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Nacional, Apartado Postal 14-740, 07000 Ciudad de México, Mexico
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The ratios Rτ=P ≡ Γðτ → Pντ½γ�Þ=ΓðP → μνμ½γ�Þ (P ¼ π, K) provide sensitive tests of lepton univer-
sality jgτ=gμj ¼ 1 and are a useful tool for new physics searches. The radiative corrections to Rτ=P are
computed following a large-NC expansion to deal with hadronic effects: Chiral Perturbation Theory is
enlarged by including the lightest multiplets of spin-one heavy states such that the relevant Green functions
are well behaved at high energies. We find δRτ=π ¼ ð0.18� 0.57Þ% and δRτ=K ¼ ð0.97� 0.58Þ%,
which imply jgτ=gμjπ ¼ 0.9964� 0.0038 and jgτ=gμjK ¼ 0.9857� 0.0078, compatible with and at 1.8σ of
lepton universality, respectively. We test unitarity and bind nonstandard effective interactions with the
τ → Pντ½γ� decays.
DOI: 10.1103/PhysRevD.104.L091502

I. INTRODUCTION

Lepton universality (LU) is a basic tenet of the Standard
Model of particles interactions. A large diversity of weak
interaction processes is compatible with the fact that lepton
doublets have identical couplings gl to theW-boson. A few
anomalies observed in semileptonic B meson decays [1]
seem to challenge this principle or require new nonuni-
versal weak interactions. Lower energy observables where
very precise comparison of theory and experiments can be
done, currently provide the most precise test of LU [2].
In this work, we aim to test muon-tau lepton universality

through the ratio (P ¼ π, K) [3,4]

Rτ=P ≡ Γðτ → Pντ½γ�Þ
ΓðP → μνμ½γ�Þ

¼
���� gτgμ

����
2

P
Rð0Þ
τ=Pð1þ δRτ=PÞ; ð1Þ

where gμ ¼ gτ according to LU,1 the radiative corrections

are encoded in δRτ=P and Rð0Þ
τ=P is the leading-order result,

Rð0Þ
τ=P ¼ 1

2

M3
τ

m2
μmP

ð1 −m2
P=M

2
τÞ2

ð1 −m2
μ=m2

PÞ2
; ð2Þ

which is free from hadronic couplings and quark mixing
angles.
δRτ=P was calculated in Ref. [4], where the values

δRτ=π ¼ ð0.16� 0.14Þ% and δRτ=K ¼ ð0.90� 0.22Þ%
were reported. There are important reasons to address this
analysis again:
(1) Phenomenology. Using δRτ=P from [4], the last

HFLAV analysis [5] quoted jgτ=gμjπ ¼ 0.9958�
0.0026 and jgτ=gμjK ¼ 0.9879� 0.0063, at 1.6σ
and 1.9σ of LU (1.4σ and 2.0σ in [6], making use
of the PDG input [7]). However, determinations
of jgτ=gμj considering other observables are com-
patible with LU: the pure leptonic extraction
via Γðτ → eν̄eντ½γ�Þ=Γðμ → eν̄eνμ½γ�Þ, jgτ=gμj ¼
1.0010� 0.0014 [5] (1.0011� 0.0015 in [6]), and
the weighted average of the recent W-boson decay
determinations via ΓðW → τντÞ=ΓðW → μνμÞ,
jgτ=gμj ¼ 0.995� 0.006 [8,9], agree remarkably
with LU. Therefore, a closer look to the radiative
corrections δRτ=P is convenient to disentangle this
disagreement.

(2) Theory. First of all, the hadronic form factors modeled
in Ref. [4] are different for real- and virtual-photon
corrections. Furthermore, they do not satisfy the
correct QCD short-distance behavior, violate unitar-
ity, analyticity and the chiral limit at leading nontrivial
orders, and use a cutoff to regulate the loop integrals,
separating unphysically long- and short-distance
corrections. Finally, the uncertainties quoted in
Ref. [4] are unrealistic, since they are of the order
of a purely Chiral Perturbation Theory result, that is, a

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1The strong helicity suppression of the Pe2 decays disfavors
verifying ge ¼ gτ similarly.
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computation which cannot include the τ. Thus, a new
analysis of δRτ=P overcoming these problems is
pressing from a theoretical point of view.

Moreover, and as a by-product, an updated analysis of
δRτ=P would be useful to revisit the Cabibbo–Kobayashi–
Maskawa (CKM) unitarity test via jVusj in Γðτ →
Kντ½γ�Þ=Γðτ → πντ½γ�Þ or Γðτ → Kντ½γ�Þ [6] and improve
the constraints on possible nonstandard interactions affect-
ing this ratio [10,11].

II. P → μνμ½γ�
The inclusive Pμ2½γ� decay rate can be analyzed unam-

biguously within the Standard Model (Chiral Perturbation
Theory), being the estimation of the local counterterms the
only model dependence. We follow the notation proposed
in Ref. [3] and the numbers reported in Refs. [12,13]:

ΓPμ2½γ� ¼ Γð0Þ
Pμ2

�
1þ 2α

π
log

mZ

mρ

��
1þ α

π
Fðm2

μ=m2
PÞ
�

×

�
1 −

α

π

�
3

2
log

mρ

mP
þ cðPÞ1 þm2

μ

m2
ρ

�
cðPÞ2 log

m2
ρ

m2
μ

þ cðPÞ3 þ cðPÞ4 ðmμ=mPÞ
�
−
m2

P

m2
ρ
c̃ðPÞ2 log

m2
ρ

m2
μ

��
;

ð3Þ

where the first bracketed term is the universal short-
distance electroweak correction (which cancels in the
ratio Rτ=P), the second bracketed term is the universal
long-distance correction (pointlike approximation, origi-
nally calculated in Ref. [14] and to be given later), the third
bracketed term includes the structure dependent contribu-

tions and Γð0Þ
Pμ2

is the rate in absence of radiative corrections
(Fπ ∼ 92 MeV),

Γð0Þ
Pμ2

¼ G2
FjVuDj2F2

P

4π
mPm2

μ

�
1 −

m2
μ

m2
P

�
2

; ð4Þ

being D ¼ d, s for P ¼ π, K, respectively. The numerical

values for cðPÞn are reported in Table I [12,13]. Note that the
most important uncertainties come from the estimations of
the local counterterms, which were computed with a large-
NC expansion of QCD where Chiral Perturbation Theory is

enlarged by including the lightest multiplets of spin-one
heavy states such that the relevant Green functions are well
behaved at high energies [15].

III. τ → Pντ ½γ�
τ decays must be scrutinized by using an effective

approach encoding the hadronization of the QCD currents
and we consider here the same large-NC expansion of QCD
used in Refs. [12,13] to estimate the counterterms of Pμ2½γ�,
quoted previously [15]. Similarly to (3), the decay rate can
be organized as

ΓτP2½γ� ¼ Γð0Þ
τP2

�
1þ 2α

π
log

mZ

mρ

��
1þ α

π
Gðm2

P=M
2
τÞ
�

×

�
1 −

3α

2π
log

mρ

Mτ
þ δτPjrSD þ δτPjvSD

�
; ð5Þ

where again the pointlike long-distance correction will be
reported later, the structure dependent contributions have
been split into the real-photon (rSD) and virtual-photon

(vSD) corrections and Γð0Þ
τP2 is the rate in absence of radiative

corrections,

Γð0Þ
τP2 ¼

G2
FjVuDj2F2

P

8π
M3

τ

�
1 −

m2
P

M2
τ

�
2

; ð6Þ

being D ¼ d, s for P ¼ π, K, respectively.
The matrix element of the real-photon correction reads

iM½τðpτÞ → PðpÞντðqÞγ�ðkÞ� ¼ GFVuDeFPMτΓμūðqÞð1þ γ5Þ
�

2pμ

2p · kþ k2
þ 2pμ

τ − =kγμ

−2pτ · kþ k2

�
uðpτÞ

−GFVuDeΓνfiFP
VðW2; k2Þϵμνρσkρpσ þ FP

AðW2; k2Þ½ðW2 þ k2 −m2
PÞgμν − 2kμpν�

− AP
2 ðk2Þk2gμν þ AP

4 ðk2Þk2ðpþ kÞμpνgūðqÞγμð1 − γ5ÞuðpτÞ; ð7Þ

TABLE I. Numerical values for cðPÞn of (3) [12,13] (cðPÞ1 from
[16]). The uncertainties correspond to the input values
Lr
9ðμ ¼ mρÞ ¼ ð6.9� 0.7Þ × 10−3, γ ≡ Fπ

Að0; 0Þ=Fπ
Vð0; 0Þ ¼

0.465� 0.005, and to the estimation of the counterterms (m,

from matching), affecting only cðPÞ1 and cðPÞ3 .

(P ¼ π) (P ¼ K)

cðPÞ1
−2.56� 0.5m −1.98� 0.5m

cðPÞ2
5.2� 0.4L9

� 0.01γ 4.3� 0.4L9
� 0.01γ

cðPÞ3
−10.5� 2.3m � 0.53L9

−4.73� 2.3m � 0.28L9

cðPÞ4
1.69� 0.07L9

0.22� 0.01L9

c̃ðPÞ2
0 ð7.84� 0.07γÞ × 10−2
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whereW2 ¼ ðpτ − qÞ2 ¼ ðpþ kÞ2 and Γμ ¼ −ϵ�μðkÞ for an
on-shell photon. In the first line the structure-independent
contribution is shown [4], whereas in the second and third
lines we give the structure-dependent contributions in
terms of the relevant form factors, which encapsulate the
hadronization of the related QCD currents. At leading
order in the chiral expansion, the form factors AP

2 and AP
4

are not independent and can be written in terms of a single
form factor B (only depending on k2 and identical
for P ¼ π, K at this order): A2ðk2Þ ¼ −2Bðk2Þ and
A4ðk2Þ ¼ −2Bðk2Þ=ðW2 −m2

PÞ.
For virtual-photon corrections, we will focus on the

structure-dependent contributions (SD), as we agree with
the structure-independent ones calculated in Refs. [4]. The
relevant amplitude, where one photon vertex is attached to
the τ lepton (see Fig. 1), reads

iM½τ → Pντ�jSD ¼ GFVuDe2
Z

ddk
ð2πÞd

lμν

k2½ðpτ þ kÞ2 −M2
τ �

× ½iϵμνλρkλpρFP
VðW2; k2Þ

þ FP
AðW2; k2Þλ1μν þ 2Bðk2Þλ2μν�; ð8Þ

where we have defined

lμν ¼ ūðqÞγμð1 − γ5Þ½ð=pτ þ =kÞ þMτ�γνuðpτÞ;
λ1μν ¼ ½ðpþ kÞ2 þ k2 −m2

P�gμν − 2kμpν;

λ2μν ¼ k2gμν −
k2ðpþ kÞμpν

ðpþ kÞ2 −m2
P
: ð9Þ

In our case at hand, the form factors FP
V;AðW2; k2Þ and

Bðk2Þ can be taken from Refs. [17,18],

FP
VðW2; k2Þ ¼ −NCM4

V

24π2FPðk2 −M2
VÞðW2 −M2

VÞ
;

FP
AðW2; k2Þ ¼ FP

2

M2
A − 2M2

V − k2

ðM2
V − k2ÞðM2

A −W2Þ ;

Bðk2Þ ¼ FP

M2
V − k2

; ð10Þ

where well-behaved two- and three-point Green functions
are imposed and we consider the chiral and Uð3Þ flavor
limits. In (10) MV and MA stand for the vector and
axial-vector resonance masses, MV ¼ Mρ, MA ¼ Ma1
and MV ¼ MK�, MA ∼Mf1 for the pion and kaon case,
respectively.

IV. CALCULATION OF δRτ=P = δτP − δPμ
Adding up the structure-independent terms obtained

with both virtual and real photons (SI, the pointlike
approximation), we confirm the results given in Ref. [4]:

δRτ=PjSI ¼
α

2π

�
3

2
log

M2
τm2

P

m4
μ

þ 3

2
þ g

�
m2

P

M2
τ

�
− f

�
m2

μ

m2
P

��
;

ð11Þ

where fðxÞ and gðxÞ read2

fðxÞ ¼ 2

�
1þ x
1 − x

log x − 2

�
logð1 − xÞ − xð8 − 5xÞ

2ð1 − xÞ2 log x

þ 4
1þ x
1 − x

Li2ðxÞ −
x

1 − x

�
3

2
þ 4

3
π2
�
; ð12Þ

and

gðxÞ ¼ 2

�
1þ x
1 − x

log x − 2

�
logð1 − xÞ − xð2 − 5xÞ

2ð1 − xÞ2 log x

þ 4
1þ x
1 − x

Li2ðxÞ þ
x

1 − x

�
3

2
−
4

3
π2
�
; ð13Þ

being Li2ðxÞ ¼ −
R
x
0 dt

logð1−tÞ
t . One gets δRτ=πjSI ¼ 1.05%

and δRτ=KjSI ¼ 1.67% [4].
The structure-dependent contributions with real photons

(rSD) can be extracted from (7.14) and (7.16) of Ref. [13]
for P → μνμγ (δπμjrSD ¼ −1.3 × 10−8 and δKμjrSD ¼
−1.7 × 10−5) and from Ref. [17] for τ → Pντγ
(δτπjrSD ¼ 0.15% and δτKjrSD ¼ ð0.18� 0.05Þ%). This
gives δRτ=πjrSD¼0.15% and δRτ=KjrSD¼ð0.18�0.05Þ%,
being the terms from the P decay negligible.
In the case of Pμ2 the structure-dependent contribution

with virtual photons (vSD) can be extracted directly from

(3) and the numerical values for cðPÞn of Table I: δπμjvSD ¼
ð0.54� 0.12Þ% and δKμjvSD ¼ ð0.43� 0.12Þ%. The new
calculation we need to perform from scratch for the analysis
of Rτ=P is the structure-dependent part with virtual photons
for τ → Pντ, corresponding to the Feynman diagram of
Fig. 1. Inserting the form factors of (10) into (8)—a tedious
calculation whose technical details will be explained deeper
in a forthcoming longer article [19]—yields our results:

FIG. 1. Feynman diagram corresponding to the structure
dependent contributions to τ → Pντ decays. The gray shaded
box stands for the form factors.

2FðxÞ and GðxÞ of (3) and (5) can be related to fðxÞ and gðxÞ
by FðxÞ ¼ 3=2 log xþ fðxÞ=2þ 13=8 − π2=3 and GðxÞ ¼
gðxÞ=2þ 19=8 − π2=3.
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δτπjvSD ¼ −ð0.48� 0.56Þ%;

δτKjvSD ¼ −ð0.45� 0.57Þ%: ð14Þ

Accordingly, we find

δRτ=πjvSD ¼ −ð1.02� 0.57Þ%;

δRτ=KjvSD ¼ −ð0.88� 0.58Þ%: ð15Þ

A reliable estimation of the uncertainties in (14) is
fundamental, since it is the most important source of error
in δRτ=P. Keep in mind the great difference with the Pμ2

decays: (a) in P decays the calculation is performed within
Chiral Perturbation Theory (ChPT), so the unknown local
counterterms can be determined by matching ChPT with
the effective approach at higher energies, the large-NC
extension including the first resonances we have quoted
previously; (b) in τ decays, and due to the energy scale at
hand, the calculation is done directly with the large-NC
extension of ChPT, so the matching procedure to estimate
the unknown counterterms is not possible anymore.
Bearing in mind this handicap, we have estimated the
uncertainties of δτPjvSD by considering two ingredients.
First of all, and in order to assess the model dependence of
the effective approach, we have also calculated δτPjvSD with
a less general scenario where only well-behaved two-point
Green functions and a reduced resonance Lagrangian is
used; consequently, the form factors of (10) are different
[17,18] and we take as a first source of error in (14) one half
of the deviation in δτPjvSD between the two scenarios,
resulting in �0.22% for the pion and �0.24% for the
kaon. Second, and in order to estimate the unknown local
counterterms in δτPjvSD, whose dependences on the
renormalization scale are known from our calculation,
we have considered as the second source of uncertainty
in (14) one half of the running of the counterterms between
0.5 and 1.0 GeV, giving �0.52%.3 Adding quadratically
these two uncertainties yields the errors of (14): �0.56%
and �0.57% for the pion and the kaon case, respectively.

V. RESULTS

In Table II the different contributions to δRτ=P are
summarized, leading to our final result:

δRτ=π ¼ ð0.18� 0.57Þ%;

δRτ=K ¼ ð0.97� 0.58Þ%; ð16Þ

with dominant uncertainties coming from δτPjvSD. These
results should be compared with the previous ones of
Ref. [4], δRτ=π ¼ ð0.16� 0.14Þ% and δRτ=K ¼ ð0.90�
0.22Þ%. Although their central values agree remarkably,
this is merely a coincidence, as the one-sigma confidence
intervals agree only at the 25(38)% level for the πðKÞ case.
In our understanding uncertainties were underestimated in
Ref. [4], since they have approximately the size which
would be expected in a purely Chiral Perturbation Theory
computation. Besides, it is important to stress again that the
hadronization of the QCD currents used in that work differs
for real- and virtual-photon corrections, does not satisfy the
high-energy behavior dictated by QCD, violates unitarity,
analyticity and the chiral limit, and a cutoff is used to
regulate the loop integrals, splitting unphysically long- and
short-distance regimes.
Our results can also be used to compute the radiative

corrections of the individual τ → Pντ½γ� decays, ΓτP2½γ� ¼
Γð0Þ
τP2Sewð1þ δτPÞ, where Γð0Þ

τP2 was defined in (6), Sew ¼
1.0232 denotes the resummed universal short-distance
electroweak corrections [3] and δτP includes all remaining
radiative SI and SD corrections. Considering (5), δτP is
given by

δτP ¼ α

2π

�
g

�
m2

P

M2
τ

�
þ 19

4
−
2π2

3
− 3 log

mρ

Mτ

�

þ δτPjrSD þ δτPjvSD: ð17Þ

From our results one finds δτπ ¼ ð−0.24� 0.56Þ%
and δτK ¼ ð−0.15� 0.57Þ%.
Considering our results and the current experimental

information [7] in (1), it is found

TABLE II. Numerical values of the different photonic contri-
butions to δRτ=P: Structure Independent (SI), real Structure
Dependent (rSD) and virtual Structure Dependent (vSD). Errors
are not reported for contributions where the uncertainties are
negligible for the level of accuracy of this analysis, that is, lower
than 0.01%.

Contribution δRτ=π δRτ=K Ref.

SI þ1.05% þ1.67% [4]
rSD þ0.15% þð0.18� 0.05Þ% [12,17]
vSD −ð1.02� 0.57Þ% −ð0.88� 0.58Þ% New
Total þð0.18� 0.57Þ% þð0.97� 0.58Þ% New

3We follow a conservative estimate of the local counterterms in
(14), as we justify next. Seeing that the first resonances are
included in the theoretical framework for τ decays, their counter-
terms are expected to be smaller than in Pμ2. However, with the
effect of the running we consider here, the counterterms in
the Pμ2 case affecting δPμjvSD imply similar corrections to the
estimation we consider in δτPjvSD. This can be seen as a check,
a posteriori, that further running of the counterterms is not
physically motivated.
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���� gτgμ
����
π

¼ 0.9964� 0.0028th � 0.0025exp

¼ 0.9964� 0.0038;���� gτgμ
����
K

¼ 0.9857� 0.0028th � 0.0072exp

¼ 0.9857� 0.0078; ð18Þ

compatible with and at 1.8σ of lepton universality,
respectively.
An interesting application is the unitarity test (see e.g.,

[20] and references therein) from the ratio

Γðτ → Kντ½γ�Þ
Γðτ → πντ½γ�Þ

¼ jVusj2F2
K

jVudj2F2
π

ð1 −m2
K=M

2
τÞ2

ð1 −m2
π=M2

τÞ2
ð1þ δÞ; ð19Þ

where, as a result of our calculation,

δ ¼ α

2π

�
g

�
m2

K

M2
τ

�
− g

�
m2

π

M2
τ

��
þ δτKjrSD − δτπjrSD

þ δτKjvSD − δτπjvSD ¼ þð0.10� 0.80Þ%: ð20Þ

Using the FLAG 2þ 1þ 1 result for the meson decay
constants ratio FK=Fπ ¼ 1.1932� 0.0019 [21] and masses
and branching ratios from the PDG [7], one gets

���� Vus

Vud

���� ¼ 0.2288� 0.0010th � 0.0017exp

¼ 0.2288� 0.0020; ð21Þ

which is 2.1σ away from unitarity,4 according to
jVudj ¼ 0.97373� 0.00031 [22].
Alternatively, we can extract jVusj directly from the

τ → Kντ½γ� decays, ΓτK2½γ� ¼ Γð0Þ
τK2

Sewð1þ δτKÞ. Using our

value of δτK given after (17),
ffiffiffi
2

p
FK ¼ ð155.7� 0.3Þ MeV

[21], Sew ¼ 1.0232 [3] and masses and branching ratios
from the PDG [7], this yields

jVusj ¼ 0.2220� 0.0008th � 0.0016exp

¼ 0.2220� 0.0018; ð22Þ

at 2.6σ from unitarity, according to jVudj ¼ 0.97373�
0.00031 [22].
We can also bind the effective couplings characterizing

nonstandard interactions from the τ → Pντ½γ� decays,

Γðτ → Pντ½γ�Þ ¼ Γð0Þ
τP2

���� ṼuD

VuD

����
2

Sewð1þ δτP þ 2ΔτPÞ; ð23Þ

beingD ¼ d, s for P ¼ π, K, respectively. ΔτP captures the
new physics corrections and is given by5 [11]

ΔτP ¼ ϵτL − ϵeL − ϵτR − ϵeR −
m2

P

Mτðmu þmDÞ
ϵτP: ð24Þ

Using jVudj ¼ 0.97373� 0.00031 [22], masses and
branching ratios from the PDG [7],

ffiffiffi
2

p
Fπ ¼ ð130.2�

0.8Þ MeV and
ffiffiffi
2

p
FK ¼ ð155.7� 0.3Þ MeV from

Ref. [21], Sew ¼ 1.0232 [3] and our values of jVus=Vudj
in (21) and δτP after (17), we find

Δτπ ¼ −ð0.15� 0.72Þ × 10−2;

ΔτK ¼ −ð0.36� 1.18Þ × 10−2; ð25Þ

which update the results in Ref. [11] for u ↔ d and u ↔ s
transitions, respectively. These values are reported in the
MS scheme and at a scale of μ ¼ 2 GeV.
In conclusion, our final result for δRτ=P is consistent with

the previous literature [4], but with much more robust
assumptions, yielding a reliable uncertainty. Extracted
ratios of lepton couplings are compatible with lepton
universality (pion case) and at 1.8σ (kaon case) and can
also be used for testing CKM unitarity and binding
effective nonstandard interactions, as we have illustrated.
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4Again we take a conservative attitude in the estimate of the
uncertainties of (20), since we have directly propagated those of
(14). Alternatively, by recalculating directly the uncertainties of
the difference δτK jvSD − δτπjvSD, that of (20) drops to �0.05%,
which would imply �0.0004th and �0.0018 in (21). Taking into
account that the experimental error dominates, the change is
negligible and jVus=Vudj moves from 2.1σ to 2.2σ away from
unitarity, an absolutely insignificant shift.

5ΔτP contains the tree-level new physics corrections that are
not absorbed in ṼuD ¼ ð1þ ϵeL þ ϵeRÞVuD, directly incorporated
by taking VuD from nuclear β decays [11].
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