# Journal of Veterinary Diagnostic Investigation

## Gas gangrene in horses by Clostridium sordellii

| Journal:                         | Journal of Veterinary Diagnostic Investigation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                    | Draft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Manuscript Type:                 | Focus Issue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Date Submitted by the<br>Author: | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Complete List of Authors:        | Sacco, Sofia; National University of Litoral, Morphological Sciences<br>Ortega Porcel, Joaquin; Universidad CEU Cardenal Herrera, Pathology<br>Navarro, Mauricio; UCDavis, CAHFS<br>Fresneda, Karina; University of California Davis, California Animal Health<br>and food Safety Laboratory<br>Anderson, Mark; CAHFS, School of Vet Medicine;<br>Woods, Leslie; School of Veterinary Medicine, California Animal Health<br>and Food Safety Laboratory System;<br>Moore, Janet; University of California Davis, CAHFS<br>Uzal, Francisco; University of California Davis, CAHFS |
| Keywords:                        | Clostridium sordellii, gas gangrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |



| 1  | Gas gangrene in horses by Clostridium sordellii                                             |
|----|---------------------------------------------------------------------------------------------|
| 2  |                                                                                             |
| 3  | Sofia C. Sacco, Joaquín Ortega, Mauricio A. Navarro, Karina C. Fresneda, Mark Anderson,     |
| 4  | Leslie W. Woods, Janet Moore, Francisco A. Uzal <sup>1</sup>                                |
| 5  |                                                                                             |
| 6  | Veterinary Sciences Institute of Litoral and Morphological Sciences Department, Veterinary  |
| 7  | Sciences School, National University of Litoral, Santa Fe, Argentina (Sacco); Pathology and |
| 8  | Animal Health Department, Veterinary Faculty, CEU-Cardenal Herrera University, CEU          |
| 9  | Universities, Moncada, Valencia, Spain (Ortega); California Animal Health and Food Safety   |
| 10 | Laboratory, Davis (Anderson, Woods) and San Bernardino (Navarro, Fresneda, Moore, Uzal)     |
| 11 | branches, School of Veterinary Medicine, University of California, Davis, CA.               |
| 12 |                                                                                             |
| 13 | <sup>1</sup> Corresponding author:                                                          |
| 14 | Francisco A. Uzal                                                                           |
| 15 | California Animal Health and Food Safety Laboratory                                         |
| 16 | 105 W Central Avenue                                                                        |
| 17 | San Bernardino, CA 92408                                                                    |
| 18 | E-mail: fuzal@cahfs.ucdavis.edu                                                             |
| 19 |                                                                                             |
| 20 | Running head: Gas gangrene in horses                                                        |

| 23 | Abstract. Gas gangrene occurs in several animal species, and it is caused by one or more                  |
|----|-----------------------------------------------------------------------------------------------------------|
| 24 | clostridial species. In horses, the disease is most often caused by <i>Clostidium perfringens</i> type A. |
| 25 | Although Clostridium sordellii has been associated with gas gangrene in ruminants and humans,             |
| 26 | cases of the disease associated with this microorganism have not been described in horses. We             |
| 27 | report 8 cases of gas gangrene by C. sordellii in horses. These cases were characterized by               |
| 28 | myonecrosis and cellulitis, associated with systemic changes suggestive of toxic shock. The               |
| 29 | diagnosis was confirmed by gross and microscopic changes combined with anaerobic culture,                 |
| 30 | fluorescent antibody test, immunohistochemistry and/or PCR. The predisposing factor in these              |
| 31 | cases was an injection or a traumatic skin injury. C. sordellii should be considered as a possible        |
| 32 | etiologic agent in cases of gas gangrene in horses.                                                       |
| 33 |                                                                                                           |
| 34 | Key words. Clostridium sordellii, gas gangrene, horse, muscle, subcutaneous tissue                        |
| 35 | Key words. <i>Clostridium sordellii</i> , gas gangrene, horse, muscle, subcutaneous tissue                |
| 36 |                                                                                                           |
| 37 |                                                                                                           |
| 38 |                                                                                                           |
| 39 |                                                                                                           |
| 40 |                                                                                                           |
| 41 |                                                                                                           |
| 42 |                                                                                                           |
| 43 |                                                                                                           |
| 44 |                                                                                                           |
| 45 |                                                                                                           |
| 46 |                                                                                                           |

| 47 | Introduction                                                                                                                             |
|----|------------------------------------------------------------------------------------------------------------------------------------------|
| 48 | Gas gangrene (formerly known as malignant edema) is a rapidly progressing infection of                                                   |
| 49 | muscle and subcutaneous tissue produced by one or more clostridial species, characterized by                                             |
| 50 | severe myonecrosis and/or cellulitis in humans and several animal species. <sup>28, 32</sup> The pathogenesis                            |
| 51 | of gas gangrene involves skin or mucosal wounds through which vegetative forms or spores of                                              |
| 52 | the clostridial species involved gain entry to the organism. At the port of entry, the organism                                          |
| 53 | multiplies rapidly and produces toxins that act locally and access the blood, producing toxic                                            |
| 54 | shock syndrome and multiorgan failure. <sup>22, 29</sup> Septicemia is also a common complication of the                                 |
| 55 | disease. <sup>8, 28</sup>                                                                                                                |
| 56 | Gas gangrene in horses is most often caused by <i>Clostridium perfringens</i> type A, <sup>23</sup>                                      |
| 57 | although sporadic cases have been described in association with other clostridial species,                                               |
| 58 | including Clostridium septicum, Clostridium chauvoei, Clostridium novyi, Clostridium ramosum,                                            |
| 59 | Clostridium sporogenes and Clostridium fallax. <sup>2, 5, 7, 14, 23, 24, 28, 37</sup> The majority of cases of equine                    |
| 60 | gas gangrene described in the literature have been produced by a single clostridial species,                                             |
| 61 | although mixed infections with two or more clostridial species have occasionally been reported. <sup>15,</sup>                           |
| 62 | 23, 27, 37                                                                                                                               |
| 63 | Clostridium sordellii is one of the members of the gas gangrene complex, and it has been                                                 |
| 64 | described as a cause of gas gangrene in humans, <sup>3, 10, 16, 30</sup> cattle <sup>38</sup> and sheep, <sup>20, 35</sup> and also in a |
| 65 | series of cases of omphalitis in foals. <sup>22</sup> However, to the best of our knowledge, no cases of gas                             |
| 66 | gangrene associated with C. sordellii have been described in horses.                                                                     |

*C. sordellii* is a gram-positive, anaerobic bacillus, which is a common habitant of soil<sup>29</sup>
and rarely, the intestinal content of healthy animals. Most cases of clostridial gas gangrene,
including those produced by *C. sordellii* occur via contamination of wounds, including those
associated with parturition and injections. Trauma-associated tissue necrosis generates local

| 71                                           | hypoxia, alkaline pH and protein breakdown products required for clostridial proliferation. <sup>26</sup> In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 72                                           | humans, clostridial toxic shock is a rare syndrome occurring post-partum and post-abortion,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 73                                           | characterized by tachycardia, hypotension and lack of fever. <sup>39</sup> The patients frequently progress to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 74                                           | fatal toxic shock syndrome. <sup>12</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 75                                           | All strains of C. sordellii encode sordellilysin (sdl), phospholipase C and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 76                                           | neuroaminidase.9 In addition, some C. sordellii isolates may produce lethal toxin (TcsL) and/or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 77                                           | hemorrhagic toxin (TcsH), both of which are considered the main virulence factors for the toxic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 78                                           | shock syndrome in humans. <sup>29, 31</sup> Although the role of these toxins in cases of animal gas gangrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 79                                           | has not been determined, it is likely that they play a role similar to the one they play in human                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 80                                           | disease. In this paper, we describe here 8 cases of gas gangrene in horses produced by C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 81                                           | sordellii.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 82                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 83                                           | Materials and methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 83<br>84                                     | Materials and methods<br>We searched the records of the California Animal Health and Food Safety Laboratory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 84                                           | We searched the records of the California Animal Health and Food Safety Laboratory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 84<br>85                                     | We searched the records of the California Animal Health and Food Safety Laboratory<br>System (CAHFS) at UC Davis for cases of horses submitted for autopsy between 1998 and 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 84<br>85<br>86                               | We searched the records of the California Animal Health and Food Safety Laboratory<br>System (CAHFS) at UC Davis for cases of horses submitted for autopsy between 1998 and 2019<br>that had a diagnosis of gas gangrene that was attributed to <i>C. sordellii</i> . This included 8 cases in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 84<br>85<br>86<br>87                         | We searched the records of the California Animal Health and Food Safety Laboratory<br>System (CAHFS) at UC Davis for cases of horses submitted for autopsy between 1998 and 2019<br>that had a diagnosis of gas gangrene that was attributed to <i>C. sordellii</i> . This included 8 cases in<br>which i) the horses had severe necrotizing cellulitis and/or myositis, ii) <i>C. sordellii</i> had been                                                                                                                                                                                                                                                                                                                                                                                     |
| 84<br>85<br>86<br>87<br>88                   | We searched the records of the California Animal Health and Food Safety Laboratory<br>System (CAHFS) at UC Davis for cases of horses submitted for autopsy between 1998 and 2019<br>that had a diagnosis of gas gangrene that was attributed to <i>C. sordellii</i> . This included 8 cases in<br>which i) the horses had severe necrotizing cellulitis and/or myositis, ii) <i>C. sordellii</i> had been<br>isolated from the affected muscle and/or detected intralesionally by immunohistochemistry,                                                                                                                                                                                                                                                                                       |
| 84<br>85<br>86<br>87<br>88<br>89             | We searched the records of the California Animal Health and Food Safety Laboratory<br>System (CAHFS) at UC Davis for cases of horses submitted for autopsy between 1998 and 2019<br>that had a diagnosis of gas gangrene that was attributed to <i>C. sordellii</i> . This included 8 cases in<br>which i) the horses had severe necrotizing cellulitis and/or myositis, ii) <i>C. sordellii</i> had been<br>isolated from the affected muscle and/or detected intralesionally by immunohistochemistry,<br>fluorescent antibody test and/or polymerase chain reaction, and iii) the horses had died                                                                                                                                                                                           |
| 84<br>85<br>86<br>87<br>88<br>89<br>90       | We searched the records of the California Animal Health and Food Safety Laboratory<br>System (CAHFS) at UC Davis for cases of horses submitted for autopsy between 1998 and 2019<br>that had a diagnosis of gas gangrene that was attributed to <i>C. sordellii</i> . This included 8 cases in<br>which i) the horses had severe necrotizing cellulitis and/or myositis, ii) <i>C. sordellii</i> had been<br>isolated from the affected muscle and/or detected intralesionally by immunohistochemistry,<br>fluorescent antibody test and/or polymerase chain reaction, and iii) the horses had died<br>spontaneously or been euthanized because of severe clinical disease associated with this                                                                                               |
| 84<br>85<br>86<br>87<br>88<br>89<br>90<br>91 | We searched the records of the California Animal Health and Food Safety Laboratory<br>System (CAHFS) at UC Davis for cases of horses submitted for autopsy between 1998 and 2019<br>that had a diagnosis of gas gangrene that was attributed to <i>C. sordellii</i> . This included 8 cases in<br>which i) the horses had severe necrotizing cellulitis and/or myositis, ii) <i>C. sordellii</i> had been<br>isolated from the affected muscle and/or detected intralesionally by immunohistochemistry,<br>fluorescent antibody test and/or polymerase chain reaction, and iii) the horses had died<br>spontaneously or been euthanized because of severe clinical disease associated with this<br>infection. Information on signalment and clinical history is summarized in Table 1. A full |

| 95  | Samples of lung, liver, kidney, heart, skeletal muscle, stomach, small and large intestine,                  |
|-----|--------------------------------------------------------------------------------------------------------------|
| 96  | spleen, thymus, lymph node, uterus, ovary, adrenal gland, pituitary gland, thyroid gland, salivary           |
| 97  | gland, peripheral nerve, trachea, spinal cord, sciatic nerve, trigeminal ganglia, tongue, pancreas,          |
| 98  | urinary bladder, subcutaneous tissue and/or the whole brain were collected in most cases and                 |
| 99  | fixed in 10% buffered formalin pH 7.2 for several days. The brains were then cut into $\sim 0.5~\text{cm}$   |
| 100 | thick slices, and fixed in fresh formalin for additional 7-10 days; after this, samples of parietal          |
| 101 | cortex, corpus striatum, thalamus, mid-brain at the level of anterior colliculi, pons, cerebellar            |
| 102 | peduncles, cerebellum and medulla at the level of the obex were collected. All tissues were                  |
| 103 | routinely processed to obtain 4 $\mu$ m thick, hematoxylin and eosin-stained sections. In all cases,         |
| 104 | selected sections of subcutaneous tissue and muscle were also stained with Gram.                             |
| 105 | Samples of muscle and subcutaneous tissue from grossly affected areas, and multiple                          |
| 106 | organs including one or more of liver, spleen, lung, skin, peripheral lymph nodes, peritoneal                |
| 107 | fluid, aqueous humor, and small intestinal and cecal content from most horses were aseptically               |
| 108 | collected and inoculated onto 5% sheep blood agar, and incubated aerobically and/or                          |
| 109 | anaerobically at 37°C for 48 hours (Table 2). Sub-samples of most of these specimens were also               |
| 110 | inoculated into cooked meat medium and incubated anaerobically at 37°C for 48 hours. All                     |
| 111 | isolates were identified by conventional biochemical techniques.                                             |
| 112 | Muscle smears of 4 cases (cases 1, 2, 7 and 8) were also subjected to direct fluorescent                     |
| 113 | antibody test (FAT) for C. sordellii, C. chauvoei. C. novyi and C. septicum as previously                    |
| 114 | described <sup>22</sup> (Table 2). Reference strains of the clostridial species mentioned above were used as |
| 115 | control for each FAT preparation.                                                                            |
| 116 | Immunohistochemistry (IHC) was performed on formalin-fixed, paraffin-embedded                                |
| 117 | sections of skeletal muscle and subcutaneous tissue of 4 cases (cases 3, 4, 6 and 8) as previously           |
|     |                                                                                                              |

118 described.<sup>22</sup> Briefly, a streptavidin–biotin kit was used according to the manufacturer's

| 119 | instructions (LSAB-peroxidase K675; Dako, Carpinteria, CA). Primary rabbit polyclonal                                     |
|-----|---------------------------------------------------------------------------------------------------------------------------|
| 120 | antibodies against C. sordellii (VMRD, Seattle, WA) were used. Positive controls consisted of                             |
| 121 | muscle sections of a horse from which C. sordellii had been isolated. Negative controls consisted                         |
| 122 | of sections incubated with normal rabbit serum instead of the primary antibody and of muscle                              |
| 123 | sections of a healthy horse from which no anaerobes had been isolated.                                                    |
| 124 | PCR for 3 genes specific of C. sordellii, i.e. sordellilysin (sdl), lethal toxin of C. sordellii                          |
| 125 | (tcsL) and hemorrhagic toxin of C. sordellii (tcsH) was performed on muscle of 3 of the horses                            |
| 126 | (cases 4, 6 and 8). For this, 3, 5-µm-thick scrolls of formalin-fixed, paraffin embedded (FFPE)                           |
| 127 | skeletal muscle were placed into 1.5-ml microcentrifuge tubes for dewaxing by adding 1 ml of                              |
| 128 | xylene, followed by centrifugation for 2 minutes at 13,000 $xg$ . The xylene was then removed and                         |
| 129 | the pellet was washed with 1 ml of 100% ethanol and centrifuged for 2 minutes at 13,000 g. The                            |
| 130 | ethanol was discarded and the samples were air-dried at room temperature for 45 minutes. Then,                            |
| 131 | the dewaxed tissues were subjected to DNA extraction using a commercial kit (QIAamp DNA                                   |
| 132 | FFPE Tisse Kit, QIAGEN, Hilden, Germany) following the instructions of the manufacturer. The                              |
| 133 | extracted DNA was used as template for conventional PCR detection of sdl, tcsL and tcsH genes                             |
| 134 | using the following set of primers, respectively: 5'-CCATAAGTGGTGGTGCTTCG-3' (sdlF)                                       |
| 135 | and 5'-TGATTGCAGCGTATAAGCAAAT-3' (sdlF) (138bp); 5'-                                                                      |
| 136 | GACCCAACGAAGAGTGGAGC-3' (TcsLF) and 5'-TCAAGTGTACCAGCAGGAGC-3'                                                            |
| 137 | (TcsLR) (146bp); 5'- GGGACACCTTCTGTAAGTGTAGG -3' (TcsHF) and 5'-                                                          |
| 138 | AGGTTCAACTGTATGCCCAACT -3' (TcsHF) (133bp). PCR was performed in a total volume                                           |
| 139 | of 25 $\mu$ l containing 5 $\mu$ l of extracted DNA, 0.25 $\mu$ l of each primer (10 $\mu$ M), 7 $\mu$ l of nuclease-free |
| 140 | water and 12.5 $\mu$ l of DreamTaq Green PCR Master Mix 2X Thermo Scientific (Waltham, MA)                                |
| 141 | which contains DreamTaq DNA polymerase, 2X DreamTaq Green buffer, dNTPs (0.4 mM each)                                     |
| 142 | and MgCl <sub>2</sub> (4 mM). The following thermocycler profiles were used: $95^{\circ}$ C for 4 min, 35 cycles at       |
|     |                                                                                                                           |

| 143 | 95° C for 30s, 54° C for 30s, and 72° C for 1 min followed by a final extension step at 72° C for 5                                     |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------|
| 144 | min and a final hold at 4° C. DNA extracted from the C. sordellii JGS6382 strain was used as                                            |
| 145 | positive control. This strain is positive for <i>sdl</i> , <i>tcsL</i> and <i>tcsH</i> . Scrolls from the <i>C</i> . <i>sordellii</i> - |
| 146 | negative skeletal muscle used for IHC (see above) and reactions in which nuclease-free water                                            |
| 147 | was used instead of DNA were used as negative controls. PCR amplicons were visualized in                                                |
| 148 | ethidium bromide-stained 1.5% agarose gels (Agarose SFR <sup>TM</sup> , Amresco <sup>®</sup> , Solon, Ohio).                            |
| 149 |                                                                                                                                         |
| 150 | Results                                                                                                                                 |
| 151 | In 7 of the 8 cases (cases 1, 2, 3, 5, 6, 7 and 8) there was a history of skin injury which                                             |
| 152 | was thought to be the port of entry for <i>C. sordellii</i> . No information about a possible port of entry                             |
| 153 | was available in one case (case 4).                                                                                                     |
| 154 | Grossly, the lesions involved muscle and/or subcutaneous tissue underneath areas of skin                                                |
| 155 | injuries except for case 1 (case 4), in which no skin lesions were seen. In all cases, the affected                                     |
| 156 | subcutaneous tissue presented extensive, moderate to severe, foul smelling, yellow and gelatinous                                       |
| 157 | edema, and hemorrhage, which frequently extended into the underlying musculature, separating                                            |

muscles bundles (Fig. 1). The muscle of these areas was multifocally dark red with irregular pale

areas, and it was friable, soft and dry, often showing gas bubbles (Fig. 2). The lungs were

160 diffusely congested and edematous, and presented multifocal petechiae throughout the

161 parenchyma and on the pleura. The heart showed multifocal epicardial, myocardial and sub-

162 endocardial petechiae and ecchymosis that were most marked in the left and right ventricle, but

163 were also observed in both atria. In addition, ascites, hydrothorax and hydropericardium was

164 observed in 4 cases (cases 1, 4, 6 and 8). Diffuse mucosal edema and multifocal sub-serosal

- 165 petechiae were observed in the colon of 5 horses (cases 1, 2, 4, 5 and 8). A few multifocal
- 166 shallow ulcers with elevated borders and schirrous ulcer beds were present in the esophagic

167 portion, close to the *margo plicatus* of the stomach in 2 cases (cases 3 and 6). Hemorrhagic,

168 focally extensive ulceration of glandular gastric mucosa was seen in 1 horse (case 8).

169 Microscopically, the lesions in skeletal muscle were similar in all animals. There was 170 multifocal to coalescing necrosis of muscular fibers, characterized by diffuse, dense, eosinophilic 171 and glassy appearance of the cytoplasm, with loss of cross-striations, fragmentation, vacuolation, 172 hypercontraction bands, mineralization, karvorrhexis and karvolysis (Fig. 3). Multifocally, within 173 the cytoplasm of the necrotic myofibers there was a moderate number of degenerate and viable 174 neutrophils, and fewer macrophages. The interstitium and fascia was expanded by moderate to 175 severe hemorrhage, edema, fibrin, neutrophils, and fewer lymphocytes, plasma cells and 176 macrophages. The interstitium also showed multifocal, large empty clear vacuoles with well-177 defined borders in 7 cases (cases 1, 2, 3, 5, 6, 7 and 8) and large numbers of gram-positive rods, 178 singly or in clusters (Fig. 5). These bacteria were approximately  $5-7 \mu m \times 0.8-1 \mu m$ , with parallel borders and round ends, and many of them had central or sub-terminal spores (Fig. 4). 179 180 Fibrinoid, suppurative-necrotizing vasculitis was observed in areas of muscular necrosis in 2 181 cases (cases 1 and 6). The subcutaneous tissue overlying the areas of myonecrosis in all cases 182 showed pronounced expansion with edema, hemorrhage, fibrin, neutrophils, lymphocytes, plasma 183 cells and macrophages. The deep dermis was distended by fibrin, edema and hemorrhage; blood 184 vessels showed multifocal and perivascular neutrophil infiltrates. In addition, 3 animals (cases 3, 185 5 and 7) had mild, multifocal myocardial necrosis, characterized by swollen myofibers with 186 hypercontraction bands, which were surrounded by a mild neutrophilic and lymphoplasmacytic 187 infiltrate. Multifocal, mild to severe interstitial hemorrhage was seen in endocardium, 188 myocardium and epicardium. The kidneys of 6 horses (cases 1, 2, 3, 4, 5 and 6) were congested, 189 and homogeneous eosinophilic protein casts were observed in the lumen of renal tubules. Acute 190 proximal tubular necrosis was observed in 2 cases (cases 1 and 3).

| 191                                                                                                                             | A summary of bacteriologic and molecular findings is shown in Table 2. Briefly, C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 192                                                                                                                             | sordellii was isolated from muscle in all horses. In addition, C. perfringens type A, Streptococcus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 193                                                                                                                             | spp., Enterococcus spp., Echerichia coli, and mixed aerobic and anaerobic flora were also                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 194                                                                                                                             | isolated from affected muscle in 5 cases (cases 3, 4, 5, 6 and 8). All 3 FFPE samples analyzed by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 195                                                                                                                             | PCR were positive for C. sordellii sdl and tcsL genes, but negative for the tcsH gene.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 196                                                                                                                             | FAT for <i>C. sordellii</i> was positive in 3 (cases 2, 7 and 8) of the 4 cases tested for this                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 197                                                                                                                             | technique. FAT for the other clostridial species tested was negative in the 4 cases. Sections of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 198                                                                                                                             | skeletal muscle from 3 cases (cases 4, 6 and 8) and subcutaneous tissue were positive for C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 199                                                                                                                             | sordellii IHC (Fig. 6) and 1 case was negative. The positive-stained bacteria were in the same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 200                                                                                                                             | location and had similar morphology to those described for the sections stained with Gram.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 201                                                                                                                             | Positive control tissues was stained positively with this technique and no staining was observed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 202                                                                                                                             | in any of the negative controls.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 203                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 203<br>204                                                                                                                      | Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                 | <b>Discussion</b><br>In this study, a diagnosis of gas gangrene by <i>C. sordellii</i> was established on the basis of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 204                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 204<br>205                                                                                                                      | In this study, a diagnosis of gas gangrene by <i>C. sordellii</i> was established on the basis of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 204<br>205<br>206                                                                                                               | In this study, a diagnosis of gas gangrene by <i>C. sordellii</i> was established on the basis of clinical history, gross and microscopic findings, and the detection of the microorganism by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 204<br>205<br>206<br>207                                                                                                        | In this study, a diagnosis of gas gangrene by <i>C. sordellii</i> was established on the basis of clinical history, gross and microscopic findings, and the detection of the microorganism by bacterial culture, IHC, FAT and/or PCR. Although Gram stain and IHC were negative in 1 case,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 204<br>205<br>206<br>207<br>208                                                                                                 | In this study, a diagnosis of gas gangrene by <i>C. sordellii</i> was established on the basis of clinical history, gross and microscopic findings, and the detection of the microorganism by bacterial culture, IHC, FAT and/or PCR. Although Gram stain and IHC were negative in 1 case, <i>C. sordellii</i> was isolated from that animal, which, coupled with the gross and microscopic lesions,                                                                                                                                                                                                                                                                                                                                                                                               |
| 204<br>205<br>206<br>207<br>208<br>209                                                                                          | In this study, a diagnosis of gas gangrene by <i>C. sordellii</i> was established on the basis of clinical history, gross and microscopic findings, and the detection of the microorganism by bacterial culture, IHC, FAT and/or PCR. Although Gram stain and IHC were negative in 1 case, <i>C. sordellii</i> was isolated from that animal, which, coupled with the gross and microscopic lesions, confirmed the diagnosis. It is likely that the sections used for IHC and Gram stain in that case                                                                                                                                                                                                                                                                                              |
| 204<br>205<br>206<br>207<br>208<br>209<br>210                                                                                   | In this study, a diagnosis of gas gangrene by <i>C. sordellii</i> was established on the basis of clinical history, gross and microscopic findings, and the detection of the microorganism by bacterial culture, IHC, FAT and/or PCR. Although Gram stain and IHC were negative in 1 case, <i>C. sordellii</i> was isolated from that animal, which, coupled with the gross and microscopic lesions, confirmed the diagnosis. It is likely that the sections used for IHC and Gram stain in that case were prepared from an area with low or no bacterial load which resulted in a negative IHC and                                                                                                                                                                                                |
| 204<br>205<br>206<br>207<br>208<br>209<br>210<br>211                                                                            | In this study, a diagnosis of gas gangrene by <i>C. sordellii</i> was established on the basis of clinical history, gross and microscopic findings, and the detection of the microorganism by bacterial culture, IHC, FAT and/or PCR. Although Gram stain and IHC were negative in 1 case, <i>C. sordellii</i> was isolated from that animal, which, coupled with the gross and microscopic lesions, confirmed the diagnosis. It is likely that the sections used for IHC and Gram stain in that case were prepared from an area with low or no bacterial load which resulted in a negative IHC and Gram stain. The isolation of <i>C. sordellii</i> in pure culture from muscle of 3 horses and the                                                                                               |
| <ul> <li>204</li> <li>205</li> <li>206</li> <li>207</li> <li>208</li> <li>209</li> <li>210</li> <li>211</li> <li>212</li> </ul> | In this study, a diagnosis of gas gangrene by <i>C. sordellii</i> was established on the basis of clinical history, gross and microscopic findings, and the detection of the microorganism by bacterial culture, IHC, FAT and/or PCR. Although Gram stain and IHC were negative in 1 case, <i>C. sordellii</i> was isolated from that animal, which, coupled with the gross and microscopic lesions, confirmed the diagnosis. It is likely that the sections used for IHC and Gram stain in that case were prepared from an area with low or no bacterial load which resulted in a negative IHC and Gram stain. The isolation of <i>C. sordellii</i> in pure culture from muscle of 3 horses and the supportive gross and microscopic lesions suggest that this microorganism can act as a primary |

| 215 | with C. sordellii to produce gas gangrene in these two horses. Other microorganisms that can                               |
|-----|----------------------------------------------------------------------------------------------------------------------------|
| 216 | produce similar lesions in horses, e.g. C. septicum. C. novyi and C. chauvoei, were ruled out by                           |
| 217 | culture and/or FAT.                                                                                                        |
| 218 | Clostridial gas gangrene has been reported in horses before. <sup>4, 18, 23, 25 27, 33, 34</sup> However, C.               |
| 219 | sordellii has not been reported associated with gas gangrene in horses until now. In a previous                            |
| 220 | report of 37 cases of gas gangrene. <sup>23</sup> C. perfringens type A was isolated in purity in 25 cases, and            |
| 221 | in combination with other clostridia in 4 cases. Based on those results, the authors, <sup>23</sup> concluded              |
| 222 | that <i>C. perfringens</i> type A is the most common cause of gas gangrene in horses. In that study, <sup>23</sup>         |
| 223 | C. sordellii was not isolated from any case.                                                                               |
| 224 | In the study by Peek et al (2003), the lesions consisted of severe necrotizing fasciitis and                               |
| 225 | myositis in the region of the inciting wound, coupled with splenic, hepatic, renal and/or                                  |
| 226 | myocardial necrosis. <sup>23</sup> In our cases, similar local and systemic lesions were observed, the latter              |
| 227 | suggesting that toxic shock syndrome also occurred. These lesions are similar to those described                           |
| 228 | in cases of gas gangrene in several animal species. <sup>20, 28</sup>                                                      |
| 229 | C. sordellii has been associated with multiple histotoxic infections in a variety of animals,                              |
| 230 | including omphalitis in foals, <sup>22</sup> gas gangrene in ruminants, <sup>20, 35</sup> emphysematous abomasitis in      |
| 231 | lambs <sup>36</sup> and metritis in sheep <sup>6</sup> . This microorganism has also been blamed for sudden death          |
| 232 | syndrome in cattle <sup>38</sup> and lions <sup>11</sup> . Solid evidence for the role in the latter is, however, lacking. |
| 233 | In humans, C. sordellii has been associated with fulminant necrotizing omphalitis in                                       |
| 234 | babies <sup>1, 17, 19</sup> and endometritis and toxic shock syndrome in women <sup>21</sup> . The cause of death of       |
| 235 | humans with C. sordellii infection is thought to be septic shock, including DIC. The toxins                                |
| 236 | generated by the microorganism at the site if infection are thought to spread systemically leading                         |
| 237 | to septic shock. <sup>13</sup> The gross and microscopic findings described in the 8 horses of this study,                 |
|     |                                                                                                                            |
|     | 10                                                                                                                         |

| 238 | suggest that a similar mechanism of death occurred in these horses. In our study, the predisposing        |
|-----|-----------------------------------------------------------------------------------------------------------|
| 239 | factor was an injection in the great majority of cases.                                                   |
| 240 | In this study, a skin injury, either iatrogenic (injection) or accidental was considered the              |
| 241 | port of entry of the infection. This is consistent with most cases of gas gangrene previously             |
| 242 | reported in horses and other animal species. <sup>24, 25, 27, 33, 34</sup>                                |
| 243 | In humans, it is believed that one or two of the two main virulence factors of C. sordellii               |
| 244 | (TcsL and TcsH), are responsible for the main lesions and clinical signs observed in cases of gas         |
| 245 | gangrene. <sup>10</sup> The TcsL triggers apoptosis on endothelial cells, leading to vascular compromise, |
| 246 | edema and shock. <sup>12</sup> The gene encoding TcsL was identified in the three cases available for PCR |
| 247 | in this study, suggesting that this toxin might have been the main virulence factor responsible for       |
| 248 | these infections.                                                                                         |
| 249 | In summary, the 8 animals included in this study presented gas gangrene characterized by                  |
| 250 | severe myonecrosis and cellulitis associated with C. sordellii infection, which is thought to have        |
| 251 | led to toxemia and septic shock.                                                                          |
| 252 |                                                                                                           |
| 253 | Acknowledgments                                                                                           |
| 254 | We thank J. Beingesser for excellent technical assistance. S.C. Sacco was supported by                    |
| 255 | the "Programa de Movilidad Académico-Científica (PROMAC 2018-2019)" of                                    |
| 256 | the National University of Litoral, Argentina. J. Ortega was supported by "Ayudas a la movilidad          |
| 257 | investigadora CEU-Banco Santander", Spain.                                                                |
| 258 |                                                                                                           |
| 259 | Declaration of conflicting interests                                                                      |
| 260 | The authors declare no potential conflicts of interest with respect to the research,                      |
| 261 | authorship, and/or publication of this article.                                                           |

| 262 |                                                                                                       |
|-----|-------------------------------------------------------------------------------------------------------|
| 263 | Funding                                                                                               |
| 264 | This study was funded by the California Animal Health and Food Safety Laboratory,                     |
| 265 | University of California-Davis.                                                                       |
| 266 |                                                                                                       |
| 267 | References                                                                                            |
| 268 | 1- Adamkiewicz TV, et al. Neonatal Clostridium sordellii toxic omphalitis. Pediatr Infect Dis         |
| 269 | J 1993;12:253–257.                                                                                    |
| 270 | 2- Allen SD, et al. Clostridium. In: Manual of clinical microbiology. 7th ed. Washington, DC:         |
| 271 | ASM Press, 1999:654-671.                                                                              |
| 272 | 3- Bouvet P, et al. Foot Infection by <i>Clostridium sordellii</i> : Case Report and Review of 15     |
| 273 | Cases in France. J Clin Microbiol 2015; 53Suppl 4: S1423–1427.                                        |
| 274 | 4- Bruehaus BA, et al. Clostridial muscle infections following intramuscular injections in the        |
| 275 | horse. J Eq Vet Sci 1983;3:42–46.                                                                     |
| 276 | 5- Choi YK, et al. Clostridium perfringens type A myonecrosis in a horse in Korea. J Vet Med          |
| 277 | Sci 2003;65:1245-1247.                                                                                |
| 278 | 6- Clark S. Sudden death in periparturient sheep associated with Clostridium sordellii. Vet           |
| 279 | Rec 2003;153:340.                                                                                     |
| 280 | 7- Coloe PJ, et al. <i>Clostridium fallax</i> as a cause of gas edema disease in a horse. J Comp Path |
| 281 | 1983;3:597-601.                                                                                       |
| 282 | 8- Cooper BJ, Valentine BA. Muscle and tendon. In: Maxie MG, ed. Jubb, Kennedy, and                   |
| 283 | Palmer's Pathology of Domestic Animals. 6th ed. Vol. 1. St. Louis, MO: Elsevier,                      |
| 284 | 2016:230-232.                                                                                         |
|     |                                                                                                       |

| 285 | 9- Couchman EC, et al. <i>Clostridium sordellii</i> genome analysis reveals plasmid localized toxin |
|-----|-----------------------------------------------------------------------------------------------------|
| 286 | genes encoded within pathogenicity loci. BMC Genomics 2015;16:392.                                  |
| 287 | 10- Cunniffe JG. Clostridium sordellii bacteraemia. J Infect 1996;33:127-129.                       |
| 288 | 11-De la Fe C, et al. Sudden death associated with Clostridium sordelli in captive lions            |
| 289 | (Panthera leo). Vet pathol 2006;43:370-374.                                                         |
| 290 | 12-Elkbuli A, et al. Survival from Clostridium toxic shock syndrome: Case report and review         |
| 291 | of the literature. Int J Surg Case Rep 2018;50:64–67.                                               |
| 292 | 13-Gray SF, Dieudonne BE. Clostridium sordelli causing malignant edema in a trauma                  |
| 293 | patient: a case report and review of literature. Pan Afr Med J 2018;30:118.                         |
| 294 | 14-Hagemoser WA, et al. Clostridium chauvoei infection in a horse. Am Vet Med Assoc                 |
| 295 | 1980;176:631-633.                                                                                   |
| 296 | 15-Jeanes LV, et al. Clostridial myonecrosis in horses. Compend Contin Educ Pract Vet               |
| 297 | 2001;23:577.                                                                                        |
| 298 | 16-Kimura AC, et al. Outbreak of necrotizing fasciitis due to Clostridium sordellii among           |
| 299 | blacktar heroin users. Clin Infect Dis 2004;38:87–91.                                               |
| 300 | 17-Kosloske AM, Bartow SA. Debridement of periumbilical necrotizing fasciitis: importance           |
| 301 | of excision of the umbilical vessels and urachal remnant. J Pediatr Surg 1991;26:808-810.           |
| 302 | 18-MacKay RJ, et al. Clostridium perfringens associated with a focal abscess in a horse. J Am       |
| 303 | Vet Med Assoc 1979;175:71–72.                                                                       |
| 304 | 19-Mason WH, et al. Omphalitis in the newborn infant. Pediatr Infect Dis J 1989;8:521–525.          |
| 305 | 20-Morris WE, et al. Malignant oedema associated with blood-sampling in sheep. Aust Vet             |
| 306 | Journal 2002;5:280-281.                                                                             |
| 307 | 21- Murray S, Wooltorton E. Septic shock after medical abortions with mifepristone (Mifeprex,       |
| 308 | RU 486) and misoprostol. Can Med Assoc J 2005;173:485.                                              |

- 309 22- Ortega J, et al. Infection of internal umbilical remmant in foals by *Clostridium sordellii*.
  310 Vet pathol 2007;44:269-275.
- 311 23-Peek SF, et al. Clostridial myonecrosis in horses (37 cases 1985-2000). Equine Vet J
  312 2003;35:86-92.
- 313 24- Perdrizet JA, et al. Succesful Management of malignant edema caused by *Clostridium* 314 *septicum* in a horse. Cornell Vet 1987;77:328-338.
- 315 25- Pfisterer BR, et al. Pathology in practice. J Am Vet Med Assoc 2019:254:681-683.
- 316 26- Quinn PJ, et al. *Clostridium* species. In: Veterinary microbiology and microbial diseases.
  317 2nd ed. West Sussex, UK: Willey-Blackwell, 2011:241.
- 27- Rebhun WC, et al. Malignant edema in horses. J Am vet med Ass 1985;187:732-736.
- 28- Silva ROS, et al. Clostridial histotoxic infection. Gas gangrene (Malignant edema). In:
  Clostridial disease of animals. Iowa: Wiley Blackwell, 2016:243-254.
- 321 29- Songer G, Post K. The Genus Clostridium. In: Veterinary Microbiology. Bacterial and
   322 fungal agents of animal diseases. Missouri, MO: Saunders Elsevier, 2005:268.
- 323 30- Tsokos M, et al. Pathology of fatal traumatic and nontraumatic clostridial gas gangrene: a
- histopathological, immunohistochemical, and ultrastructural study of six autopsy cases. Int
  J Legal Med 2008;22:35–41.
- 31- Unger-Torroledo L, et al. Lethal toxin of *Clostridium sordellii* is associated with fatal
  equine atypical myopathy. Vet Microbiology 2010;144:487-492.
- 328 32-Uzal FA, McClane BA, Cheung JK, Theoret J, Garcia JP, Moore RJ, Rood JI. Animal
- 329 models to study the pathogenesis of human and animal *Clostridium perfringens* infections.
- 330 Vet Microbiol 2015;179:23-33.
- 331 33- Valberg SJ, McKinnon AO. Clostridial cellulites in the horse: A report of five cases. Can
  332 Vet J 1984;25:67-71.

| 333 | 34- Van Heerden J, Batha WS. Clostridial myositis in a horse. J S Afr Med Assoc 1982;53:211.   |
|-----|------------------------------------------------------------------------------------------------|
| 334 | 35-Vannelli SA, et al. Clostridium sordellii asociado a un caso de gangrene gaseosa ovina      |
| 335 | [Clostridium sordellii associated to a case of ovine gas gangrene]. Vet Arg 1996;12:420-       |
| 336 | 422. Spanish.                                                                                  |
| 337 | 36-Vatn S, et al. Sarcina-like bacteria, Clostridium fallax and Clostridium sordellii in lambs |
| 338 | with abomasal bloat, haemorrhage and ulcers. J Comp Pathol 2000;122:193-200.                   |
| 339 | 37-Vengust M, et al. Preliminary evidence for dormant clostridial spores in equine skeletal    |
| 340 | muscle. Equine Vet Journal 2003;35:514-516.                                                    |
| 341 | 38-Williams BM. Clostridial myositis in cattle: bacteriology and gross pathology. Vet Rec      |
| 342 | 1977;100 Suppl 5:S90-91.                                                                       |
| 343 | 39-Zane S, Guarner J. Gynecologic clostridial toxic shock in women of reproductive age. Curr   |
| 344 | Infect Dis Rep 2011;13:561–570.                                                                |
| 345 | Infect Dis Kep 2011,13.301–370.                                                                |
| 346 |                                                                                                |
| 347 |                                                                                                |
| 348 |                                                                                                |
| 349 |                                                                                                |
| 350 |                                                                                                |
| 351 |                                                                                                |
| 352 |                                                                                                |
| 353 |                                                                                                |
| 354 |                                                                                                |
| 355 |                                                                                                |
| 356 |                                                                                                |

#### 358 Table 1. Signalment, clinical history, main clinical signs and affected region of 8 horses with gas

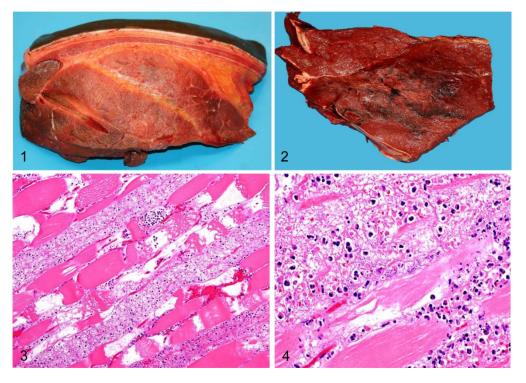
359 gangrene caused by Clostridium sordellii.

| Case | Age<br>(years) | Sex | Breed Clinical History Ma |                                                                  | Main clinical<br>signs            | Anatomic region<br>affected   |  |
|------|----------------|-----|---------------------------|------------------------------------------------------------------|-----------------------------------|-------------------------------|--|
| 1    | NR             | NR  | NR                        | Vaccination                                                      | Local edema                       | Left side neck and            |  |
|      |                |     |                           | (rhinopneumonitis,<br>influenza, tetanus) 3<br>days before onset | and pain                          | chest                         |  |
| 2    | 14             | F   | Quarter Horse             | Vaccination (rabies)<br>3 days before onset                      | Anorexia and seizures             | Left gluteal region           |  |
| 3    | 3              | F   | Arabian                   | Injection (selenium-<br>tocopherol, DMSO)<br>2 days before onset | Local pain,<br>colic and<br>shock | Lumbar region and both thighs |  |
| 4    | 5              | F   | Quarter Horse             | NR                                                               | Sudden death                      | Both thighs                   |  |
| 5    | 20             | F   | NR                        | Traumatic skin<br>wound before onset<br>(interval NR)            | NR                                | Left thigh                    |  |
| 6    | 2              | Μ   | Appaloosa                 | Traumatic skin<br>wound 5 days before<br>onset                   | NR                                | Left thigh                    |  |
| 7    | 19             | F   | Quarter Horse             | Chronic cellulitis of<br>unknown origin and<br>duration          | Anorexia                          | Both thighs                   |  |
| 8    | 7              | F   | Quarter Horse             | Traumatic skin<br>wound 7 days before<br>onset                   | Local edema<br>and pain           | Right shoulder                |  |

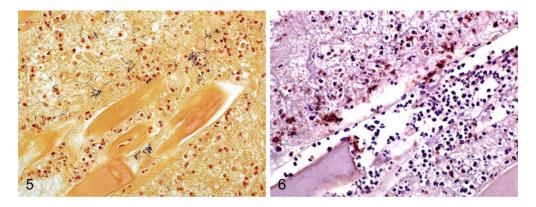
360 NR= Not reported; F= Female; M= Male.

# 362 **Table 2.** Microbiological and molecular findings in skeletal muscle of 8 horses with gas

363 gangrene caused by *Clostridium sordellii*.


|      |                              |                                                                                             | FAT             |                                          | C. sordellii<br>PCR |      |             |                        |                                                         |
|------|------------------------------|---------------------------------------------------------------------------------------------|-----------------|------------------------------------------|---------------------|------|-------------|------------------------|---------------------------------------------------------|
| Case | C.<br>sordellii<br>isolation | Gram<br>stain                                                                               | C.<br>sordellii | C. chauvoei;<br>C. septicum;<br>C. novyi | sdl                 | tcsL | <i>tcsH</i> | C.<br>sordellii<br>IHC | Other bacteria isolated                                 |
| 1    | +                            | +                                                                                           | _               | -                                        | NP                  | NP   | NP          | NP                     | -                                                       |
| 2    | +                            | +                                                                                           | +               | -                                        | NP                  | NP   | NP          | NP                     | -                                                       |
| 3    | +                            | -                                                                                           | NP              | NP                                       | NP                  | NP   | NP          | -                      | C. perfringens                                          |
| 4    | +                            | +                                                                                           | NP              | NP                                       | +                   | +    | -           | +                      | C. perfringens; Enterococcus spp.                       |
| 5    | +                            | +                                                                                           | NP              | NP                                       | NP                  | NP   | NP          | NP                     | Mixed flora; <i>Streptococcus</i> sp. gamma-hemolytic * |
| 6    | +                            | +                                                                                           | NP              | NP                                       | +                   | +    | -           | +                      | E. coli                                                 |
| 7    | +                            | +                                                                                           | +               | _                                        | NP                  | NP   | NP          | NP                     | -                                                       |
| 8    | +                            | NP                                                                                          | +               | -                                        | +                   | +    | -           | +                      | Mixed flora; Enterococcus spp.                          |
| 364  | 4 FAT=                       | FAT= fluorescent antibody test; IHQ = immunohistochemistry; (+) = Positive; (-) = Negative; |                 |                                          |                     |      |             |                        |                                                         |

365 NP= Not performed; \*bacteria isolated from a muscle different from which *C. sordellii* was


2010Z

366 isolated.

| 368 | Figure legends                                                                                  |
|-----|-------------------------------------------------------------------------------------------------|
| 369 | Figure 1-6. Muscle from horses with gas gangrene produced by Clostridium sordellii.             |
| 370 | Figure 1. Severe subcutaneous and interstitial edema. Figure 2. Focally extensive necrosis and  |
| 371 | hemorrhage. Figure 3. Coagulation necrosis, hemorrhage, edema and neutrophilic infiltration.    |
| 372 | H&E. Figure 4. Hypercontraction bands and neutrophilic infiltration within necrotic fibers, and |
| 373 | large numbers of intralesional rods. H&E. Figure 5. Clusters of gram-positive rods. Gram.       |
| 374 | Figure 6. Clostridium sordellii stained by immunohistochemistry.                                |
| 375 |                                                                                                 |
| 376 |                                                                                                 |
| 377 |                                                                                                 |
| 378 |                                                                                                 |
| 379 |                                                                                                 |
| 380 |                                                                                                 |
| 381 |                                                                                                 |
|     |                                                                                                 |
|     |                                                                                                 |



Figs. 1-4 172x122mm (300 x 300 DPI)



Figs. 5-6 166x62mm (300 x 300 DPI)