apply a brute force minimization strategy to both
pproaches (by evaluating a massive number of points), we obtain
s output Figs. 3(a)–3(c). In particular, Fig. 3(a) has been obtained
y modifying the nodes coordinates under the constraint that the
ifference between the area of the element and the one for an ‘‘ideal
2

Fig. 1. Quality improvements from smoothing post-processing. Note that this example
has a size gradation for elements (double side length in nodes at the left).

Fig. 2. Quality deficiencies without post-processing.
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square’’ of the desired size should be minimal. This ‘‘ideal square’’ has
a fixed size at each place in the domain. Thus, it allows to address the
deficiencies related to the element initial size. However, this approach
leads us to an unacceptable distortion of the elements far worse than
before the post-processing (compare Fig. 3(a) with Fig. 1(a)).

Now, in Fig. 3(b), we give the result obtained after minimizing
a quality measure, called the Oddy distortion (see 2.2.1 below), for
each of the quadrilaterals in the mesh. While the mesh looks more
pleasant to the eye, a more careful inspection finds that some issues
related to wrong sizes of the elements have not been fixed. This is due
to the fact that this minimization process ignored the element size.
Fig. 3(c) reveals the existence, after the distortion minimization, of
quadrilaterals bigger and smaller than their neighbours in places where
it seems desirable to have elements of constant size. Therefore, it is
not possible to achieve a structured output addressing each of the two
aforementioned quality deficiencies separately.

In order to answer the questions given above, we fix that the quality
of a quadrilateral mesh depends on optimizing: the distortion and the
size of the quadrilaterals. However, the fulfilment of both quantities is
in general not possible. Thus, in order to find a quasi-optimal solution
we need to set a compromise between both criteria. A first approach
to this strategy [3] is a smoothing post-processing algorithm introduced
by Giuliani [6]. This procedure tends to minimize the distortion and
hence to achieve an uniform element size. However, this last fact has
the consequence of blurring, or even losing, the sizes’ gradient. Fig. 4(a)
shows how the size gradient in the original mesh (Fig. 1(a)) has been
noticeably lost when applying the Giuliani algorithm. Indeed, due to
this undesirable fact, Sarrate and Huerta proposed in [3] a simple
variation for the Giuliani algorithm, trying to respect the size of the
mesh elements. Obviously this cannot fix the size errors that already
were in the mesh before post-processing (in fact this variation of the
algorithm has no knowledge of the desired element size, so it cannot
make any size corrections), but it does better respect size gradations
(Fig. 4(b)).

We must mention however that experience shows this variation
of the Giuliani algorithm not only respects the size gradations, but
tends to exaggerate them, introducing visually noticeable noise patterns
throughout the mesh because it produces areas with elements smaller
than the average size in their neighbourhood. At Fig. 4(b), it can be
seen that this algorithm not only has not made the elements more
uniformly sized, but it has even incremented the differences, and these
noise patterns can be perceived. In [7], the authors introduce a new
proposal for smoothing post-processing based on the distortion formu-
lation by Knupp [8]. In this new development, the element size error
is included in the function to be minimized, so that the post-processing
not only reduces distortion, but also the size error. Minimization on
each element, denoted by 𝑒𝑙𝑒𝑚, is performed by a function which is
the product of the distortion of the given element, denoted by 𝜂𝑠ℎ and

here 1 ≤ 𝜂𝑠ℎ(𝑒𝑙𝑒𝑚) < ∞, by the size error, denoted by 𝜂𝑠𝑖 and where
≤ 𝜂𝑠𝑖(𝑒𝑙𝑒𝑚) < ∞), i.e.

(𝑒𝑙𝑒𝑚) = 𝜂𝑠ℎ(𝑒𝑙𝑒𝑚)𝜂𝑠𝑖(𝑒𝑙𝑒𝑚). (1)

Now, we can understand the idea we outlined before: seeking
ptimal quality implies a compromise between distortion and size error
in this case, the compromise has been chosen as the product between
he two). The development in [7] is based in the distortion formulation
y Knupp [8] and it minimizes the arithmetic mean (rather than the
aximum) of the distortion at the element vertices, and because of this

t cannot be directly compared to the results of the algorithm that we
ropose. Thus, we have made a reinterpretation of [7], implementing it
ith the same distortion formulation that our algorithm uses, in order

o compare it with our results. The output from this reinterpretation
s shown in Fig. 4(c). Considering that the elements are quadrilater-
ls, it is obvious that their diagonals have a great responsibility on
he quadrilateral distortion, while the sides affect mainly its size. Of
ourse these are not completely independent responsibilities: diagonals
3

Fig. 3. First approaches towards quality improvement.

have also an impact on the quadrilateral size (keeping the distortion
constant, diagonals will be longer in a bigger quadrilateral), and the
side lengths also affect distortion (the more uniform the side lengths,
the more likely that it will be possible to achieve a low distortion). But
it is clear that if we keep the sides with a fixed length, the diagonals
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Fig. 4. Some smoothing post-processing algorithms.

get a crucial importance in distortion (see Fig. 5). And if we wish to
modify the size without altering the distortion, we need to apply the
same scale factor to all the sides and the diagonals.

To conclude, other two approaches can be used to improve the mesh
quality and the element size. Aparicio-Estrems, Gargallo-Peiró and
Roca [9] introduce a quality measure for isotropic 2D linear elements
and constant metric that can be used to optimize the location of the
nodes to minimize the element distortion [10]. The objective function
used in [10] depends of the whole set of individual elements. Thus, its
parallel implementation appears as a complicated task.

The target matrix optimization paradigm (TMOP) [11] allows to
improve the mesh quality and the element size by using a local quality
metrics together a set of previously created target matrices. However,
there is not yet a general method to create correct and effective goals
4

in response to a specific mesh quality improvement target.
Fig. 5. The sides of both quadrilaterals have the same length, but their diagonals vary,
altering the distortion.

Fig. 6. Equilibrium at a point.

The paper is organized as follows. In Section 2 we introduce the
proposal elasticity-based smoothing algorithm for a quadrilateral mesh
depending on a individual smoothing procedure function. Section 3 is
devoted to the numerical implementation and also some computational
results will be provided. Finally, in Section 4, some conclusions and
final remarks are given.

2. A elasticity-based smoothing algorithm for a quadrilateral
mesh

The aim of this section is to give some preliminary definitions that
we will use to describe our quadrilateral mesh smoothing algorithm
for a given two dimensional region and also to explain the smoothing
strategy used in each vertex of the mesh. As we said above, we will be
taking a compromise between the lengths of the sides and the diagonals
over each quadrilateral in the mesh. Formulating a balance of lengths
suggests the physical parallel of a spring system, or the equilibrium
of members subjected to axial force. There is previous work in spring-
based smoothing post-processing (Lohner et al. [12], as well as an
implementation in the ANSYS software), but those developments do
not take the quest for achieving minimum distortion in quadrilateral
elements (their formulation assumes triangle meshes). This will require
to introduce a distortion magnitude into the model, so that the di-
agonals tend to minimize it. Moreover, it shall be also necessary to
take into account the quadrilateral sides in order to reach the desired
compromise between size and distortion.

Let us consider a quadrilateral mesh Q(𝛺) = {𝛼 ∶ 𝛼 ∈ I} of a given
two dimensional connected region 𝛺. We will consider the set of mesh
points given by the vertices of the individuals in Q(𝛺), that is,

(Q(𝛺)) = {𝑷 ∈ 𝛺 ∶ 𝑷 is a vertex of  for some  ∈ Q(𝛺)}.
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Next, we will explain for a generic fixed point 𝑷 ∈ (Q(𝛺)) (just before
the smoothing post-processing) the strategy for computing its smoothed
version. Let 𝑷 𝑺 be the displaced position for 𝑷 after the smoothing
post-processing. To compute 𝑷 𝑺 , we assume that
{

𝑷 𝒊 ∈ (Q(𝛺)) ∶ 1 ≤ 𝑖 ≤ 𝑛
}

are the initial 𝑛 mesh points connected to
𝑷 by either a side or a diagonal of a quadrilateral  ∈ Q(𝛺). More
precisely, given 𝑷 we will take into account the set

(𝑷 ) ∶=
{

𝑷 𝒊𝑷 ∶ 𝑷 𝒊𝑷 is either a side or a diagonal
for some  ∈ Q(𝛺), 1 ≤ 𝑖 ≤ 𝑛} .

(see Fig. 6). Let denote by 𝑛𝑠 (respectively, 𝑛𝑑) the number of sides in
(𝑷 ) (respectively, the number of diagonals in (𝑷 )). Thus, 𝑛 = 𝑛𝑠 +𝑛𝑑 .
We also assume the existence of a map

𝐿 ∶ (𝑷 ) ⟶ (0,∞), 𝑷 𝒊𝑷 ↦ 𝐿(𝑷 𝒊𝑷 ) ∶= 𝐿𝑖,

where 𝐿𝑖 is a previously fixed ideal length for 𝑷 𝒊𝑷 (in sections 2.1 and
2.2 below we explain the practical construction of 𝐿).

Let 𝒗𝒊 ∶= (𝑣𝑥𝑖 , 𝑣
𝑦
𝑖 ) be direction vector associated to the corresponding

segment 𝑷 𝒊𝑷 . Thus, ‖𝒗𝒊‖ is the length of 𝑷 𝒊𝑷 . Let 𝒕 = (𝑡𝑥, 𝑡𝑦) be the
displacement vector 𝑷 𝑺𝑷 joining 𝑷 together its smoothed position, 𝑷 𝑺 .
It will be our goal variable that needs to be calculated (see also Fig. 6).

In order to define an optimal value for 𝒕, we consider that 𝑷 𝒊𝑷 is a
bar with a length 𝐿𝑖 and associated cross sectional area 𝐴. We assume
that 𝐿𝑖 is given and 𝐴 is a fixed constant independent of 𝑖 that needs
to be determined. Consider that 𝑷 𝒊𝑷 is subjected to equal and opposite
axial forces 𝑁𝑆,𝑖 pulling at the ends when the bar is under tension.
Then we assume that 𝑷 𝒊𝑷 suffers a stress producing a distortion length
‖𝒗𝒊 + 𝒕‖. In consequence, the strain will be given by the ratio:
‖𝒗𝒊 + 𝒕‖ − 𝐿𝑖

𝐿𝑖
.

Let 𝐸𝑖(𝒕) be a given non-linear function of 𝒕 that represents a modulus
of elasticity for 𝑷 𝒊𝑷 ∈ (𝑷 ) (it will be different depending if 𝑷 𝒊𝑷 is
either a side or a diagonal and we will give its construction below).
Now, following the relationship between stress–strain and the modulus
of elasticity, we can write
𝑁𝑆,𝑖

𝐴
= 𝐸𝑖(𝒕)

‖𝒗𝒊 + 𝒕‖ − 𝐿𝑖
𝐿𝑖

, (2)

e consider that the direction vector representing the axial force
irection after smoothing is:

𝑺,𝒊 =
𝒗𝒊 + 𝒕

‖𝒗𝒊 + 𝒕‖
(3)

and, hence the 𝑖th axial force after smoothing exerted at point 𝑷 𝑺 ,
yields:

𝑭 𝒊 = 𝒖𝑺,𝒊 ⋅𝑁𝑆,𝑖 =
𝒗𝒊 + 𝒕

‖𝒗𝒊 + 𝒕‖
⋅
(‖𝒗𝒊 + 𝒕‖ − 𝐿𝑖)𝐸𝑖(𝒕)𝐴

𝐿𝑖
. (4)

ssuming an equilibrium of forces at the smoothed point 𝑷 𝑺 ∶
𝑛

𝑖=1
𝑭 𝒊 = 𝟎, (5)

eads to:
𝑛
∑

𝑖=1

𝒗𝒊 + 𝒕
‖𝒗𝒊 + 𝒕‖

⋅
(‖𝒗𝒊 + 𝒕‖ − 𝐿𝑖)𝐸𝑖(𝒕)

𝐿𝑖
= 𝟎 (6)

which is a system of equations in 𝒕 (independent of the constant 𝐴).
In order to solve (6) we consider the following Individual Smoothing
Procedure (ISP) function

𝒇𝑷 (𝒕) ∶=
𝑛
∑

𝑖=1
𝒇 (𝑖)
𝑷 (𝒕) =

𝑛
∑

𝑖=1
(𝑓 (𝑖)

1 (𝒕), 𝑓 (𝑖)
2 (𝒕)). (7)

where

𝒇 (𝑖)(𝒕) ∶=
𝒗𝒊 + 𝒕

⋅
(‖𝒗𝒊 + 𝒕‖ − 𝐿𝑖)𝐸𝑖(𝒕) for 1 ≤ 𝑖 ≤ 𝑛.
5

𝑷
‖𝒗𝒊 + 𝒕‖ 𝐿𝑖
Observe, that we can write the above function as

𝒇 (𝑖)
𝑷 (𝒕) = 𝒈(𝑖)𝑷 (𝒕)𝐸𝑖(𝒕) (8)

where

𝒈(𝑖)𝑷 (𝒕) ∶= (𝒗𝒊 + 𝒕) ⋅
(‖𝒗𝒊 + 𝒕‖ − 𝐿𝑖)
𝐿𝑖‖𝒗𝒊 + 𝒕‖

, (9)

and we have the following lemma.

Lemma 2.1. Given 𝒗𝒊 ∈ R2 consider the open set 𝑖 = {𝒕 ∈ R2 ∶ 𝒕+𝒗𝒊 ≠
𝟎}. Then the function 𝒈(𝑖)𝑷 ∶ 𝑖 ⟶ R2 is 1(𝑖) and its derivative is given
y

𝒈(𝑖)𝑷 (𝒕) =
(‖𝒗𝒊 + 𝒕‖ − 𝐿𝑖)
𝐿𝑖‖𝒗𝒊 + 𝒕‖

(

1 0
0 1

)

+ 1
‖𝒗𝒊 + 𝒕‖3

(

(𝑣𝑥𝑖 + 𝑡𝑥)2 (𝑣𝑥𝑖 + 𝑡𝑥)(𝑣𝑦𝑖 + 𝑡𝑦)
(𝑣𝑥𝑖 + 𝑡𝑥)(𝑣𝑦𝑖 + 𝑡𝑦) (𝑣𝑦𝑖 + 𝑡𝑦)2

)

.

roof. See Appendix A.

Next, we decompose the map 𝒇𝑷 as follows. Let

𝑷 (𝒕) = 𝒇 (𝑠)
𝑷 (𝒕) + 𝒇 (𝑑)

𝑷 (𝒕) =
𝑛𝑠
∑

𝑗=1
(𝑓 (𝑗)

1 (𝒕), 𝑓 (𝑗)
2 (𝒋)) +

𝑛𝑑
∑

𝑘=1
(𝑓 (𝑘)

1 (𝒕), 𝑓 (𝑘)
2 (𝒕)),

here the map 𝒇 (𝑠)
𝑷 (𝒕) takes into account the sides in (𝑷 ) and the map

(𝑑)
𝑷 (𝒕) takes into account the diagonals. Observe that from (8)–(9) we
rite

(𝑖)
𝑷 (𝒕) =

(𝒗𝒊 + 𝒕)
𝐿𝑖

⋅
(

1 −
𝐿𝑖

‖𝒗𝒊 + 𝒕‖

)

⋅ 𝐸𝑖(𝒕).

Thus, we will consider 𝐸𝑖(𝒕) = 1 + 𝛩𝑖(𝒕) where 𝛩𝑖(𝒕) is a non-negative
unction that represents the deviation with respect an ‘‘ideal’’ quadri-
ateral. In particular, we will take 𝛩𝑖(𝒕) for the quadrilateral sides as a
unction depending on the quantity 1 − 𝐿𝑖

‖𝒗𝒊+𝒕‖
(which takes zero value

when ‖𝒗𝒊 + 𝒕‖ = 𝐿𝑖) and for the quadrilateral diagonals as a function
depending on the Oddy distortion value.

Next we give the 𝐿𝑖 values and the functions 𝐸𝑖 used to construct
𝑷 . In particular, Section 2.1 is devoted to the case for the quadrilateral

ides and Section 2.2 for the quadrilateral diagonals.

.1. The individual smoothing procedure function over the quadrilateral
ides

As we discussed earlier, the quadrilateral sides have their part of
esponsibility for achieving the desired element size. In this situation
e assume that for each 𝑷 ∈ (Q(𝛺)) there exists a previously fixed

deal length, denoted by 𝓁𝑷 > 0. Then, for each side 𝑷 𝒊𝑷 ∈ (𝑷 ) we
ill define

𝑖 =
𝓁𝑷 𝒊

+ 𝓁𝑷
2

.

Now, we model the modulus of elasticity for the quadrilateral sides as

𝐸𝑖(𝒕) = 1 + 𝑒
𝑐
(

|

|

|

|

1− 𝐿𝑖
‖𝒗𝒊+𝒕‖

|

|

|

|

−𝑑
)

(10)

here 𝑐, 𝑑 are parameters for adjusting the exponential function as
ppropriate (our software implementation uses 𝑐 = 1 and 𝑑 = 0 with
cceptable results).

Therefore, the elements of the Jacobian matrix 𝐷𝒇 (𝑠)
𝑷 (𝒕) correspond-

ng to quadrilateral sides can be computing by using that

𝒇 (𝑖)
𝑷 (𝒕) = 𝐷𝒈(𝑖)𝑷 (𝒕)𝐸𝑖(𝒕) + 𝒈(𝑖)𝑷 (𝒕)𝐷𝐸𝑖(𝒕),

emma 2.1 and together some algebra to obtain:

𝜕𝑓 (𝑖)
1 (𝒕)

=

[

‖𝒗𝒊 + 𝒕‖3 + 𝑟 − 𝐿𝑖
(

𝑣𝑦𝑖 + 𝑡𝑦
)2
]

⋅ 𝐸𝑖(𝒕) − 𝑟
,

𝜕𝑡𝑥 𝐿𝑖‖𝒗𝒊 + 𝒕‖3
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𝜕𝑓 (𝑖)
1 (𝒕)
𝜕𝑡𝑦

=
𝜕𝑓 (𝑖)

2 (𝒕)
𝜕𝑡𝑥

=

[

𝐸𝑖(𝒕) + 𝑠(𝐸𝑖(𝒕) − 1)
]

(𝑣𝑥𝑖 + 𝑡𝑥)(𝑣𝑦𝑖 + 𝑡𝑦)
‖𝒗𝒊 + 𝒕‖3

, (11)

𝜕𝑓 (𝑖)
2 (𝒕)
𝜕𝑡𝑦

=

[

‖𝒗𝒊 + 𝒕‖3 + 𝑞 − 𝐿𝑖
(

𝑣𝑥𝑖 + 𝑡𝑥
)2
]

⋅ 𝐸𝑖(𝒕) − 𝑞

𝐿𝑖‖𝒗𝒊 + 𝒕‖3
,

here

= 𝑐
|

|

|

|

1 −
𝐿𝑖

‖𝒗𝒊 + 𝒕‖
|

|

|

|

, ; 𝑞 = 𝐿𝑖𝑠(𝑣
𝑦
𝑖 + 𝑡𝑦)2, ; 𝑟 = 𝐿𝑖𝑠(𝑣𝑥𝑖 + 𝑡𝑥)2,

and 1 ≤ 𝑖 ≤ 𝑛𝑠. The non-linearity of 𝐸𝑖(𝒕) will be essential as we want
members whose length is farther from their goal length, to react with
exponentially growing axial force (if 𝐸𝑖 was linear, a very deformed
member would not be able to counteract a big set of better sized neigh-
bouring members, leading to situations where badly shaped elements
appear surrounded by a crowd of well shaped elements: non-linear
behaviour avoids those situations).

2.2. The individual smoothing procedure function over the quadrilateral
diagonals

In the previous section, we supposed that the goal length for the
diagonals, 𝐿𝑖 is previously known. The different impact on the quality
of a quadrilateral of its sides versus its diagonals, allows us to fix a
compromise between the quadrilateral distortion and size. This fact
invites to formulate a compromise between the lengths of the sides and
the diagonals by means the notion of the distortion of a quadrilateral
element. There are several proposals for its quantification and, in
particular, Oddy et al. [13] suggest a simple approach that can be
applied to parallelograms and which can be extended to arbitrary
quadrilaterals. Lee and Lo [14] use a distortion measure to get well
shaped quadrilaterals by merging triangles (their algorithm generates
quadrilaterals by grouping triangles from an already existing mesh).
Canann et al. [15] use the Lee and Lo approach, with some modifi-
cations, for their implementation in the ANSYS software. Knupp [8]
proposes a general formulation by considering a set of properties
that affect the elements’ quality. Amongst all the available distortion
evaluation formulations, we have chosen the one by Oddy et al.. This
hoice is motivated for the sake of having an easy implementation and
or its good results at assessing quadrilaterals quality. However, the
lgorithm we described in the previous section is independent on it,
nd can be applied by using other distortion evaluation approaches.
n this paper, the use of the Oddy distortion measure allows to give
collection of simplified equations that can be easily implemented in
computer programme. Next, we will introduce the definition of the
ddy distortion measure for a quadrilateral.

.2.1. The Oddy distortion measure for a quadrilateral
Following [16], the Oddy distortion of a given parallelogram  is

efined by

Oddy() = 2(𝑄2
Oddy() − 1), (12)

ere 𝑄Oddy() is the geometrical efficiency:

Oddy() =
𝑙21 + 𝑙22
2𝐴

, (13)

and where 𝑙1 and 𝑙2 are the lengths of any of the two adjacent sides in
, and 𝐴 is its area.

A way for generalizing this expression to arbitrary quadrilaterals
consists in evaluating it at the four parallelograms that can be con-
structed from each of the vertices in the quadrilateral  (drawing
parallel lines to the both sides meeting at the vertex). In [16], this leads
an expression for the Oddy distortion at a given vertex in an arbitrary
quadrilateral. Let (𝑥𝑗 , 𝑦𝑗 ) be the coordinates of the 𝑗th vertex of a given
ocal quadrilateral , and put

𝑖] = 𝑘 for some 1 ≤ 𝑘 ≤ 4 if and only if [𝑖] ≡ 𝑘 mod 4.
6

Then the distortion for each vertex 𝑖 = 1, 2, 3, 4 is computed by
considering

𝑙2[𝑖] = (𝑥[𝑖+1] − 𝑥[𝑖])2 + (𝑦[𝑖+1] − 𝑦[𝑖])2

𝑙2[𝑖+3] = (𝑥[𝑖+3] − 𝑥[𝑖])2 + (𝑦[𝑖+3] − 𝑦[𝑖])2

𝐴[𝑖] = (𝑥[𝑖+1] − 𝑥[𝑖])(𝑦[𝑖+3] − 𝑦[𝑖]) − (𝑥[𝑖+3] − 𝑥[𝑖])(𝑦[𝑖+1] − 𝑦[𝑖]) (14)

𝑄Oddy,𝑖() = 𝑄Oddy,𝑖(𝑥[𝑖+3], 𝑥[𝑖+1], 𝑥[𝑖], 𝑦[𝑖+3], 𝑦[𝑖+1], 𝑦[𝑖]) =
𝑙2[𝑖] + 𝑙2[𝑖+3]

2𝐴[𝑖]

𝐷Oddy,𝑖() = 2(𝑄2
Oddy,𝑖() − 1).

Observe that the function 𝑄Oddy,𝑖 is 2-differentiable in the open set

𝑈[𝑖] ∶=
{

(𝑥[𝑖+3], 𝑥[𝑖+1], 𝑥[𝑖], 𝑦[𝑖+3], 𝑦[𝑖+1], 𝑦[𝑖]) ∈ R6 ∶ 𝐴[𝑖] ≠ 0
}

,

nd hence also 𝐷Oddy,𝑖() ∈ 2(𝑈[𝑖]). Given that we want a single
calar value for measuring the global distortion of the quadrilateral,
he means for avoiding neglecting local shape problems is to take the
aximum distortion value amongst all the vertices in the quadrilateral.
hus,

Oddy() = max
1≤𝑖≤4

(𝐷Oddy,𝑖()), (15)

s non-differentiable, and therefore computing a minimum value by
lassical smooth methods is not possible. The solution in [16] for
aving a differentiable function is to use the average value from the
istortions at the four vertices. However, as the authors point out,
his can result in a distortion value lower than the one that should
e assigned to the quadrilateral. In our approach, this is not necessary
s we explain below, which allows us to consider a function based on
he maximum rather than on the average. The map 𝐷Oddy() is in fact
piecewise 2-function in R8 (see Chapter 4 in [17]) by considering

hat each 𝐷Oddy,𝑖() is defined over (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑦1, 𝑦2, 𝑦3, 𝑦4) ∈ R8 for
≤ 𝑖 ≤ 4. In consequence, the 𝐷Oddy() is a semi-smooth function (see
ection 2.5.3 in [18]) and hence a non-smooth version of the classical
ewton method is available (see Chapter 3 in [18]).

This strategy helps us to detect local anomalies that appear at some
ertices. On the other hand, a direct implementation of Eq. (12) can
enerate asymptotes (in the case when 𝐴 = 0) or provide relatively
ow distortion values in degenerate quadrilaterals (in the case that the
uadrilateral has concave vertices). This last possibility is due to the
act that raising 𝑄Oddy to two makes it lose its sign, which is equal to
he sign of 𝐴 (note that a vertex is concave if and only if the area 𝐴
f the local parallelogram at the vertex is negative (assuming counter-
lockwise vertex order, a requirement that we impose to construct
ur meshes). These cases are used in [16] to propose modifications
o the 𝐷Oddy definition. However, our algorithm imposes that 𝐴 > 0
or all local parallelograms, which allows us to consider the original
ormulation for 𝐷Oddy.

Next we will provide an analytical formulation for computing the
iagonal goal length 𝐿𝑖 with respect to a fixed vertex. This value, as we
ill explain below, will be optimal for the Oddy distortion measure.

.2.2. An optimal diagonal length 𝐿𝑖 associated to a quadrilateral  with
espect to a fixed vertex

Let  be a quadrilateral with vertices 𝑷 ,𝑱 ,𝑷 𝒊,𝑲 in
ounter-clockwise order, namely  = {𝑷 ,𝑱 ,𝑷 𝒊,𝑲} (see Fig. 7). Assume
hat 𝑱 ,𝑷 𝒊,𝑲 are fixed points and we wish to construct a point 𝑷𝑶
isplacing 𝑷 in the diagonal direction 𝑷𝑷 𝒊 such that the quadrilateral
 = {𝑷𝑶 ,𝑱 ,𝑷 𝒊,𝑲} satisfies 𝐷Oddy(𝛿) < 𝐷Oddy(). Our goal is to
btain a quadrilateral 𝛿 with a diagonal length 𝐿𝑖 = ‖𝑷𝑶𝑷 𝒊‖ for

which the 𝐷Oddy(𝛿) is a minimum. More precisely, we prove the
following proposition.
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Fig. 7. Quadrilateral with 𝑷 ,𝑱 ,𝑷 𝒊 ,𝑲 vertices in counterclockwise order. Point 𝑷 is
he new position for 𝑷 𝑂 on the diagonal 𝑷𝑷 𝒊.

Fig. 8. Smoothing algorithm. The springs considered at the equilibrium in A have been
drawn with a wider width.

Proposition 2.2. Let  be a quadrilateral with vertices 𝑷 ,𝑱 ,𝑷 𝒊,𝑲 in
counter-clockwise order, denoted as  = {𝑷 ,𝑱 ,𝑷 𝒊,𝑲} and consider the
displacements of a point 𝑷𝑶 along the diagonal 𝑷𝑷 𝒊, that is, 𝑷𝑶(𝑚) =
𝑷 + 𝑚 ⋅ 𝑷𝑷 𝒊. Then the function 𝐷Oddy(𝑚) = 𝐷Oddy((𝑚)), where

(𝑚) = {𝑷𝑶(𝑚),𝑱 ,𝑷 𝒊,𝑲}.

is the quadrilateral with vertices 𝑷𝑶(𝑚),𝑱 ,𝑷 𝒊,𝑲 in counter-clockwise order
that has a global minimum.

Proof. See Appendix B.
7

w

Fig. 9. Quality measurements in the original mesh.

From the proof of Proposition 2.2 we can explicit compute the
absolute minimum value 𝑚∗ for the Oddy distortion measure. Thus
substituting the value 𝑚∗ in 𝑷𝑶(𝑚) we a obtain a vertex 𝑷𝑶(𝑚∗) and
conclude that the length 𝐿𝑖 = ‖𝑷𝑶(𝒎∗)𝑷 𝒊‖ is associated to a quadri-
lateral ∗ ∶= {𝑷𝑶(𝑚∗),𝑱 ,𝑷 𝒊,𝑲} having an diagonal with an optimal
length for the set of quadrilaterals (𝑚) = {𝑷𝑶(𝑚),𝑱 ,𝑷 𝒊,𝑲} that are
btained by displacing 𝑷 along the diagonal 𝑷𝑷 𝒊.

Next, we will define an elasticity modulus 𝐸𝑖(𝒕) for a quadrilateral
iagonal by using of the Oddy distortion measure.

.2.3. The modulus of elasticity 𝐸𝑖 for a quadrilateral diagonal
The non-linear strain–stress behaviour of diagonals is implicitly

ntroduced by formulating their 𝐸𝑖(𝒕) modulus as a function of the Oddy
istortion, turning it unnecessary to adopt an exponential function as
e do for the quadrilateral sides, as follows. In a similar way as above,
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e
(

Fig. 10. Error of the size variation in structured mesh areas, before smoothing,
xpressed as growth slope error in degrees. The greater the error, the darker the shading
maximum=18.98◦; average of absolute value=0.60◦).

let  = {𝑷 ,𝑱 ,𝑷 𝒊,𝑲} be a quadrilateral. Now, let 𝑷 𝑺 (𝐭) ∶= 𝑷 + 𝐭
and consider the parametrized quadrilaterals (𝐭) ∶= {𝑷 𝑺 (𝐭),𝑱 ,𝑷 𝒊,𝑲},
where (𝟎) = . Then we define the modulus of elasticity for a
quadrilateral diagonal as

𝐸𝑖(𝒕) = 1 + 𝑚𝑑 ⋅𝐷Oddy((𝐭)), (16)

where 𝑚𝑑 is a scalar to equilibrate the compromise between element
size quality and distortion quality. The greater 𝑚𝑑 , the more weight the
diagonals will have in the final result, and vice versa. In our experience,
𝑚𝑑 = 0.5 provides a satisfactory compromise and optimal results.
Taking smaller 𝑚𝑑 -values reduce deviations from the desired element
size at the cost of increasing the distortion. On the other hand, taking
greater 𝑚𝑑 -values can slightly reduce distortion at the cost of increasing
the element size error. Although the diagonals are mainly responsible
for the distortion variation, they also have an impact in the variations
of the quadrilateral size. Thus, it is convenient to scale their goal length
𝐿𝑖 by a factor equal to the ratio between the desired quadrilateral size
and the actual quadrilateral size. In this way, diagonals not only reduce
distortion, but also help the sides to reach the desired quadrilateral
size. We must also take into account that we are following the original
formulation for the Oddy distortion, as previously stated. Thus, we must
consider the sign of the area of the local parallelogram when evaluating
the distortion at each vertex in the quadrilateral. In other words, if we
obtain a null or negative area while computing (14), we shall give an
arbitrarily large distortion value to that vertex. That way, degenerate
quadrilaterals will have a large 𝐸𝑖(𝒕) modulus for its diagonals, due to
the great need of such diagonals achieving their goal length, and thus
fixing the quadrilateral degeneracy. As we are detecting the cases with
null or negative area, we avoid accepting the distortion of degenerate
quadrilaterals, as well as we make it impossible for asymptotes to
appear from division by a null area. Since quadrilateral diagonals have
a different modulus of elasticity that its corresponding sizes, we need
to study 𝐷Oddy((𝒕)) as a function of 𝒕 = (𝑡𝑥, 𝑡𝑦) in order to understand
the nature of the function

𝒇 (𝑖)
𝑷 (𝒕) ∶=

𝒗𝒊 + 𝒕
‖𝒗𝒊 + 𝒕‖

⋅
(‖𝒗𝒊 + 𝒕‖ − 𝐿𝑖)𝐸𝑖(𝒕)

𝐿𝑖
= 𝒈𝑖(𝒕)𝐸𝑖(𝒕)

that we can write as the product of a differentiable function 𝒈𝑖(𝒕) =
𝒗𝒊+𝒕

‖𝒗𝒊+𝒕‖
⋅ (‖𝒗𝒊+𝒕‖−𝐿𝑖)

𝐿𝑖
and function 𝐸𝑖(𝒕) for each 1 ≤ 𝑖 ≤ 𝑛𝑑 .

To this end, assume that 𝑷 𝑺 (𝐭) = (𝑃 𝑥 + 𝑡𝑥, 𝑃 𝑦 + 𝑡𝑦),𝑱 = (𝐽𝑥, 𝐽 𝑦),𝑷 𝒊 =
(𝑃 𝑥

𝑖 , 𝑃
𝑦
𝑖 ),𝑲 = (𝐾𝑥, 𝐾𝑦). Then, to evaluate 𝐷Oddy((𝒕)) we will use the

following four functions (see (14)):
𝑥 𝑥 𝑥 𝑥 𝑦 𝑦 𝑥 𝑦
8

(1) 𝐷Oddy,𝑷𝑺
(𝑃𝑖 , 𝐽 , 𝑃 + 𝑡 , 𝑃𝑖 , 𝐽 , 𝑃 + 𝑡 ),
Fig. 11. Oddy distortion after smoothing methods that ignore element size.

(2) 𝐷Oddy,𝑱 (𝐾𝑥, 𝑃 𝑥
𝑖 , 𝐽

𝑥, 𝐾𝑦, 𝑃 𝑦
𝑖 , 𝐽

𝑦),
(3) 𝐷Oddy,𝑷 𝒊

(𝑃 𝑥 + 𝑡𝑥, 𝐾𝑥, 𝑃 𝑥
𝑖 , 𝑃

𝑦 + 𝑡𝑦, 𝐾𝑦, 𝑃 𝑦
𝑖 ),

(4) 𝐷Oddy,𝑲 (𝐽𝑥, 𝑃 𝑥 + 𝑡𝑥, 𝐾𝑥, 𝐽 𝑦, 𝑃 𝑦 + 𝑡𝑦, 𝐾𝑦).

Thus, 𝐷Oddy((𝑡𝑥, 𝑡𝑦)) is computed as the maximum value against
the above four functions, where 1, 3 and 4 depend on (𝑡𝑥, 𝑡𝑦) and
2 is a constant function. In consequence, 𝐷Oddy((𝑡𝑥, 𝑡𝑦)) is a 2-
piecewise smooth function [17] and hence it is semi-smooth [18]. Since
𝐷Oddy((𝐭)) is a semi-smooth function then we can conclude that 𝐸𝑖(𝐭)
is also semi-smooth and hence 𝒇 (𝑖)

𝑷 (𝒕) = 𝒈𝑖(𝒕)𝐸𝑖(𝒕) is a semi-smooth
function for each 1 ≤ 𝑖 ≤ 𝑛𝑑 .

Remark 2.3. We introduced the Individual Smoothing Procedure (ISP)
function 𝒇𝑷 as a sum of two class of functions: 𝒇 (𝑗)

𝑷 that are 2-smooth
functions for 1 ≤ 𝑗 ≤ 𝑛 and 𝒇 (𝑘), that are semi-smooth for 1 ≤ 𝑘 ≤ 𝑛 .
𝑠 𝑷 𝑑
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Fig. 12. Relative side size error after smoothing methods that ignore element size.

hus, we can conclude that the Individual Smoothing Procedure (ISP)
unction 𝒇𝑷 is a semi-smooth function.

.3. An elasticity-based algorithm

Now, we have all ingredients to propose the following:
Individual Smoothing Procedure (ISP): Given 𝑷 ∈ (Q(𝛺))

construct 𝒇𝑷 and compute 𝒕∗ satisfying 𝒇𝑷 (𝒕∗) = 𝟎. Return 𝑷 𝑺 .
It allows us to introduce the following two smoothing procedures

for Q(𝛺).
Sequential Procedure:

(1) Put 𝑁𝑆 (Q(𝛺)) ← (Q(𝛺));
(2) Repeat until  (Q(𝛺)) = ∅ ∶
9

𝑁𝑆
Fig. 13. Error of the size variation after smoothing methods that ignore element size.

(a) Take 𝑷 ∈ 𝑁𝑆 (Q(𝛺));
(b) Run (ISP) to compute 𝑷 𝑺 ;
(c) Put (Q(𝛺)) ← ((Q(𝛺)) ⧵ {𝑷 }) ∪ {𝑷 𝑺};
(d) Put 𝑁𝑆 (Q(𝛺)) ← 𝑁𝑆 (Q(𝛺)) ⧵ {𝐏};

(3) Return (Q(𝛺)).

Let 𝐷 = {1, 2,… , 𝑑} be the number of available computational
evices to implement (SP) in parallel.
Parallel Procedure :

(1) Put 𝑁𝑆 (Q(𝛺)) ← (Q(𝛺)) and 𝑆 (Q(𝛺)) ← ∅;

(2) Repeat until 𝑁𝑆 (Q(𝛺)) = ∅ ∶



Finite Elements in Analysis & Design 215 (2023) 103888C. Blecua and A. Falcó
Fig. 14. Oddy distortion after smoothing methods that take care of element size.

(a) Take 𝑷 (1),… ,𝑷 (𝑑) ∈ 𝑁𝑆 (Q(𝛺));
(b) Run (ISP) in device 1 ≤ 𝑖 ≤ 𝑑 to compute 𝑷 (𝑖)

𝑺 ;
(c) Put 𝑆 (Q(𝛺)) ← 𝑆 (Q(𝛺)) ∪ {𝑷 (1),… ,𝑷 (𝑑)};
(d) 𝑁𝑆 (Q(𝛺)) ← 𝑁𝑆 (Q(𝛺)) ⧵ {𝑷 (1),… ,𝑷 (𝑑)};

(3) Return 𝑆 (Q(𝛺)).

The difference between the above two procedures is 2.(c). Recall
that the set (Q(𝛺)) is used to compute (𝑷 ) that allows to construct
𝑓𝑷 . In the Sequential procedures.(c) we modify the set (Q(𝛺)) leaving
the vertex 𝑷 and introducing the smoothed one 𝑷 𝑺 . Thus, there are
vertices 𝑷 ′ ∈ (Q(𝛺)) such that before we run (SP) it holds 𝑷 ′𝑷 ∈
(𝑷 ′), however after running (SP) we have 𝑷 ′𝑷 ∉ (𝑷 ′) (because in
the Sequential Procedure 2.(c) we leave 𝑷 from (Q(𝛺)). On the other
10

hand, in the Parallel Procedure the set (Q(𝛺)) remains invariant and,
Fig. 15. Relative side size error after smoothing methods that take care of element
size.

in consequence, we compute each 𝑷 𝑺 in an independent way allowing
to parallelize the algorithm.

3. On the practical implementation of the elasticity-based smooth-
ing algorithm

After having presented the values and conditions upon which the
proposed smoothing algorithm is based, in this section we proceed to
describe how it was implemented.

The smoothing is performed with an iterative approach. At each
iteration, vertices interior to the mesh are moved to their smoothed po-
sition. The procedure ends when the vertices displacements are below a
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Fig. 16. Error of size variation after smoothing methods that take care of element size.
given threshold in an iteration. A high quality is often already achieved
within the first iterations, which permits to perform a partial smoothing
from a fixed and low number of iterations. However, the quality of
the elements’ size gets improved as more iterations are completed.
Therefore, by iterating until the vertices displacement threshold is met,
we can reach optimum quality. It is possible to displace all vertices
simultaneously at the end of each iteration (thus allowing a parallel
implementation) or, alternatively, for sequential implementations only,
each vertex can be displaced immediately once its equilibrium is solved
(this makes the rest of vertices in the same iteration to benefit from con-
sidering previously solved vertices in their smoothed position, helping
reduce the number of needed iterations). The achieved quality is almost
11
identical in the two approaches, although the result can be different
(displacing all the vertices in parallel maintains symmetry if the mesh
is symmetrical, while displacing vertices one by one as they are solved
can lead to lose the symmetry in some cases). At each iteration, we
locate all the springs that are connected to each vertex. For example,
in Fig. 8, vertex A is shared by 5 quadrilaterals, and so we must consider
its equilibrium from 10 springs (5 springs are quadrilateral sides, and
the other 5 springs are diagonals connected to the vertex).

The equilibrium at the vertex is equation (6), where 𝑓 (𝒕) is gen-
erated by adding the contribution of all springs connected to the
vertex (both the ones belonging to sides and the ones from diagonals,
expression (7)), with the only difference that 𝐸 (𝒕) is taken from (10)
𝑖
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Fig. 17. Oddy distortion in a perforated panel (3872 quads)..
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for quadrilateral sides, and from (16) for diagonals, and also with 𝐿𝑖
being the user-specified desired element size in the case of sides, or the
ideal length in the case of diagonals (obtained from the best candidate
in B.16). From Eq. (6) we get the 𝒕 value that transforms the vertex
into its smoothed position. This equation can be solved by Newton–
Raphson, building the Jacobian matrix as the sum as the contribution
from sides springs — expression (11)- and from diagonals springs —
expression (17). Proceeding in this way for all vertices, we complete an
iteration, and we continue until all 𝒕 vectors for all vertices are below
a threshold. Pseudocode for the method is shown at algorithm 1 for
12

g

the sequential version in which each vertex is displaced as soon as its
equilibrium is solved, and at algorithm 2 for the parallel version that
displaces all the vertices simultaneously at the end of each iteration.

Now, in order to implement the proposed elasticity-based smoothing
algorithm we need to compute for each 𝑷 ∈ (Q(𝛺)) the value 𝒕∗ for

hich 𝒇𝑷 (𝒕∗) = 𝟎. Since the map 𝒇𝑷 is a semi-smooth function then, in
rder to use the Newton method to compute 𝒕∗, we need to substitute
he classical derivative by a generalized one. More precisely, we use
he so-called B-subdifferential (‘‘B’’ for Bouligard) and the Clarke’s
eneralized Jacobian (see Section 2.1 in [18]) that are defined below.
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Fig. 18. Mesh before smoothing. Cross section of the Cathedral of Mallorca through the second arch [19] (10840 quads)..
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P

efinition 3.1. Let 𝑉 ⊂ R𝑛 be an open set and 𝒇 ∶ 𝑉 ⟶ R𝑚 be
ipschitz continuous near 𝒙 ∈ 𝑉 . The set

𝐵𝒇 (𝒙) =
{

𝑀 ∈ R𝑛×𝑚 ∶ exists (𝒙𝑘) ⊂ Dom(𝒇 ) ∶ 𝒙𝑘 → 𝒙 and 𝐷𝒇 (𝒙𝑘) → 𝑀
}

is called the B-subdifferential of 𝒇 at 𝒙. Moreover, Clarke’s generalized
Jacobian of 𝒇 at 𝒙 is the convex hull of the B-subdifferential of 𝒇 at 𝒙,
that is,
13

𝜕𝒇 (𝒙) = co(𝜕𝐵𝒇 (𝒙)). p
It is possible to prove that if 𝒇 is continuously differentiable in a
neighbourhood of 𝒙 then

𝜕𝒇 (𝒙) = 𝜕𝐵𝒇 (𝒙) = {𝐷𝒇 (𝒙)}

see Proposition 2.2 (e) in [18]).
Moreover, in the case of piecewise differentiable maps it can be

hown the following result (see Proposition 4.3.1 in [17]).

roposition 3.2. Let 𝑉 be an open set in R𝑛 and 𝒇 ∶ 𝑉 ⟶ R𝑚 is a
1 1 𝑚
iecewise  -function with  -selection functions 𝒇 𝑖 ∶  ⟶ R 1 ≤ 𝑖 ≤ 𝑘
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Fig. 19. Giuliani smoothing with the modifications by [3], applied to the cross section of the Cathedral of Mallorca through the second arch [19] (10840 quads)..
at 𝒙0 ∈  ⊂ 𝑉 , that is, 𝒇 (𝒙) ∈ {𝒇 1(𝒙),… ,𝒇𝑘(𝒙)} for all 𝒙 ∈ 𝑈 . Then

𝜕𝒇 (𝒙0) = co{𝐷𝒇 𝑖(𝒙0) ∶ 𝑖 ∈ 𝐼𝒇 (𝒙0)},

where

𝐼𝒇 (𝒙0) = {1 ≤ 𝑖 ≤ 𝑘 ∶ 𝒙0 ∈ cl(int{𝒙 ∈  ∶ 𝒇 (𝒙) = 𝒇 𝑖(𝒙)})}.

We have also available some basic calculus rules (see 2.3 in [20]).

Proposition 3.3. Let 𝑉 be an open set in R𝑛 and 𝑓, 𝑔 ∶ 𝑉 ⟶ R Assume
that 𝑓 and 𝑔 are Lipschitz near 𝒙 ∈ 𝑉 . Then the following statements hold.

(a) 𝜕(𝑠 𝑓 )(𝒙) = 𝑠 𝜕𝑓 (𝒙) for any scalar 𝑠.
14
(b) 𝜕(𝑓 + 𝑔)(𝒙) ⊂ 𝜕𝑓 (𝒙) + 𝜕𝑔(𝒙) and if either 𝑓 or 𝑔 is differentiable at
𝒙 then 𝜕(𝑓 + 𝑔)(𝒙) = 𝜕𝑓 (𝒙) + 𝜕𝑔(𝒙) holds.

(c) The map (𝑓 ⋅ 𝑔)(𝒙) = 𝑓 (𝒙)𝑔(𝒙) is Lipschitz near 𝒙 ∈ 𝑉 and
𝜕(𝑓 ⋅ 𝑔)(𝒙) ⊂ 𝑓 (𝒙) 𝜕𝑔(𝒙) + 𝑔(𝒙) 𝜕𝑓 (𝒙).

(d) If 𝑔(𝒙) ≠ 0 then the map
(

𝑓
𝑔

)

(𝒙) = 𝑓 (𝒙)
𝑔(𝒙) is Lipschitz near 𝒙 ∈ 𝑉

and

𝜕
(

𝑓
𝑔

)

(𝒙) ⊂ 𝑔(𝒙) 𝜕𝑓 (𝒙) − 𝑓 (𝒙) 𝜕𝑔(𝒙)
𝑔2(𝒙)

.

From Proposition 3.3(b) and (c) we obtain the following.
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Fig. 20. Smoothing by minimization of the product of the area size error by the distortion average applied to the cross section of the Cathedral of Mallorca through the second
rch [19] (10840 quads)..
orollary 3.4. The Individual Smoothing Procedure (ISP) function 𝒇𝑷
atisfies

𝒇𝑷 (𝒕) = {𝐷𝒇 (𝑠)
𝑷 (𝒕)} + 𝜕𝒇 (𝑑)

𝑷 (𝒕).

oreover, since 𝒇 (𝑑)
𝑷 (𝒕) =

∑𝑛𝑑
𝑘=1 𝒈𝑖(𝒕)𝐸𝑖(𝒕) we have

𝜕𝒇 (𝑑)
𝑷 (𝒕) ⊂

𝑛𝑑
∑

𝑘=1
𝐸𝑖(𝒕) {𝐷𝒈𝑖(𝒕)} + 𝒈𝑖(𝒕) 𝜕𝐸𝑖(𝒕)

This corollary allows to introduce the semi-smooth Newton method
to compute 𝐭∗ such that 𝒇 (𝒕∗) = 𝟎 holds.
15

𝑷 a
Semi-smooth Newton Method

1. Choose an initial 𝒕0 and set 𝑘 = 0.
2. If 𝒇𝑷 (𝒕𝒌) = 𝟎 then STOP.
3. Choose 𝑀𝑘 ∈ 𝜕𝒇 (𝑑)

𝑷 (𝒕𝒌) and compute 𝒔𝒌 from (𝐷𝒇 (𝑠)
𝑷 (𝒕𝒌)+𝑀𝑘) 𝒔𝒌 =

−𝒇𝑷 (𝒕𝒌).
4. Set 𝒕𝒌+𝟏 = 𝒕𝒌 + 𝒔𝒌 and goto to step 2.

In our practical implementation of the semi-smooth Newton method
we use a matrix 𝑀𝑘 constructed as follows. Assuming that 𝐸𝑖(𝒕) is

(𝑑)
differentiable function of 𝒕 then the Jacobian matrix 𝐷𝒇𝑷 (𝒕) is
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Fig. 21. Our smoothing algorithm applied to the cross section of the Cathedral of Mallorca through the second arch [19] (10840 quads)..
t
d
N



r

𝛿

onstructed by using

𝒇 (𝑑)
𝑷 (𝒕) =

𝑛𝑑
∑

𝑘=1
𝐸𝑖(𝒕)𝐷𝒈𝑖(𝒕) + 𝒈𝑖(𝒕)𝐷𝐸𝑖(𝒕) (17)

here

𝐸𝑖(𝒕) =
(

𝜕𝐸𝑖(𝒕)
𝜕𝑡𝑥

𝜕𝐸𝑖(𝒕)
𝜕𝑡𝑦

)

Then we use 𝑀𝑘 ∶= 𝑀(𝒕𝒌) for a function 𝑀 defined by

𝑀(𝒕) ∶=
𝑛𝑑
∑

𝐸𝑖(𝒕)𝐷𝒈𝑖(𝒕) + 𝒈𝑖(𝒕) 𝛿𝐷Oddy(𝒕) 𝒕𝑇 ,
16

𝑘=1
where 𝛿𝐷Oddy(𝒕) is defined as follows. From Proposition 2.2 we know
he existence of a minimum value 𝐷Oddy((𝒎∗)) associated to the
iagonal 𝑷𝑶(𝒎∗)𝑷 𝒊 used to compute the value 𝐿𝑖, in the diagonal case.
ow, we consider the quadrilateral

(𝒕) = {𝑷 𝑺 (𝒕),𝑱 ,𝑷 𝒊,𝑲},

ecall that 𝑷 𝑺 (𝒕) = 𝑷 + 𝒕, then we define

𝐷Oddy(𝒕) ∶=
𝐷Oddy((𝒎∗)) −𝐷Oddy((𝒕))

,

‖𝑷𝑶(𝒎∗)𝑷 𝑺 (𝒕)‖
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Fig. 22. Mesh before smoothing. Bicycle chainring (9935 quads)..

y using that 𝑷𝑶(𝒎∗) provides a minimum distortion, and this let
s use 𝛿𝐷Oddy(𝒕) as a measure of the distortion variation in 𝒕. Our

implementation uses the following semi-smooth method:
Implemented semi-smooth Newton Method

1. Choose an initial 𝒕0 and set 𝑘 = 0.
2. If 𝒇𝑷 (𝒕𝒌) = 𝟎 then STOP.
3. Compute 𝒔𝒌 from (𝐷𝒇 (𝑠)

𝑷 (𝒕𝒌) +𝑀(𝒕𝒌)) 𝒔𝒌 = −𝒇𝑷 (𝒕𝒌).
4. Set 𝒕𝒌+𝟏 = 𝒕𝒌 + 𝒔𝒌 and goto to step 2.
17
Fig. 23. Giuliani smoothing with the modifications by [3], applied to a bicycle
chainring (9935 quads)..

3.1. A comparative analysis from different smoothing algorithms

We show a comparative analysis of the results obtained from dif-
ferent smoothing algorithms. A set of examples can be seen in Figures
Figs. 9 to 16.

We have measured the Oddy distortion, the side size error (relative
in percentage respect of the desired size), and the growth error (this
last one in areas with structured meshing only, as it is truly meaningful
in consecutive collinear edges — which occur mainly when there are
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Fig. 24. Smoothing by minimization of the product of the area size error by the distortion average applied to a bicycle chainring (9935 quads)..
our edges per vertex, that is, structured meshing). The growth error
as been measured by comparing the ratio between the lengths of two
onsecutive collinear edges, and the ratio that they should have if their
engths were the desired ones. The result is expressed as the growth
ngle error, in degrees. Table 1 shows all these quality measurements,
or the original mesh without smoothing (Figs. 9 and 10), the original
iuliani algorithm [6] (Figs. 11(a), 12(a), and 13(a)), the Giuliani
lgorithm as modified by Sarrate and Huerta [3] (Figs. 11(b), 12(b),
nd 13(b)), the method with the distortion by size error product
inimization (reinterpreting Gargallo, Roca and Sarrate [7] with the
ddy distortion, Figs. 14(a), 15(a), and 16(a)), as well as our proposed
18
spring-based algorithm (Figs. 14(b), 15(b), and 16(b)). The results
show that the proposed algorithm provides an optimal response to
our requirements. Regarding Oddy distortion, the obtained quality
is better than that of the Giuliani-based algorithms (the average is
similar, but the 99th percentile of the distortion gets reduced in about
40% — an important aspect, as those other algorithms should achieve
an extraordinarily low distortion given that they do not take care
of meeting the user desired element size). The distortion from the
proposed method is very similar to the one provided by the product
minimization algorithm (the average is reduced from 0.18 to 0.15,
while the 99th percentile is slightly increased from 0.90 to 1.04). At
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Table 1
Comparative analysis of quality measures after each studied algorithm. The proposed algorithm is optimal, showing a remarkable reduction at the growth
error (higher fidelity to size gradients required by the user). It also reduces the size error from the other algorithms, and achieves an optimal Oddy
distortion (significantly better than the Giuliani-based methods, and on a par with the distortion-size product minimization method).

Average
distortion

Distortion 99th
percentile

Average size
error

Sides with
error ⩽10%

Maximum
growth error

Absolute value average
of growth error

No smoothing 0.31 4.27 8.69% 68% 18.98◦ 0.60◦

Giuliani smoothing 0.16 1.56 7.77% 72% 3.75◦ 0.39◦

Giuliani smoothing (with
modifications from [3])

0.14 1.65 9.33% 64% 4.97◦ 0.72◦

Product minimization
(reinterpreting [7])

0.18 0.90 8.10% 69% 5.30◦ 0.92◦

Proposed method 0.15 1.04 7.35% 75% 2.65◦ 0.37◦
1
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Version d i sp l ac ing each ver tex as soon as i t s equi l ibr ium i s solved

input : { ver tex l i s t } ,
{ q u a d r i l a t e r a l l i s t } ,
{ des i red element s i z e ( per ver tex )}

repeat
foreach P ← i n t e r i o r ver tex in { ver tex l i s t }

t ← [0 ,0]

repeat
f ← [0 ,0]
J ← [0 ,0 ,0 ,0]
foreach A ← q u a d r i l a t e r a l s ide connected to P

𝐿𝑖 ← des i red A length ( from user input )
f ← f + f (A,𝐿𝑖 , t ) —evaluat ing equation (7)
J ← J + J (A,𝐿𝑖 , t ) —evaluat ing equation (11)

foreach D ← q u a d r i l a t e r a l diagonal connected to P
m ← bes t 𝑚𝑖 candidate from B.16
𝐿𝑖 ← I dea l length fo r D according to s c a l a r m
( opt iona l ) 𝐿𝑖 ← 𝐿𝑖⋅mean(𝐿𝑖 of s i de s )/mean( s ide lengths )
f ← f + f (D,𝐿𝑖 , t ) —evaluat ing equation (7) with (16)
J ← J + J (D,𝐿𝑖 , t ) —evaluat ing equation (17)

𝑡𝑛𝑒𝑤 ← so lve the system J ( t ) ⋅( 𝑡𝑛𝑒𝑤 − t ) = −f ( t )
s tep ← 𝑡𝑛𝑒𝑤 − t
t ← 𝑡𝑛𝑒𝑤

while (norm( f ) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠𝑜𝑙 ) AND (norm( s tep ) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠𝑡𝑒𝑝 )

P ← P + t

while max( norm( t ) ) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔

Listing 1: Proposed smoothing algorithm (sequential).

the edge size error, our algorithm gets the best result of all the studied
methods, with an average relative error of 7.35%, and managing that
75% of edges have a relative error below 10%. The other methods do
not achieve these results. The low value of the growth error is also
noteworthy, being about the half of the maximum error from the other
algorithms (let us recall that the example used in the comparison has
a size gradient required by the user, and therefore the growth error
is also an important quality measurement). With a maximum error
of 2.65◦ and with 0.37◦ as the average of the absolute value of the
error, it is the algorithm that best maintains desired size gradients.
A quick glimpse at Table 1 could give the false impression that the
original Giuliani algorithm provides a quality not too far away from
our proposed method, even if its results are worse1. However, as said
before, it tends to make all elements of uniform size, and this does
not substantially affect the quality measurements but can be visually
appreciated at Fig. 11(a) (the size gradient desired by the user has lost
its presence to a large degree). In conclusion, it can be observed that
the proposed algorithm provides an excellent response to the required
quality criteria, as we wished to decrease as much as possible the size
error, respecting the size gradients desired by the user, and with an as

1 With the exception of the average distortion, which is slightly reduced.
19

m

Version with simultaneous displacement of a l l v e r t i c e s

input : { ver tex l i s t } ,
{ q u a d r i l a t e r a l l i s t } ,
{ des i red element s i z e ( per ver tex )}

Ps ← {smoothed ver tex l i s t } ← { ver tex l i s t }

repeat
foreach P ← i n t e r i o r ver tex in { ver tex l i s t }

t ← [0 ,0]

repeat
f ← [0 ,0]
J ← [0 ,0 ,0 ,0]
foreach A ← q u a d r i l a t e r a l s ide connected to P

𝐿𝑖 ← des i red A length ( from user input )
f ← f + f (A,𝐿𝑖 , t ) —evaluat ing equation (7)
J ← J + J (A,𝐿𝑖 , t ) —evaluat ing equation (11)

foreach D ← q u a d r i l a t e r a l diagonal connected to P
m ← bes t 𝑚𝑖 candidate from (B.16)
𝐿𝑖 ← I dea l length fo r D according to s c a l a r m
( opt iona l ) 𝐿𝑖 ← 𝐿𝑖⋅mean(𝐿𝑖 of s i de s )/mean( s ide lengths )
f ← f + f (D,𝐿𝑖 , t ) —evaluat ing equation (7) with (16)
J ← J + J (D,𝐿𝑖 , t ) —evaluat ing equation (17)

𝑡𝑛𝑒𝑤 ← so lve the system J ( t ) ⋅( 𝑡𝑛𝑒𝑤 − t ) = −f ( t )
s tep ← 𝑡𝑛𝑒𝑤 − t
t ← 𝑡𝑛𝑒𝑤

while (norm( f ) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠𝑜𝑙 ) AND (norm( s tep ) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠𝑡𝑒𝑝 )

Ps [P] ← P + t

foreach P ← i n t e r i o r ver tex in { ver tex l i s t }
P ← Ps [P]

while max( norm( t ) ) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔

Listing 2: Proposed smoothing algorithm (parallel).

low as possible quadrilateral distortion. The springs model, with the di-
agonals controlling the element distortion, and the edges taking care of
the element size, achieves a great result meeting all these requirements,
without neglecting any of them. Moreover, the algorithm also removes
the ‘‘noise patterns’’ like those introduced by methods like Giuliani
with the modifications from [3] (areas with elements sizes substantially
different from the size they should have, creating visually noticeable
patterns). By comparing Figs. 11(b) and 14(b), it can be observed how
the proposed algorithm (second figure) has eliminated the presence
of these patterns, which are noticeable in the first figure. In addition
to quality, the algorithm can be implemented very efficiently both in
CPU and in GPU, thanks to its parallelization possibilities. In each
teration, the smoothing of each point can be made independent from
he rest of points, which allows for a massive parallel implementation
ithout communication between processing cores (communication is
nly necessary at the end of each iteration).

Figs. 17 to 25 show the algorithm applied to several models, where
he quality of the results has been compared to other algorithms

entioned throughout the paper. The number of quadrilaterals in each
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Fig. 25. Our smoothing algorithm applied to a bicycle chainring (9935 quads)..

f the models has been chosen so that it is larger than the example that
e have been discussing, while at the same time the mesh can still be
ppreciated.

As it can be seen across this set of figures, our approach achieves
reater quality than other algorithms. Note that we designed our algo-
ithm not to reduce distortion only, but to make the size of the elements
s close as possible to their desired size, and to do so in a way that the
esired size gradients are kept in the places where they should happen
nd with the slope they must have (so that gradients are not blurred
20

or moved away from their desired location). For this reason, in these
figures it is important to compare not just the distortion, but the size
gradients as well.

It can also be seen that our choice of using [3] as the meshing
algorithm shows a good behaviour in models that were not specifically
tuned for being meshed. This is particularly noticeable not only around
curved borders, but also in situations when the contour allows for
a regular structured mesh, like the cross section of the Cathedral of
Mallorca through the second arch.

4. Conclusions and future work

The proposed algorithm for smoothing post-processing, based on a
spring system, provided optimal results in our experiments, being the
one delivering the highest quality measurements from all the alter-
natives that we tested. It is suitable for both sequential and parallel
execution, and it is easy to implement. We based the formulation on
the Oddy distortion, but the development of the algorithm allows for
adaptations to other distortion criteria, by just modifying the ideal
length expressions for the quadrilateral diagonals accordingly (expres-
sions (B.1) to B.16). The simplicity of its parallel implementation (2)
suggests promising future work in the area of multi-core CPU and
GPU programming, and our day-to-day use of the algorithm in our
mesh-based simulations may open opportunities for improvement.
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Appendix A. Proof of Lemma 2.1

Recall that
𝒈(𝑖)𝑷 (𝒕) = (𝒗𝒊 + 𝒕) ⋅

(‖𝒗𝒊 + 𝒕‖ − 𝐿𝑖)
𝐿𝑖‖𝒗𝒊 + 𝒕‖

,

then

𝐷𝒈(𝑖)𝑷 (𝒕) =
(‖𝒗𝒊 + 𝒕‖ − 𝐿𝑖)
𝐿𝑖‖𝒗𝒊 + 𝒕‖

𝐷((𝒗𝒊 + 𝒕)) + (𝒗𝒊 + 𝒕)𝐷
(

(‖𝒗𝒊 + 𝒕‖ − 𝐿𝑖)
𝐿𝑖‖𝒗𝒊 + 𝒕‖

)

=
(‖𝒗𝒊 + 𝒕‖ − 𝐿𝑖)
𝐿𝑖‖𝒗𝒊 + 𝒕‖

(

1 0
0 1

)

+ 1
𝐿𝑖

(𝒗𝒊 + 𝒕)𝐷
(

(‖𝒗𝒊 + 𝒕‖ − 𝐿𝑖)
‖𝒗𝒊 + 𝒕‖

)

.

Now,

𝐷
(

(‖𝒗𝒊 + 𝒕‖ − 𝐿𝑖)
‖𝒗𝒊 + 𝒕‖

)

=
‖𝒗𝒊 + 𝒕‖𝐷(‖𝒗𝒊 + 𝒕‖) + (‖𝒗𝒊 + 𝒕‖ − 𝐿𝑖)𝐷(‖𝒗𝒊 + 𝒕‖)

‖𝒗𝒊 + 𝒕‖2

=
𝐿𝑖𝐷(‖𝒗𝒊 + 𝒕‖)

‖𝒗𝒊 + 𝒕‖2
.

To conclude the proof, we take into account that

𝐷(‖𝒗𝒊 + 𝒕‖) = 𝐷
(

√

(𝒗𝒊 + 𝒕)𝑇 (𝒗𝒊 + 𝒕)
)

=
(𝒗𝒊 + 𝒕)𝑇

‖𝒗𝒊 + 𝒕‖
,

hence

𝐷𝒈(𝑖)𝑷 (𝒕) =
(‖𝒗𝒊 + 𝒕‖ − 𝐿𝑖)
𝐿𝑖‖𝒗𝒊 + 𝒕‖

(

1 0
0 1

)

+ (𝒗𝒊 + 𝒕)
(𝒗𝒊 + 𝒕)𝑇

‖𝒗𝒊 + 𝒕‖3
.

This proves the lemma.
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Fig. B.26. Variation of the Oddy distortion at the 𝑷 ,𝑱 ,𝑲 vertices as we translate 𝑷 along the 𝑷𝑷 𝒊 direction. In this example, the minimum of the maximum distortion occurs at
the intersection between curves 𝑱 and 𝑲 . The horizontal axis represents the 𝑚 scalar parametrizing 𝑷𝑶(𝑚).
Appendix B. Proof of Proposition 2.2

Recall that, according to Eq. (15), the Oddy distortion will be the
greatest of the local distortions at each of the four vertices in the quadri-
lateral. Since 𝑱 ,𝑷 𝒊,𝑲 remain in a fixed position, the Oddy distortion
at the 𝑷 𝒊 vertex remains constant, because the angle between the 𝑱𝑷 𝒊
and the 𝑷 𝒊𝑲 sides is kept constant. Therefore, to find the goal length for
the 𝑷𝑶(𝒎)𝑷 𝒊 −𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙, we can ignore the Oddy distortion at 𝑷 𝒊. Thus
we only need to evaluate 𝐷Oddy,𝑖(𝑚) ∶= 𝐷Oddy,𝑖({𝑷𝑶(𝑚),𝑱 ,𝑷 𝒊,𝑲}) for
𝑖 ∈ {𝑷 ,𝑱 ,𝑲}. As we shall see, the variation of the Oddy distortion at
each vertex in the set {𝑷𝑶(𝑚),𝑱 ,𝑲} as we move 𝑚 yields in a cubic
polynomial in 𝑚. Each cubic polynomial can have a feasible or an
unfeasible minimum (because in some cases the minimum can corre-
spond to an absurd geometry). Since the distortion is the maximum
from the distortions evaluated at the vertices, we need to compute the
intersection of the three cubic curves, in order to take into account the
envelope of the maximum distortion.

In conclusion, the optimal position 𝑷𝑶(𝑚∗) will take place at exactly
one of these points:

(i) A local minimum from one of the three curves.
(ii) An intersection point between them.

Fig. B.26 shows an example in which the minimum Oddy distortion
occurs at the intersection between the curves associated to vertices 𝑱
and 𝑲. This example illustrates the reason to find the local minima
for the three curves and its intersection points in order to obtain
the minimum distortion for the quadrilateral. To provide an explicit
expression for 𝐷Oddy,𝑖(𝑚) for 𝑖 ∈ {𝑷 ,𝑱 ,𝑲} we introduce the following
notation.

• We put 𝑷𝑷 𝒊 = (𝑃𝑃 𝑥
𝑖 , 𝑃𝑃

𝑦
𝑖 ), 𝑷𝑱 = (𝑃𝐽𝑥, 𝑃 𝐽 𝑦), 𝑷𝑲 = (𝑃𝐾𝑥, 𝑃𝐾𝑦),

𝑱𝑷 𝒊 = (𝐽𝑃 𝑥
𝑖 , 𝐽𝑃

𝑦
𝑖 ), 𝑲𝑷 𝒊 = (𝐾𝑃 𝑥

𝑖 , 𝐾𝑃 𝑦
𝑖 ), 𝑱𝑲 = (𝐽𝐾𝑥, 𝐽𝐾𝑦), 𝑷𝑱 =

(𝑃𝐽𝑥, 𝑃 𝐽 𝑦) and 𝑷𝑲 = (𝑃𝐾𝑥, 𝑃𝐾𝑦).

By using (14) together 𝑷𝑶(𝑚), we can evaluate the Oddy distortion
at each vertex as a function of the 𝑚 or, in other words, as a function of
the translation of 𝑷 along the diagonal. We can arrive to the following
expressions, which are the equations of the three curves plotted at
Fig. B.26: (See Box I)

𝐷Oddy,𝐽 (𝑚) = 2

⎡

⎢

⎢

⎢

⎣

[

(

𝑃𝐽 𝑥 − 𝑚𝑃𝑃 𝑥
𝑖

)2 +
(

𝑃𝐽 𝑦 − 𝑚𝑃𝑃 𝑦
𝑖
)2 + ‖

‖

𝑱𝑷 𝒊
‖

‖

2
]2

4
(

−𝑚𝑃𝑃 𝑥
𝑖 𝐽𝑃

𝑦
𝑖 + 𝑚𝑃𝑃 𝑦

𝑖 𝐽𝑃
𝑥
𝑖 − 𝐽𝑃 𝑥

𝑖 𝑃𝐽
𝑦 + 𝐽𝑃 𝑦

𝑖 𝑃𝐽
𝑥)2

− 1

⎤

⎥

⎥

⎥

⎦

,

(B.2)
21
𝐷Oddy,𝐾 (𝑚) = 2

⎡

⎢

⎢

⎢

⎣

[

(

𝑃𝐾𝑥 − 𝑚𝑃𝑃 𝑥
𝑖

)2 +
(

𝑃𝐾𝑦 − 𝑚𝑃𝑃 𝑦
𝑖
)2 + ‖

‖

𝑲𝑷 𝒊
‖

‖

2
]2

4
(

𝑚𝑃𝑃 𝑥
𝑖 𝐾𝑃 𝑦

𝑖 − 𝑚𝑃𝑃 𝑦
𝑖𝐾𝑃 𝑥

𝑖 +𝐾𝑃 𝑥
𝑖 𝑃𝐾

𝑦 −𝐾𝑃 𝑦
𝑖 𝑃𝐾

𝑥)2
− 1

⎤

⎥

⎥

⎥

⎦

.

(B.3)

Computing the intersection points
In order to find the candidate values for 𝑚 that correspond to the

intersection of the curves for the local distortion variation at 𝑱 and 𝑲,
we need to solve the equation

𝐷Oddy,𝐽 (𝑚) = 𝐷Oddy,𝐾 (𝑚) (B.4)

which, after the substitution of expressions (B.2) y (B.3), implies finding
the roots of a cubic equation in the form

𝑒𝐽𝐾𝑚
3 + 𝑓𝐽𝐾𝑚

2 + 𝑔𝐽𝐾𝑚 + ℎ𝐽𝐾 = 0 (B.5)

where

𝑒𝐽𝐾 = ‖

‖

𝑷𝑷 𝒊‖‖
2 (𝑠 − 𝑟)

𝑓𝐽𝐾 = 2(𝑏𝑟 − 𝑎𝑠) + ‖

‖

𝑷𝑷 𝒊‖‖
2 (𝑡 − 𝑢)

𝑔𝐽𝐾 = 2(𝑏𝑢 − 𝑎𝑡) − 𝑑𝑟 + 𝑐𝑠

ℎ𝐽𝐾 = 𝑐𝑡 − 𝑑𝑢

𝑎 = 𝑃𝑃 𝑥
𝑖 𝑃𝐽

𝑥 + 𝑃𝑃 𝑦
𝑖 𝑃𝐽

𝑦

𝑏 = 𝑃𝑃 𝑥
𝑖 𝑃𝐾

𝑥 + 𝑃𝑃 𝑦
𝑖 𝑃𝐾

𝑦

𝑐 = ‖

‖

𝑱𝑷 𝒊‖‖
2 + ‖𝑷𝑱‖2

𝑑 = ‖

‖

𝑲𝑷 𝒊‖‖
2 + ‖𝑷𝑲‖

2

𝑟 = 𝑃𝑃 𝑦
𝑖 𝐽𝑃

𝑥
𝑖 − 𝑃𝑃 𝑥

𝑖 𝐽𝑃
𝑦
𝑖

𝑠 = 𝑃𝑃 𝑥
𝑖 𝐾𝑃 𝑦

𝑖 − 𝑃𝑃 𝑦
𝑖𝐾𝑃 𝑥

𝑖

𝑡 = 𝐾𝑃 𝑥
𝑖 𝑃𝐾

𝑦 −𝐾𝑃 𝑦
𝑖 𝑃𝐾

𝑥

𝑢 = 𝐽𝑃 𝑦𝑃𝐽𝑥 − 𝐽𝑃 𝑥𝑃𝐽 𝑦

𝑖 𝑖
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e
r

i
t

𝐷

w

𝑒

𝐷Oddy,𝑃 (𝑚) = 2

⎡

⎢

⎢

⎢

⎣

[

(

𝑃𝐽𝑥 − 𝑚𝑃𝑃 𝑥
𝑖
)2 +

(

𝑃𝐾𝑥 − 𝑚𝑃𝑃 𝑥
𝑖
)2 +

(

𝑃𝐽 𝑦 − 𝑚𝑃𝑃 𝑦
𝑖
)2 +

(

𝑃𝐾𝑦 − 𝑚𝑃𝑃 𝑦
𝑖
)2
]2

4
[

𝑚
[

𝑃𝑃 𝑥
𝑖 (𝑃𝐽

𝑦 − 𝑃𝐾𝑦) + 𝑃𝑃 𝑦
𝑖 (𝑃𝐾

𝑥 − 𝑃𝐽𝑥)
]

+ 𝑃𝐽𝑥𝑃𝐾𝑦 − 𝑃𝐽 𝑦𝑃𝐾𝑥]2
− 1

⎤

⎥

⎥

⎥

⎦

, (B.1)

Box I.
o

𝑚

T
(
𝐷

𝑚

o

𝑚

o
(
u
r
c

f

R

quation that can have three distinct real roots, three multiple real
oots, or one real and two non-real roots.

Analogously, we can obtain the 𝑚 candidates belonging to the
ntersection between the 𝑱 and 𝑷 distortion variation curves, solving
he equation

Oddy,𝐽 (𝑚) = 𝐷Oddy,𝑃 (𝑚) (B.6)

hich leads to finding the roots of another cubic equation

𝐽𝑃𝑚
3 + 𝑓𝐽𝑃𝑚

2 + 𝑔𝐽𝑃𝑚 + ℎ𝐽𝑃 = 0 (B.7)

where

𝑒𝐽𝑃 = ‖

‖

𝑷𝑷 𝒊‖‖
2 (𝑧 − 2𝑟)

𝑓𝐽𝑃 = 2(𝑎𝑟 + 𝑏𝑟 − 𝑎𝑧) + ‖

‖

𝑷𝑷 𝒊‖‖
2 (𝑤 − 2𝑢)

𝑔𝐽𝑃 = 2(𝑎𝑢 + 𝑏𝑢 − 𝑎𝑤) + 𝑐𝑧 − 𝑟
(

‖𝑷𝑱‖2 + ‖𝑷𝑲‖

2)

ℎ𝐽𝑃 = 𝑐𝑤 − 𝑢
(

‖𝑷𝑱‖2 + ‖𝑷𝑲‖

2)

𝑤 = 𝑃𝐽𝑥𝑃𝐾𝑦 − 𝑃𝐽 𝑦𝑃𝐾𝑥

𝑧 = 𝑃𝑃 𝑦
𝑖 𝐽𝐾

𝑥 − 𝑃𝑃 𝑥
𝑖 𝐽𝐾

𝑦

taking 𝑎, 𝑏, 𝑐, 𝑟, 𝑢 the same values as in Eq. (B.5). And we also add the
𝑚 candidates due to the intersection for the 𝑲 and 𝑷 curves:

𝐷Oddy,𝐾 (𝑚) = 𝐷Oddy,𝑃 (𝑚) (B.8)

resulting in the cubic equation

𝑒𝐾𝑃𝑚
3 + 𝑓𝐾𝑃𝑚

2 + 𝑔𝐾𝑃𝑚 + ℎ𝐾𝑃 = 0 (B.9)

where

𝑒𝐾𝑃 = ‖

‖

𝑷𝑷 𝒊‖‖
2 (𝑧 − 2𝑠)

𝑓𝐾𝑃 = 2(𝑎𝑠 + 𝑏𝑠 − 𝑏𝑧) + ‖

‖

𝑷𝑷 𝒊‖‖
2 (𝑤 − 2𝑡)

𝑔𝐾𝑃 = 2(𝑎𝑡 + 𝑏𝑡 − 𝑏𝑤) + 𝑑𝑧 − 𝑠
(

‖𝑷𝑱‖2 + ‖𝑷𝑲‖

2)

ℎ𝐾𝑃 = 𝑑𝑤 − 𝑡
(

‖𝑷𝑱‖2 + ‖𝑷𝑲‖

2)

taking 𝑎, 𝑏, 𝑑, 𝑠, 𝑡, 𝑤, 𝑧 the same values as in Eqs. (B.5) and (B.7). It can
be observed that Eqs. (B.7) and (B.9) take symmetrical expressions
against each other, while equation (B.5) is notably different. This was
expected, because (B.7) and (B.9) are the intersections between the
distortion curves at 𝑷 (moving point) and the (fixed) vertex located at
one side of the diagonal (𝑱 and 𝑲 , respectively), whereas (B.5) is the
intersection of the distortion curves at the two fixed vertices, 𝑱 and 𝑲 .
For the moment, considering just the intersection points between the
distortion variation curves, we get a maximum of 9 candidate values
for 𝑚 (if the Eqs. (B.5), (B.7) and (B.9) have three distinct real roots
each), and a minimum of 3 candidates (if there is a total of three real
roots only).

Computing the local minimum
We still have to consider the 𝑚 candidates that come from the local
22

minima of each curve. To do this we proceed as follows. Assume first
that 𝑎2− 𝑐 ‖
‖

𝑷𝑷 𝒊‖‖
2 ⩾ 0, then the curve 𝐷Oddy,𝐽 (𝑚) reaches local extrema

at:

𝑚±
𝐽 =

𝑎 ±
√

𝑎2 − 𝑐 ‖
‖

𝑷𝑷 𝒊‖‖
2

‖

‖

𝑷𝑷 𝒊‖‖
2

(B.10)

otherwise, it reaches them at:

𝑚±
𝐽 = 1 ±

√

−2𝑎 + 𝑐 + ‖

‖

𝑷𝑷 𝒊‖‖
2

‖

‖

𝑷𝑷 𝒊‖‖
(B.11)

We now consider the case when 𝑏2 − 𝑑 ‖

‖

𝑷𝑷 𝒊‖‖
2 ⩾ 0 holds. Under this

assumption the curve 𝐷Oddy,𝐾 (𝑚) reaches local extrema at:

𝑚±
𝐾 =

𝑏 ±
√

𝑏2 − 𝑑 ‖

‖

𝑷𝑷 𝒊‖‖
2

‖

‖

𝑷𝑷 𝒊‖‖
2

(B.12)

therwise, it reaches them at:

±
𝐾 = 1 ±

√

−2𝑏 + 𝑑 + ‖

‖

𝑷𝑷 𝒊‖‖
2

‖

‖

𝑷𝑷 𝒊‖‖
(B.13)

o conclude we consider the case when
𝑎 + 𝑏)2 − 2 ‖

‖

𝑷𝑷 𝒊‖‖
2 (

‖𝑷𝑱‖2 + ‖𝑷𝑲‖

2) ⩾ 0. In this case the curve
Oddy,𝑃 (𝑚) reaches local extrema at:

±
𝑃 =

𝑎 + 𝑏 ±
√

(𝑎 + 𝑏)2 − 2 ‖
‖

𝑷𝑷 𝒊‖‖
2 (

‖𝑷𝑱‖2 + ‖𝑷𝑲‖

2)

2 ‖
‖

𝑷𝑷 𝒊‖‖
2

(B.14)

therwise, it reaches them at:

±
𝑃 =

−2𝑤 ± 𝑧

√

2𝑧
[

2𝑤(𝑎+𝑏)+𝑧
(

‖𝑷𝑱‖2+‖𝑷𝑲‖

2
)]

+4‖𝑷𝑷 𝒊‖
2𝑤2

‖𝑷𝑷 𝒊‖
2𝑧2

2𝑧
(B.15)

Collecting all the candidate values found, we are finally able to
btain the goal length for the diagonal. From Eqs. (B.5), (B.7), (B.9),
B.10), (B.11), (B.12), (B.13), (B.14) and (B.15) we obtain a set of
p to 15 candidate values for 𝑚 (9 from the curves intersections if all
oots are distinct and real, and 6 from the local minima). Thus we can
onclude that there exists 𝑚∗ ∈ R and 𝑖 ∈ {𝑃 , 𝐽 ,𝐾} such that

𝐷Oddy(𝑚∗) = 𝐷Oddy,𝑖(𝑚∗) ≤ 𝐷Oddy(𝑚) (B.16)

or all 𝑚 ∈ R. This concludes the proof of the proposition.
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