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Abstract: The aim of this study was to identify a relation between the clinical characteristics and
differences in lipid peroxidation in the subretinal fluid (SRF) of rhegmatogenous retinal detached
patients by malondialdehyde (MDA) quantification. We collected 65 SRF samples from consecutive
patients during scleral buckling surgery in rhegmatogenous retinal detachment (RRD) eyes. In
addition to a complete ophthalmic evaluation, we studied the refractive status, evolution time, and
the number of detached retinal quadrants to establish the extension of RRD. We studied the clinical
aspects and oxidative stress and compared the characteristics among groups. We found that neither
the evolution time of RRD nor the patients’ age correlated with the MDA concentration in the SRF.
The MDA and the protein content of the SRF increased in the patients with high myopia and with
more extended RRD. Our results suggest that oxidative imbalance was important in more extended
retinal detachment (RD) and in myopic eyes and should be taken into account in the managing of
these cases.
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1. Introduction

Rhegmatogenous retinal detachment (RRD) is a severe and relatively frequent pathol-
ogy. Its incidence is about one per 10,000 people yearly [1]; myopia increases the danger of
detachment by 10-fold. One possible reason for this is that myopia leads to earlier vitreous
liquefaction [2]. Despite good anatomic results after surgical treatment reaching 80–90%,
visual recovery does not achieve the same rate: 69.6% with visual success in a review [3],
with a median final visual acuity (VA) of 20/63, which is slightly further from a normal
VA. Others have attributed this lack of total functional recovery after successfully retinal
reattachment, to the programmed apoptosis of retinal cells [4,5].

Oxidative damage is a well-known mechanism of apoptosis induction. Both have
been frequently founded in ocular diseases [6]. The vitreous humor of patients with
retinal detachment has oxidative products in it [7,8], although not specifically with lipid
peroxidation products (LPO), which have demonstrated highly toxic activity [9,10]. The
nature of the subretinal fluid (SRF) present in RRD has not been thoroughly studied.

As SRF comes into direct contact with the cell membrane outer segments (OS) of the
photoreceptors in the detached retina, lipid peroxidation research on this SRF can occupy a
prominent place to study the pathogenesis of damage due to retinal detachment. Therefore,
the relationship between lipid peroxidation and the parameters identified as key in this
disease, such as age, refractive status, evolution time, and extension of RRD has not been
studied in RRD [11].
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Malondialdehyde (MDA) is one of the most well-known secondary products of lipid
peroxidation (LPO), it has a half-life in physiological conditions that is superior to the
extremely short half-lives of reactive oxygen species [12] and is a marker of peroxidative
damage to cell membranes [13,14]. The aim of this study was to identify a relation between
clinical characteristics and differences in LPO in the SRF of retinal detached patients
through MDA quantification.

2. Materials and Methods

We studied a series of consecutive patients with rhegmatogenous retinal detach-
ment (RRD) who underwent extraocular retinal detachment surgery in our clinic. We
included phakic eyes, and pseudophakic eyes only if the refractive pre-cataract surgery
status was known. The exclusion criteria were hyperopia over +0.5 diopters, proliferative
vitreoretinopathy, complicated cataract surgery in the last 6 months, previous vitreoretinal
surgery, diabetic retinopathy, or retinal vascular occlusion.

Patients underwent complete ophthalmological examination (best corrected visual
acuity (BCVA), refractive status that permed us to separate in (E) emmetropes with a
spherical equivalent between 0 and +0.5 diopters, low myopia (LM) between 0 and −5.95 D
and high myopia (HM) above −6 D, anterior segment biomicroscopy, lens status deter-
mined, and indirect ophthalmoscope fundus exploration). The duration of RRD was
considered based on the subjective symptoms referred to by the patients after asking them.
All the patients signed a corresponding written informed consent. The Ethics Committee
of the FISABIO-Oftalmología Hospital approved the study, which followed the Declaration
of Helsinki.

During the retinal external detachment surgery, we obtained the SRF at the time of
routine drainage. Once the scleral indentation was in place, but not tied, we made the
scleral puncture at the point of the greatest projection of the detached retina. With a dry
syringe, we slowly drew SRF from the perforation site without penetrating the subretinal
space. The obtained samples (0.3–0.6 mL) were stored at −80 ◦C until used.

The MDA concentration in the SRF, a lipid peroxidation product, was measured
using liquid chromatography (HPLC) and expressed as nanomols of MDA created per
mg protein. Briefly, 0.1 mL of sample (or standard solutions prepared daily from 1,1,3,3-
tetramethoxypropane) and 0.75 mL of working solution (0.37% thiobarbituric acid and 6.4%
perchloric acid; 2/1, v/v) were mixed and heated to 95 ◦C for 1 h. After cooling (10 min in
an ice water bath), the flocculent precipitate was removed by centrifugation at 3200× g for
10 min.

The supernatant was neutralized and filtered (0.22 µm) prior to injection in an ODS
5 µm column (250 × 4.6 mm). The mobile phase consisted in 50 mM phosphate buffer
(pH 6.0) and methanol (58:42, v/v). Isocratic separation was performed at 1.0 mL/min
flow (HPLC System, Waters, Milford, MA, USA) with detection at 532 nm (UV/VIS HPLC
Detector 2475 Waters, Milford, MA, USA). The protein content was determined according
to Lowry et al. [15] using bovine serum albumin as the standard.

Statistical analyses were performed with version 24.0 of the commercially available
IBM SPSS software (IBM Corp. Released 2016. IBM SPSS Statistics for Windows, Version
24.0. IBM Corp., Armonk, NY, USA) and GraphPad Prism, version 7.04 for Windows
(GraphPad Software, La Jolla, CA, USA). Values were expressed as the mean ± standard
deviation (SD).

Comparisons between clinical characteristics were made by a one-way analysis of
variance and false a discovery rate-adjusted p-value [FDR] of < 0.05. The ANOVA of the
data found by the Brown—Forsythe test was carried out by taking either Tukey’s test as a
post hoc test when the data indicated homogeneity in variances (p < 0.05) or a Dunnet T3
test when the variances differed. Statistical differences were set at p ≤ 0.01. Correlations
were examined by a linear regression analysis and expressed as the Pearson’s correlation
coefficient (r); p ≤ 0.01 was considered statistically significant.
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3. Results

We studied 65 eyes from 65 patients (41 men and 24 women) aged 59.2 ± 11.1 years
(within the 30–80 years range). Forty-three were emmetropic, 13 were low myopic, and 9
were high myopic eyes. Retinal detachment lasted for 2.0 ± 1.4 (0.3–6) weeks. Detached
retina extension was 19 with one quadrant, 25 with two quadrants, 13 with three quadrants,
and 8 eyes with four detached quadrants (Table 1).

Table 1. The main features of the 65 patients (41 men and 24 women) included in this study.

Age (Years) 59.2 ± 11.1 * 30–80 **

Evolution time (weeks) 2.0 ± 1.4 * 0.3–6 **

Extension retinal detachment (RD) (quadrants) Q1 19 Q2 25 Q3 13 Q4 8

Refractive classification E 43 LM 13 HM 9
* Mean ± standard deviation (SD) ** range, Q: quadrants, E: emmetropic, LM: Low myopic, and HM: high myopic.

The mean MDA concentration was 0.23 ± 0.10 µM (within the 0.06–0.47 µM range)
and was 10.30 ± 5.18 (3.29–24.39) mg/mL for proteins (Table 2). There was a positive
Pearson correlation (r = 0.629, p < 0.001) between MDA and the protein concentration for
each patient (Figure 1A). The fact that no Pearson’s correlation was found among the MDA
concentration in SRF, retinal detachment evolution time (Figure 1B, r = 0.032, p = 0.800), or
patients’ age (Figure 1C, r = −0.064, p = 0.612) was noteworthy.

Figure 1. Correlations between the malondialdehyde (MDA) and the main studied parameters. The
scatter plot showing Pearson’s correlation between: (A) MDA and protein concentration, r = 0.629,
p < 0.001, and n = 65; (B) MDA and retinal detachment evolution time, r = 0.032, p = 0.800, and n = 65;
(C) MDA and patients’ age, r = −0.064, p = 0.612, and n = 65; and (D) MDA and degree of myopia,
r = −0.800, p < 0.001, and n = 22.
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Table 2. Concentration in subretinal fluid.

Mean Value Range

Malondialdehyde (MDA) (µM) 0.23 ± 0.10 0.06 to 0.47
Protein (mg/mL) 10.30 ± 5.18 3.29 to 24.39

Interestingly, the MDA and protein concentration were significantly lower (Figure 2C,D,
p < 0.01) when the retinal detachment (RD) extension was minor (only one affected quad-
rant) than for a broader RD (four affected quadrants). There was no connection between
RD extension and degree of myopia (data not shown). Similarly, we also found the MDA
and protein concentration to be significantly higher (both p < 0.01) in the high myopic
group vs. the control group (Figure 2A,B). Thus, a positive correlation was determined
between the degree of myopia and MDA (Figure 1D, r = −0.800, and p < 0.001).

Figure 2. Oxidative stress parameter malondialdehyde (MDA) and protein concentration in the
collected subretinal fluid. (A,B), comparison among the three refractive groups: E: emmetropics
(n = 43); LM: Low myopic (n = 13); and HM: High myopic (n = 9). * p < 0.01 vs. the E group. (C,D),
comparison by retinal detachment extension (in number of quadrants). * p < 0.01 vs. 1 quadrant.

4. Discussion

The downregulation of antioxidant defenses and an increase in free radical production
cause the consequent oxidative damage of different cellular components, in particular
lipids. LPO relates to several ocular pathologies [16]. Once lipid peroxides are unsta-
ble compounds, they tend to degrade rapidly in a variety of subproducts, which can
accumulate in the SRF of those patients undergoing retinal detachment.

In this context, MDA is one of the most well-known secondary lipid peroxidation
products [17], which is by far the most popular, has a longer half-life, and is a reliable
indicator of oxidative damage to cells and tissues [18]. Once formed, MDA can be enzymat-
ically metabolized (oxidation and decarboxylation to CO2 and H2O) or can react in vivo
on cellular and tissular proteins and nucleic acids to form adducts. Far to neutralize its
toxicity, these changes can induce either biomolecular damages or cell death [9,10], due to
apoptosis, autophagy, and ferroptosis [19].

There are many toxic biological effects they can cause on proteins [20], such as pro-
inflammatory alterations of components of the complement system factor H, the main
regulator of the alternative pathway [21] and C3a, a proinflammatory complement com-
ponent [22]; activation of a specific isoform of protein kinase C (PKC) [23]; MDA adducts
with eElongation factor 2 (eEF2), which catalyzes the movement of the ribosome along the
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mRNA in protein synthesis, which could contribute to decline of protein synthesis [24].
MDA is an important contributor to DNA mutation and damage [25].

This study attempted to determine a relation between oxidative stress in patients
with retinal detachment with different clinical findings. The retina is a target that is
especially susceptible to lipid peroxidation due to its high metabolic activity, high oxygen
pressure, and high Poly-Unsaturated Fatty Acid (PUFA) content in the membranes of the
photoreceptors [26]. This suggests that the level of MDA found in SRF can be attributed
mainly, although not solely, to the oxidative damage of the retina.

No statistical difference was observed for either the MDA or protein contents in re-
lation to age or the retinal detachment evolution time in the study groups. This result
indicates that neither of these parameters itself determines the degree of LPO subprod-
ucts present in SRF. This confirms our findings from a previous study conducted by our
group using thiobarbituric acid reactive substances (TBAR), with a lower sensitivity and
specificity [14,27].

The observed differences between the MDA concentrations in the high-myopic pa-
tients versus the other groups could relate to the accumulation of this biomarker in SRF
as a product of LPO. Although our series is small and does not include a large number
of myopic eyes, this coincides with the conclusions proposed by Romero et al. 1998 [14]
and is consistent with the suggestion that oxidative damage plays a key role in myopia
development, which significantly differs in patients with LM compared with those with
HM [28]. A dysregulation in, or uncontrolled production of, oxidative products contributes
to not only the initiation but also to the propagation of many pathological processes [29].

Regarding this matter, an association between increased oxidative stress in myopic
eyes and early liquefaction of the vitreous body was previously described [30]. Despite
the few high myopic patients in our study, which could have masked the results, they fell
in line with those found by our group in previous works. Thus, this finding stresses the
importance of oxidative stress on high myopia.

In the specific case of retinal detachment and myopia, the fact that the retina consumes
the largest amount of oxygen in the body and is exposed to a continuous light stimulus
may generate abundant free radicals [28,30,31], which may, in turn, alter lipids (among
other substances) and aggravate pathological conditions. Kreissig et al. [32] found that the
degree of myopia negatively influenced postoperative visual function after RRD surgery.
Mohamed et al. [33] described a tendency toward re-detachment after surgery in myopic
eyes. The accumulation of peroxided lipids in SRF might form part of it.

The other interesting clinical finding was the influence of the RRD size on the oxidative
status of SRF but not on the evolution time. Presumably, the large amount of photoreceptor
disc membranes exposed in the largest RRD would be the reason for this. As far as we
know, this is the first time a positive relation has been found between oxidative stress
markers and RRD size in SRF. An elevation in vitreous oxidative stress markers, associated
with RRD extension, was previously described in two small series [5,8]. SRF and vitreous
are not the same fluid.

SRF comes in direct contact with the detached external surface of the retina, where the
membrane discs of photoreceptor cells are the main source of lipids susceptible to oxidative
damage. As the diffusion of substances, including oxidative stress markers, occurs between
the subretinal space and vitreous gel, the previously described findings in the vitreous
correlate well with ours in SRF. Recently, high levels of MDA were also found in the tears
of subjects with limited retinal detachment as in central serous, and related to the degree of
disease activity, although this is a retinal detachment with a mechanism different from the
rhegmatogenous and is typically much smaller [34].

Even so, our study was not designed to show the correlation between MDA labels
and visual recovery after RRD; a specific study and a greater number of patients would be
necessary to verify this hypothesis, which may be of interest in future research.

Despite the surgical techniques to treat RRD having improved and achieving high
anatomical success rates, vision recovery remains a challenge. We know that retinal damage
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cannot be prevented, and our findings corroborate that other factors, such as the amount of
retina involved, can influence the oxidative stress-induced damage.

The suggestion made by others [7] of using antioxidants to improve better visual
recovery choices after RRD are of interest. Gao et al. [35] demonstrated that blocking oxida-
tive stress in experimental retinal detachment improved the apoptosis of photoreceptors.
This may be an interesting future avenue of research to attempt to prevent the apoptosis of
photoreceptors and, therefore, to improve the vision of patients with retinal detachment.

Recently, different treatments have achieved neuroprotective effects associated with a
decrease in oxidative stress in various experimental animal models of DR [36–38]. Along
the same lines, the inhibition of certain mitochondrial pathways mediated by oxidative
stress preserves photoreceptors after retinal detachment [39]. This would be particularly
important in the case of highly myopic eyes due to the impaired oxidative stress situation in
the eyes of these patients [28,40,41] where it has also been reported that there is a decrease in
the antioxidant proteins in the vitreous humor of pathological myopia patients undergoing
retinal surgical treatment (among others for rhegmatogenous retinal detachment) compared
with in controls [42].

In light of these matters, our results for MDA and the degree of myopia (Figure 1D)
and retinal detachment extension (Figure 2C) suggest that patients with these clinical
conditions have a worse oxidative balance, which results in greater damage during and
after detachment and could be responsible for a worse functional (visual) prognosis. The
results of this study not only have the value of MDA as a biomarker but would also
support new treatments with the aim of increasing the success of retinal cell survival
during detachment.
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