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Abstract: The therapeutic use of bacteriophages is recognized as a viable method to control Salmonella.
Microencapsulation of phages in oral dosage forms may protect phages from inherent challenges of
the gastrointestinal tract in chickens. Therefore, the main objective of this study was to assess the sur-
vival of Salmonella BP FGS011 (non-encapsulated and microencapsulated) through the gastrointestinal
tract under in vitro as well as in vivo conditions after oral administration to 1-day-old chicks. To this
end, the phage FGS011 was encapsulated in two different pH-responsive formulations with polymers
Eudragit® L100, and Eudragit® S100 using the process of spray drying. Phages encapsulated in
either of the two formulations were able to survive exposure to the proventriculus-gizzard in vitro
conditions whereas free phages did not. Moreover, phages formulated in polymer Eudragit® S100
would be better suited to deliver phage to the caeca in chickens. In the in vivo assay, no statistically
significant differences were observed in the phage concentrations across the gastrointestinal tract
for either the free phage or the encapsulated phage given to chicks. This suggested that the pH of
the proventriculus/gizzard in young chicks is not sufficiently acidic to cause differential phage titre
reductions, thereby allowing free phage survival in vivo.

Keywords: bacteriophages; Salmonella; poultry; Eudragit®; encapsulation

1. Introduction

Non-typhoidal Salmonella spp. has been recognized as one of the most important
zoonotic pathogens worldwide [1,2]. Latest data reported by the World Health Organiza-
tion estimated 78 million annual cases of foodborne illness worldwide, of which 59,000
resulted in death [1]. By the same token, in the European Union (EU), the latest data
published in 2019, revealed more than 90,000 cases of human salmonellosis [3]. Salmonella
sources in human infection are relatively diverse, however poultry is considered a major
reservoir [3–6]. Due to this situation, since 2008, National Salmonella Control Programs
(NSCP) in accordance with Regulation (EC) No 2160/2003 have been implemented in
the EU [7,8]. These measures have resulted in significant Salmonella prevalence reduction
in poultry flocks throughout Europe [9]. However, some Salmonella serovars related to
food-borne outbreaks are still present in some poultry farms, due to their ability to survive
and grow in the gastrointestinal tract (GIT) of chickens and/or farm environment [4,10–12].
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When Salmonella comes into contact with the bird and reaches the GIT, its ability to rapidly
colonize and multiply results in long-term bacterial excretion in faeces especially in 1-day-
old chicks [13–16]. Salmonella, almost colonizes every part of the chicken GIT, nevertheless,
the pH of the GIT could affect the bacteria colonization [17]. Salmonella encounters the
acidic environment of the crop, with a pH of 5, that is maintained and controlled by the
bacteria of the genus Lactobacillus [17]. Subsequently, Salmonella survives the low pH of the
proventriculus and gizzard (pH 2.5), and colonize the gut (pH 5.5–8), with highest predilec-
tion potential noticed in the ceca [18–20]. Thus, innovative and cost-effective techniques
are needed suitable for deployment under field conditions to control the bacteria in the
poultry sector [15,21,22].

In this sense, the use of bacteriophages (BP) has garnered increasing interest as a
possible method to achieve Salmonella control in poultry farms in recent years, due to its
high degree of specificity against the bacteria [22–26]. Among the different routes of BP
therapy administration, the oral route is likely to be the most applicable in humans and
animals [27–29]. The lack of BP stability upon exposure to acidic conditions (e.g., in the
proventriculus/gizzard) and the relatively short residence times in the intestinal tract may
limit the efficacy of orally delivered BP [30]. These limitations can however be overcome,
such as through the co-administration of antacids [30,31] or through encapsulation of the
BP [32–34]. Encapsulation provides protection from gastric acidity and could release high
doses of the BP at the ceca, the predilected Salmonella site, incorporating approaches for
burst release and/or sustained release; improving the efficacy of the orally administered
BP [34–36]. Nevertheless, there is a need for better understanding of the stability and
viability of the non-encapsulated and microencapsulated BP after being orally admin-
istered [37–39]. Therefore, the main objective of this study was to assess the release of
the encapsulated BPs and the survival of Salmonella BP FGS011 (non-encapsulated and
microencapsulated) through the chicken’s GIT under in vitro and in vivo conditions after
oral administration to 1-day-old chicks.

2. Results
2.1. BP Characterization Assay
2.1.1. BP Lytic Spectrum

The lytic host range against a panel of 13 strains indicated that BP FGS011 was able to
lyse seven strains of Salmonella and one Citrobacter strain (Table 1).

Table 1. The lytic spectrum of FGS011 against 13 bacterial strains from 4 genera.

Strain Source/Reference Lysis by BP FGS011

Salmonella Enteritidis CCM160 +
Salmonella Typhimurium CCM157 +

mST CCM188 +
Salmonella Virchow CECAV -

Salmonella Ohio CECAV -
Salmonella Kentucky CECAV -
Salmonella Infantis CECAV +

Salmonella Senftemberg CECAV +
Salmonella Indiana CECAV +
Salmonella Havana CECAV +

Escherichia coli CCM099 -
Citrobacter freundi CCM091 +

Pseudomonas aeruginosa CCM054 -
mST: monophasic Salmonella Typhimurium.

2.1.2. BP Thermal and pH Stability

pH stability tests showed that FGS011 survived exposure to acidic pH as low as pH 4
and alkalinity as high as pH 11 after 2 h of incubation (Figure 1A). However, FGS011 titers
declined when exposed to acidic pH less than pH 3 or alkaline pH greater than 12. The
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BP was rapidly inactivated at low pH 2 and high pH 13 (Figure 1A). Thermal stability
tests indicated that BP FGS011 was relatively heat stable for up to 60 min at temperatures
between 30 to 60 ◦C. However, the viable BP concentration decreased upon exposure to
temperatures between 70 to 80 ◦C (Figure 1B). BP FGS011 also survived upon undergoing
a freeze-thaw cycle at −80 ◦C.
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Figure 1. Stability of FGS011 exposed to different stress conditions. (A) pH stability of FGS011;
(B) thermal stability of FGS011; and (C) stability upon exposure to UV radiation of FGS011. Data
reported are means ± standard error of three independent trials. Error bars show standard error.
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2.1.3. BP Inactivation with UV Radiation

The viability of BP FGS011 was maintained for up to 1 h of exposure to UV irradiation,
nevertheless, no viable BP was measurable after 24 h of exposure (Figure 1C).

2.2. In Vitro Evaluation of the Release of BP under Different GIT Conditions (Experiment 1)

Protection of encapsulation from GIT pH stress and BP release under different GIT pH
conditions was evaluated for FGS011 encapsulated in formulations L100 and S100 simulat-
ing in vitro GIT conditions. All results represented in these experiments are with regard
to the starting concentration of BP used in the experiment (1010 PFU). BP encapsulated
in L100 was released in the crop due to the pH 5.5 (p < 0.05) (Figure 2A). However, BPs
encapsulated in S100 did not release in the crop (pH 5.5), proventriculus-gizzard (pH 2.5),
and the duodenum (pH 5) (Figure 2B). BP release was noted in the jejunum (pH 6.5), ileum
(pH 7) and any residual encapsulated BP in the caeca (pH 8), indicating a statistically
significant decrease along the lower GIT (p < 0.05) (Figure 2).
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Figure 2. Amount of BP that remains encapsulated with the polymer Eudragit® L100 (A) and Eudragit® S100 (B) in vitro
under simulated transit times and pH conditions of the crop (50 min at pH 5.5), proventriculus-gizzard (90 min at pH 2.5),
duodenum (10 min at pH 5), jejunum (30 min at pH 6.5), ileum (70 min at pH 7), and ceca under anaerobic conditions
(30 min at pH 8). Values are presented in Log10 (PFU/mL). L100: encapsulated BP with the polymer Eudragit® L100; S100:
encapsulated BP with the polymer Eudragit® S100; PV: Proventriculus. Values shown are means ± standard deviations.
Error bars show one standard deviation. The statistically significant differences in the count of BP that remain encapsulated
throughout the simulated GIT with respect to the initial BP administered was represented as *, p < 0.001; and **, p = 0.0001.

2.3. In Vitro Evaluation of BP Titres along the GIT (Experiment 2)

The survival of the BP (FP, L100 and S100) across the GIT was evaluated in vitro by
passing the BP sequentially through each simulated GIT section (Figure 3). All results
represented in these experiments are with regard to the starting concentration of BP used in
the experiment (1010 PFU). The results showed that FP were inactivated upon exposure to
proventriculus-gizzard conditions, and viable BP were not detected again in the following
stages downstream of the proventriculus-gizzard. For L100, significant differences were
observed along the simulated GIT sections (p < 0.05). BP released from L100 were detected
in the crop, but no BP were detected in the neutralized supernatant of the simulated
proventriculus-gizzard section. Thereafter, BP detection in the supernatant increased in the
duodenum and BP titres were maintained in the jejunum through to the caeca (p > 0.05).
For S100, the highest concentration of BP was detected in the crop (p < 0.05). No viable BP
was detected in the proventriculus-gizzard. The concentration of BP in the supernatant
increased in the duodenum and jejunum and was highest in the ileum with a 0.5 log
decrease observed in the ceca (p < 0.05).
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Figure 3. Amount of BP that remains in the supernatant whilst transiting across the simulated chicken
GIT. Values are presented in Log10 (PFU/mL). FP: free BP; L100: encapsulated BP with the polymer
Eudragit® L100; S100: encapsulated BP with the polymer Eudragit® S100; PV: Proventriculus. Error
bars show one standard deviation. a,b,c: different letters indicate statistically significant differences
between groups in the count of BPs that released and survives throughout the simulated GIT at
p < 0.05.

Moreover, statistically significant differences were observed among FP, L100, and
S100 across the different controlled GIT conditions (pH, transit-time, and temperature)
(Figure 3).

2.4. In Vivo Study of BP Survival along GIT (Experiment 3)

The distribution of FP, L100 and S100 within the GIT of 1-day-old chicks administered
BP either in drinking water or in feed was determined after 24 h in the absence of Salmonella
host. After 24 h, all the BP were present in all of the GIT sections (crop, proventriculus,
gizzard, gut and ceca) of the treated groups. The control group was negative for the
presence of BP in any of the samples analyzed.

From each free/released FGS011 (FP, L100 and S100), no statistically significant differ-
ences of BP concentration were observed through the different GIT sections (p > 0.05). For
the different GIT sections, BP counts are summarized in Table 2.

Table 2. In vivo comparation of BP treatments (FP, L100 and S100) within each GIT section.

FP Log10
(PFU/g Content)

L100 Log10
(PFU/g Content)

S100 Log10
(PFU/g Content)

Crop 4.9 ± 0.4 6.3 ± 0.2 5.6 ± 0.3
Proventriculus 3.8 ± 0.4 5.7 ± 0.9 4.7 ± 0.7

Gizzard 4.5 ± 0.2 4.9 ± 0.5 4.6 ± 0.4
Gut 4.7 ± 0.2 b 5.9 ± 0.5 a 4.6 ± 0.5 b

Ceca 5.2 ± 0.6 5.9 ± 0.2 4.7 ± 0.5

FP: free BP; L100: encapsulated BP with the polymer Eudragit® L100; S100: encapsulated BP with the polymer
Eudragit® S100. Values shown are means ± standard error. a,b Different superscripts within each row indicates
significant differences between means at p < 0.05.

On the other hand, statistically significant differences were shown between BP in the
gut, with L100 being the BP to show the highest concentration (p < 0.05). However, no
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statistically significant differences were observed in the crop, proventriculus, gizzard, and
ceca (p > 0.05) (Table 2).

For faecal samples, statistical differences were found in BP counts among the different
groups (p < 0.05). The highest BP counts were in faeces of chicks fed L100 (6.4 Log10 PFU/g),
followed by S100 (6.1 Log10 PFU/g) and finally FP (5.8 Log10 PFU/g) (p = 0.000).

3. Discussion

The survival of Salmonella BP FGS011 (non-encapsulated and microencapsulated)
through the GIT under in vitro and in vivo conditions after oral administration to 1-day-
old chicks was assessed. This is the first study to report the dynamics of the Salmonella BP
encapsulated with the anionic polymers Eudragit® L100 and Eudragit® S100 through the
chicken GIT.

Despite the NSCP, Salmonella continues to be a threat pathogen to the poultry sector
and a potential risk from farm to fork [40]. Therefore, prevention and control are required
throughout the poultry chain [12]. The negative economic impact of Salmonella for the
poultry sector, the effects on human health, increasing antimicrobial resistance and the
absence of effective alternatives for controlling Salmonella are drivers for exploration of the
potential of BP therapy as a more effective biocontrol tool, reducing economic loses in the
poultry industry and reducing the risk of food-borne diseases [15]. Oral BP therapy has
been used as a tool for Salmonella control in the poultry industry [41–43]. Nevertheless,
inherent challenges, such as the GIT environmental conditions, have led to divergent BP
therapy results [32,37]. Although is this study both BP forms reached the ceca, previous
studies reported a reduction in BP titres in vivo and suggested that this may be due to
BP inactivation attributed to the acidic environment of the chicken’s gizzard. This may
especially be the case for sensitive BP that do not survive low acidic pH exposure [32,37].
Previous studies have therefore highlighted the need for encapsulated BP that allow
high titres of BP to be delivered to the cecum which is the most likely site of Salmonella
colonization [37,44]. The encapsulation of BP and their controlled release may help in
ensuring that the in-situ BP concentration remains at a therapeutically effective level,
thereby allowing BP to amplify once the bacteria concentration increases to levels sufficient
for in situ BP amplification [32]. The in vitro results of this study demonstrated that FP are
likely to be inactivated upon exposure to proventriculus-gizzard pH (Figure 3). Whereas
encapsulation of BPs significantly improved BP survival with S100 remaining encapsulated
until the end of gut (Figures 2 and 3). Encapsulation would therefore ensure that high BP
concentration would be delivered to the caeca (Figure 3). Therapeutically effective levels
reaching the intended Salmonella infection site, such as the lower intestine including caeca
may improve BP therapy outcomes [32,38]. The current results indeed demonstrated that
BP, both non-encapsulated and microencapsulated, appeared in the faeces, showing its
high capacity of dissemination in the environment [22]. This matter will allow not only
the control of the bacteria in the environment but also will limit the reinfection of the
animals [22]. The reduction of faecal Salmonella shedding controlled by the NSCP, will
entail an important economic reduction for the poultry sector [7,22].

Several complex external factors could influence the treatment success in vivo, such
as the rapid clearance of the BP by active or passive host immunity, interactions of BP
with the intestinal mucosa and with other gut microbiota [45–47]. The in vivo results
obtained after BP administration in 1-day-old chicks demonstrated that encapsulated
and non-encapsulated BP could survive through the GIT and were excreted in the faeces
(Table 2). This fact may be explained due to the higher pH of the gizzard in the young
animals (4.3 pH), which would allow not only the survival of the encapsulated BP, but also
the survival of the FP (unpublished data) [48]. These results are in agreement with those
obtained by Ma et al. (2016), who also observed that although FP did not survive gastric
fluid conditions in vitro, in 1-day-old chicks BP were able to survive throughout the GIT,
without no notable differences between free BP titres compared with the encapsulated form.
Other authors have highlighted the possibility that for mature chicken GIT where the pH
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is lower, FP could not survive the gastric passage, and were not found to effectively reduce
Salmonella numbers in the chicken intestine [49,50], compromising BP therapy outcomes in
older animals [30,48].

Regarding the survival of BP formulated in different encapsulated forms adminis-
tered to 1-day-old chicks, slightly higher concentrations of BP encapsulated in L100 were
found to be delivered to the intestine compared with the S100 formulation (5.9 Log10 and
4.6 Log10 PFU, respectively). This may be due to lower amounts of BP released in the caeca
of 1-day-old chicks from S100, which require higher pH levels to release BP [51,52]. BP
therapy has previously been used to control Salmonella in poultry farms [22–26]. There is,
however, a lack of available data at the field level [36]. Further studies are therefore needed
to study the BP dynamics in the GIT throughout the six-week rearing period of broilers to
assess the best way to incorporate phage in animal feed as well as the best intervention
moment to prevent the spread of Salmonella in chicken farms.

4. Materials and Methods

All the animals were handled according to the principles of animal care published by
Spanish Royal Decree 53/2013 [53].

4.1. BP Characterization Assay

BP FGS011 used in this study was isolated by Sevilla-Navarro et al. [40]. It was isolated
from faeces samples from commercial poultry farms (broilers and layers) in Eastern Spain in
the Poultry Quality and Animal Nutrition Centre of the Valencia Region (CECAV). The BP
was stored at 4 ◦C until use. This BP was selected for this study due to its high lytic activity
against its propagating strain and the wide lytic host range against Salmonella strains
isolated from poultry farms. The bacterial strain used for BP isolation and amplification
was Salmonella Senftenberg (S. Senftenberg), a field strain isolated from poultry farms
during the NSCP [54] and selected from the collection repository of CECAV.

4.1.1. BP Lytic Spectrum

In order to assess the lytic spectrum of the BP, the sensitivity of 13 field and refer-
ence bacterial strains including ten Salmonella serovars, one Escherichia coli strain, one
Citrobacter freundi strain and one Pseudomonas aeruginosa strain were determined by spot
test using the double agar method [40]. Salmonella serovars selected for BP lytic spectrum
were those more prevalent in European poultry farms (S. Enteritidis, S. Typhimurium,
monophasic S. Typhimurium, S. Infantis, S. Virchow, S. Kentucky, S. Ohio, S. Senftemberg,
S. Indiana and S. Havana). Then, 200 µL of a log-phase culture of the bacterial suspensions
in LB (Luria Bertani, VWR Chemicals, Barcelona, Spain) at an optical density (OD) 600 nm
of 0.2 (~108 CFU/mL) was added to 5 mL of LB agar (LB with 0.6% agar) tempered to
45 ◦C and poured onto previously prepared and dried LB basal agar (with 1.6% agar).
The plates were dried in a laminar flow hood for 15 min. Subsequently, 10 µL of the BP
FGS011 (1010 PFU/mL) suspension was spotted onto the surface of the double layer agar.
The resulting plates were incubated overnight at 37 ◦C, and subsequently checked for the
BP plaque formation on the bacterial lawns [40].

4.1.2. BP Thermal and pH Stability

For thermal-stability testing, tubes with 100 µL of FGS011 (1010 PFU/mL) were mixed
with 900 µL pre-heated sterile LB broth and were kept in a water bath ranging from 30
to 80 ◦C for 30 min and 60 min [41]. In addition, BP stability at −20 ◦C in a standard
refrigerator, and at −80 ◦C in an ultra-low temperature freezer, was also evaluated for
24 h [55]. For pH stability testing, 100 µL of FGS011 (1010 PFU/mL) aliquots were mixed in
a series of tubes containing 900 µL of sterile BPW (Buffered Peptone Water, VWR Chemicals,
Barcelona, Spain) with varying pH values ranging from pH 2 to pH 13 (adjusted using
NaOH or HCl) and incubated for 2 h at 37 ◦C [41,56]. After the incubation, ten-fold
serial dilutions of the samples were carried out with LB and were plated by the spot test



Pharmaceuticals 2021, 14, 434 8 of 14

method and incubated 24 h at 37 ◦C. BP titration was performed per triplicate. The rates of
BP pH/thermal stability were determined calculated with the formula: BP stability rate
(%) = BP concentration (PFU/mL) under certain condition/initial BP concentration added
(PFU/mL) × 100% [56]. These experiments were performed three times.

4.1.3. BP Inactivation with UV Radiation

To quantify BP inactivation by UV radiation, 1 mL of FGS011 (1010 PFU/mL) was
exposed to UV irradiation in glass petri dishes at room temperature for 24 h [57]. A 15-
watt, low-pressure mercury germicidal lamp (U.V ESTERIL, J.P. SELECTA s.a.) with a
sharp emission maximum at 230 nm was used as the UV source for irradiation of the BP.
Samples were taken at different time intervals, at 5, 30, 60 min, and 24 h. Then, ten-fold
serial dilutions of the samples were plated by the spot test method described above and
incubated 24 h at 37 ◦C. BP titration was performed per triplicate. The rate of BP UV
radiation inactivation was calculated with the stability rate (%) formula described above.
This experiment was performed three times.

4.1.4. BP Encapsulation

Encapsulation was performed according to Malik et al. [33]. For this study, two
anionic polymers Eudragit® L100, and Eudragit® S100 were used for the BP encapsulation.
Eudragit® L100 dissolves at pH 6 and greater, while Eudragit® Sl00 is less soluble than
Eudragit® Ll00 and dissolves at a pH of 7 or greater [58]. During this study, the BP FGS011
was evaluated without encapsulation as free BP (FP), and encapsulated with the polymers
Eudragit® L100 (L100) and Eudragit® S100 (S100).

Eudragit L100 and S100 were kindly supplied by Evonik Germany. D-(+)-Trehalose
dihydrate was purchased from Fisher Scientific (Loughborough, UK). Solutions containing
different excipient (Eudragit S100, L100 with added trehalose) amounts were dissolved in
500 mL of deionised distilled water (dH2O). The ratio of S100 and L100 to trehalose was 2:1
and total solids content 12 g per 100 mL of solution.

In order to dissolve Eudragit, the pH of the water was changed to alkaline (pH 12) via
addition of 4 M NaOH (Fisher Scientific, Hampshire, UK) to allow polymer dissolution,
followed by pH adjustment to pH 7 using 0.1 M HCl prior to addition of trehalose powder,
its dissolution, and further addition of bacteriophages to the solution. For each formulation,
typically 10% (v/v) high-titre phage (~1010 PFU/mL) was added to the solution, yielding
phage titres of ~109 PFU/mL in the final formulations. The phage-containing solutions
were spray-dried using a commercially available Labplant spray-dryer SD-06 (Labplant,
UK Limited), which is a co-current dryer with a pneumatic atomiser and a cylindrical
drying chamber of dimensions 215 mm outer diameter and 420 mm height. The air
exit stream was passed through a high-efficiency particulate air (HEPA) filter prior to
discharge. The diameter of the atomization nozzle used throughout the work was 0.5 mm
with the measured feed liquid flow rate at 280 mL·h−1 and a drying gas air flow rate of
~20 L·s−1. The air inlet temperatures were set at 100 ◦C resulting in corresponding air
outlet temperatures of 60 ± 2 ◦C respectively. The outlet temperature is only indicative of
the highest temperature the phages could be exposed to as dry powders in the collection
bottle. The temperature in the collection bottle varied between 40 and 60 ◦C.

4.2. In Vitro Evaluation of the Release of BP under Different GIT Conditions (Experiment 1)

To assess the release of the encapsulated BP (L100 and S100) along the GIT sec-
tion, an in vitro assay was performed. For this, the amount of BP that remained encap-
sulated throughout the simulated GIT was analysed. The GIT conditions of the crop,
proventriculus-gizzard, duodenum, ileum, jejunum, and ceca were simulated in vitro
according to Ravindran [20] (Figure 4).
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Figure 4. Scheme of the in vitro assay simulating the broiler GIT to assess the encapsulation main-
tenance (L100 and S100) along the GIT. The transit-time, temperature and pH of the crop (pH 5.5),
proventriculus-gizzard (pH 2.5), duodenum (pH 5), ileum (pH 6.5), jejunum (pH 7), and ceca (pH 8
in anaerobiosis) were simulated. L100: encapsulated BP with the polymer Eudragit® L100; S100:
encapsulated BP with the polymer Eudragit® S100. Created with BioRender.com.
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Firstly, to mimic the crop conditions, 10 mL aliquots of Sorenson’s buffer pH 5.5 was
added to six falcon tubes for each of the encapsulated BP (L100 and S100). After that, an
initial inoculum of 1010 PFU of each encapsulated BP (L100 and S100) was added into each
respective tube. Samples were then incubated, with shaking, at 41 ◦C for 50 min. At the end
of the incubation, all the tubes were centrifuged to sediment the phage containing capsules
for 5 min at 8000× g and the supernatant was removed. In one tube for each BP, the capsule
pellet was resuspended with 10 mL of Sorenson’s buffer at pH 8, and was vortexed and
left for 10 min to allow the capsules to dissolve. After that, 100 µL of aliquot were taken
for BP enumeration. From the remaining tubes, the pellets were resuspended in 10 mL of
Sorenson’s buffer with adjusted to pH 2.5 with 1M HCl to mimic the proventriculus and
gizzard conditions. The samples were incubated for another 90 min. After the incubation
period, all tubes were centrifuged, and the procedure was repeated as described above.
Hereafter, the process was repeated with 10 mL of Sorenson´s buffer at pH 5 for 10 min,
followed by pH 6.5 for 30 min, and pH 7 for 70 min, to mimic the duodenum, ileum, and
jejunum conditions, respectively. Finally, ceca conditions were mimicked using 10 mL of
Sorenson´s buffer at pH 8 for 30 min under anaerobic conditions obtained with AnaeroGen
Gas pack (Oxoid, Hampshire, UK, AN0035A) in anaerobic jars. Ten-fold serial dilutions
of all the aliquots were carried out with LB and were plated by the spot test method and
incubated for 24 h at 37 ◦C. BP titration was performed per triplicate.

4.3. In Vitro Evaluation of BP Titres along the GIT (Experiment 2)

To assess the survival of the BP (FP, L100 and S100) across the GIT an in vitro assay
was performed [37]. For this, the amount of released BP that survived throughout the
simulated GIT was analysed. The BP (FP, L100 and S100) were passed sequentially through
each simulated GIT section according to Ravindran [20]. To this end, the following stages
were carried out (Figure 5).
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Figure 5. Scheme of the in vitro assay simulating the broiler to assess the release and survival of
microencapsulated BP and the survival of non-encapsulated BP through the different pH, times and
temperature conditions. The pH, transit-time and temperature of the crop (pH 5.5), proventriculus-
gizzard (pH 2.5), duodenum (pH 5), ileum (pH 6.5), jejunum (pH 7), and ceca (pH 8 in anaerobiosis),
were simulated. FP: free BP, L100: encapsulated BP with the polymer Eudragit® L100; S100: encapsu-
lated BP with the polymer Eudragit® S100. Created with BioRender.com.

Firstly, to mimic the crop conditions, 50 mL of Sorenson’s Buffer (pH 5.5) was inocu-
lated with 1010 PFU of FP or 1010 PFU of encapsulated L100 and S100. Samples were then
incubated, with shaking, at 41 ◦C for 50 min. At the end of the incubation period, 1 mL
of aliquot was taken for BP enumeration. Then, to mimic the proventriculus and gizzard
conditions, HCl (1 M) was added to each tube to adjust solution pH to pH 2.5 and the
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incubation continued for another 90 min. After this additional incubation period, 1 mL of
aliquot was taken for BP enumeration and the procedure was repeated by adjusting the
solution pH to pH 5 (using 0.3 M NaOH) for 10 min, followed by pH 6.5 for 30 min, and
pH 7 for 70 min, to mimic the duodenum, ileum, and jejunum conditions, respectively. Fi-
nally, the ceca conditions were mimicked with pH 8 for 30 min under anaerobic conditions
obtained with AnaeroGen Gas pack (Oxoid, Hampshire, UK, AN0035A) in anaerobic jars.
At the end of each incubation, 1 mL of aliquot was taken for BP enumeration. The samples
were centrifugated for 5 min at 8000 × g and the supernatant was taken. Ten-fold serial
dilutions of the supernatants were carried out with LB and were plated by the spot test
method and incubated 24 h at 37 ◦C. BP titration was performed per triplicate.

4.4. In Vivo Study of BP Survival along GIT (Experiment 3)

An in vivo study of BP (FP, L100 and S100) survival along the GIT after oral admin-
istration of phages to 1-day-old chicks was carried out. Faecal shedding of BP was also
measured. Twenty 1-day-old Salmonella free chicks (Ross 308) were randomly divided into
four groups of five birds (Figure 6).
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Figure 6. Experimental design of BP application in 1-day-old chicks. Group 1 received the FP via
drinking water; group 2 received L100 via feed; group 3 received S100 via feed; and group 4 did not
receive BP (control group). Created with BioRender.com.

To assess the survival of the BP through the GIT, group 1 received 100 mL of 106 PFU/mL
of FP via drinking water, group 2 received 100 g of 106 PFU/g of L100 via feed, group 3
received 100 g of 106 PFU/g of S100 via feed, and group 4 did not receive any BP (con-
trol group). Then, 24 h after BP administration, animals from each experimental group
(n = 5/group) were taken and the GIT was removed and processed for BP enumeration.
The following sections were processed from each animal: crop, proventriculus, gizzard, gut,
and ceca. Samples of each sections were collected under sterile conditions. The material
used was sterile and it was changed between groups. Between samples, the material was
sterilised with alcohol and fire [59].

Moreover, to assess fecal shedding, at least 10 g of faeces were taken from each
experimental group. A total of 104 samples were weighed and homogenized in 1:10 mL of
LB broth medium, centrifuged for 5 min at 16,000 × g, and the supernatant was filtered
through a 0.45 µm membrane. Afterwards, 100 µL of each dilution was transferred to an
empty well and ten-fold serial dilutions were performed using sterile dilution buffer (LB).
Then, 10 µL of each dilution with 200 µL of the bacterial host suspension was mixed with
5 mL of LB 0.6% top agar layer and placed over a 1.6% LB agar bottom layer. Plates were
incubated overnight at 37 ◦C. BP titration was performed per triplicate.

4.5. Statistical Analysis

Concentrations (PFU/mL) of BP were converted to Log10 (PFU/mL) and then av-
eraged. A general linear model (GLM) was used to evaluate the release of encapsulated
phage BP (L100 and S100) along the in vitro GIT conditions. GLM was used to evaluate the
survival of the released BP (L100 and S100) and non-encapsulated BP along the in vitro GIT
conditions. As a fixed effect, we included the gastrointestinal localization tract simulated
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(crop, proventriculus-gizzard, duodenum, ileum, jejunum and ceca), the initial BP concen-
tration, and the BP (FP, L100 and S100). GLM was used to compare the activity of the BP (FP,
L100 and S100) in vivo, including as a fixed effect, the gastrointestinal localization (crop,
proventriculus, gizzard, gut, ceca, and faeces), and the BP (FP, L100, and S100). A p-value
of p < 0.05 was considered to indicate a statistically significant difference. All statistical
analyses were carried out using SPSS 16.0 software.

5. Conclusions

Significant differences were observed between phage delivery results of in vitro stud-
ies compared with in vivo results. In 1-day-old chicks there were no statistically sig-
nificant differences between phage delivered along the GIT for the encapsulated and
non-encapsulated phage (the gut being the exception, but differences were small here too).
Encapsulation of the BP using the polymers Eudragit® L100 and Eudragit® S100 resulted in
the delivery of phage in 1-day-old chicks with no adverse reactions observed in the animals.
Further studies are needed to better understand the dynamics of the encapsulated phage
released during transit through the GIT of the chickens during the entire production cycle.
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