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Abstract: In this paper, we introduce a new geometric description of the manifolds of matrices of
fixed rank. The starting point is a geometric description of the Grassmann manifold Gr(Rk) of linear
subspaces of dimension r < k in Rk, which avoids the use of equivalence classes. The set Gr(Rk)

is equipped with an atlas, which provides it with the structure of an analytic manifold modeled
on R(k−r)×r. Then, we define an atlas for the set Mr(Rk×r) of full rank matrices and prove that
the resulting manifold is an analytic principal bundle with base Gr(Rk) and typical fibre GLr, the
general linear group of invertible matrices in Rk×k. Finally, we define an atlas for the setMr(Rn×m)

of non-full rank matrices and prove that the resulting manifold is an analytic principal bundle with
base Gr(Rn)×Gr(Rm) and typical fibre GLr. The atlas ofMr(Rn×m) is indexed on the manifold
itself, which allows a natural definition of a neighbourhood for a given matrix, this neighbourhood
being proved to possess the structure of a Lie group. Moreover, the setMr(Rn×m) equipped with
the topology induced by the atlas is proven to be an embedded submanifold of the matrix space
Rn×m equipped with the subspace topology. The proposed geometric description then results in
a description of the matrix space Rn×m, seen as the union of manifoldsMr(Rn×m), as an analytic
manifold equipped with a topology for which the matrix rank is a continuous map.

Keywords: matrix manifolds; low-rank matrices; Grassmann manifold; principal bundles

1. Introduction

Low-rank matrices appear in many applications involving high-dimensional data.
Low-rank models are commonly used in statistics, machine learning or data analysis (see [1]
for a recent survey). Furthermore, low-rank approximation of matrices is the cornerstone of
many modern numerical methods for high-dimensional problems in computational science,
such as model-order-reduction methods for dynamical systems or parameter-dependent or
stochastic equations [2–5].

These applications yield problems of approximation or optimization in the sets of
matrices with fixed rank:

Mr(Rn×m) = {Z ∈ Rn×m : rank(Z) = r}.

Fixed-rank matrices appear also in the theory of characteristics of Partial Differential
Equations and Monge-Ampère equations [6]. More precisely, it has been proven [6,7]
that Monge-Ampère equations with n independent variables and of Goursat-type are in
one-to-one correspondence with the set {Z ∈ Mr(Rn×n) : r ≤ 2}. Thus, the parabolic or
hyperbolic nature of the Monge-Ampère equation is related to the rank of such matrices.

In [8,9], the authors point out that Algebraic Geometry appears as a natural tool in
study of the setMr(Rn×m). We wish to mention the papers [10–12] that raise the natural
question of how large these matrix spaces are.
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A usual geometric approach is to endow the set Mr(Rn×m) with the structure of
a Riemannian manifold [13,14], which is seen as an embedded submanifold of Rn×m

equipped with the topology τRn×m given by matrix norms. Standard algorithms then work
in the ambient matrix space Rn×m and do not rely on an explicit geometric description of
the manifold using local charts (see, e.g., [15–18]). However, the matrix rank considered as a
map is not continuous for the topology τRn×m , which can yield undesirable numerical issues.

The purpose of this paper is to propose a new geometric description of the sets of
matrices with fixed rank, which is amenable for numerical use, and relies on the natural
parametrization of matrices inMr(Rn×m) given by

Z = UGVT , (1)

where U ∈ Rn×r and V ∈ Rm×r are matrices with full rank r < min{n, m} and G ∈ Rr×r is
a non singular matrix. The setMr(Rn×m) is here endowed with the structure of analytic
principal bundle with an explicit description of local charts. This results in a description of
the matrix space Rn×m as an analytic manifold with a topology induced by local charts that
is different from τRn×m and for which the rank is a continuous map. Note that the represen-
tation (1) of a matrix Z is not unique because Z = (UP)(P−1GPT)(VP−1)T holds for every
invertible matrix P in Rr×r. An argument used to dodge this undesirable property is the
possibility to uniquely define a tangent space (see for example Section 2.1 in [18]), which is a
prerequisite for standard algorithms on differentiable manifolds. The geometric description
proposed in this paper avoids this undesirable property. Indeed, the system of local charts
for the set Mr(Rn×m) is indexed on the set itself. This allows a natural definition of a
neighbourhood for a matrix where all matrices admit a unique representation.

The present work opens the route for new numerical methods for optimization and
dynamical low-rank approximation with algorithms working in local coordinates and
avoiding the use of a Riemannian structure. In [19], such a framework is introduced for
generalising iterative methods in optimization from Euclidean space to manifolds, which
ensures that local convergence rates are preserved. Recently, a splitting algorithm relying
on the geometric description of the set of fixed rank matrices proposed in this paper has
been introduced for dynamical low-rank approximation [20].

The introduction of a principal bundle representation of matrix manifolds is also
motivated by the importance of this geometric structure in the concept of gauge potential
in physics [21].

Note that the proposed geometric description has a natural extension to the case of
fixed-rank operators on infinite dimensional spaces and is consistent with the geometric
description of manifolds of tensors with fixed rank proposed by Falcó, Hackbush and
Nouy [22] in a tensor Banach space framework.

Before introducing the main results and outline of the paper, we recall some elements
of geometry.

1.1. Elements of Geometry

In this paper, we follow the approach of Serge Lang [23] for the definition of a manifold
M. In this framework, a set M is equipped with an atlas which gives M the structure
of a topological space, with a topology induced by local charts, and the structure of
differentiable manifold compatible with this topology. More precisely, the starting point
is the definition of a collection of non-empty subsets Uα ⊂M, with α in a set A, such that
{Uα}α∈A is a covering of M. The next step is the explicit construction for any α ∈ A of a
local chart ϕα which is a bijection from Uα to an open set Xα of the finite dimensional space
RNα such that for any pair α, α′ ∈M such that Uα ∩Uα′ 6= ∅, the following properties hold:

(i) ϕα(Uα ∩Uα′) and ϕα′(Uα ∩Uα′) are open sets in Xα and Xα′ respectively, and
(ii) the map

ϕα′ ◦ ϕ−1
α : ϕα(Uα ∩Uα′) −→ ϕα′(Uα ∩Uα′)
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is a C p differentiable diffeomorphism, with p ∈ N ∪ {∞} or p = ω when the map
is analytic.

Under the above assumptions, the set A := {(Uα, ϕα) : α ∈ A} is an atlas which
endows M with a structure of C p manifold. Then, we can say that (M,A) is a C p manifold,
or an analytic manifold when p = ω. A consequence of condition (ii) is that when
Uα ∩Uα′ 6= ∅ holds for α, α′ ∈ A, then Nα = Nα′ . In the particular case where Nα = N for
all α ∈ A, we say that (M,A) is a C p manifold modelled on RN . Otherwise, we say that it is
a manifold not modelled on a particular finite-dimensional space. A paradigmatic example
is the Grassmann manifold G(Rk) of all linear subspaces of Rk, such that

G(Rk) =
⋃

0≤r≤k

Gr(Rk),

where G0(Rk) = {0} and Gk(Rk) = {Rk} are trivial manifolds and Gr(Rk) is a manifold
modelled on the linear space R(k−r)×r for 0 < r < k. Consequently, G(Rk) is a manifold
not modelled on a particular finite-dimensional space.

The atlas also endows M with a topology given by

τA :=
{

ϕ−1
α (O) : α ∈ A and O an open set in Xα

}
,

which makes (M, τA) a topological space where each local chart

ϕα : (Uα, τA|Uα) −→ (Xα, τRNα |Xα),

considered as a map between topological spaces is a homeomorphism. (Here (X, τ) denotes
a topological space, and if X′ ⊂ X, then τ|X′ denotes the subspace topology.)

1.2. Main Results and Outline

Our first remark is that the matrix space Rn×m is an analytic manifold modelled on
itself, and its geometric structure is fully compatible with the topology τRn×m induced
by a matrix norm. In this paper, we define an atlas onMr(Rn×m), which gives this set
the structure of an analytic manifold, with a topology induced by the atlas fully com-
patible with the subspace topology τRn×m |Mr(Rn×m). This implies that Mr(Rn×m) is an
embedded submanifold of the matrix manifold Rn×m modelled on itself. (Note that the
setM0(Rn×m) = {0} is a trivial manifold, which is trivially embedded in Rn×m.) For the
topology τRn×m , the matrix rank considered as a map is not continuous but only lower
semi-continuous. However, if Rn×m is seen as the disjoint union of sets of matrices with
fixed rank,

Rn×m =
⋃

0≤r≤min{n,m}
Mr(Rn×m), (2)

then Rn×m has the structure of an analytic manifold not modelled on a particular finite-
dimensional space equipped with a topology

τ∗Rn×m =
⋃

0≤r≤min{n,m}
τRn×m |Mr(Rn×m),

which is not equivalent to τRn×m , and for which the matrix rank is a continuous map.
Note that in the case wherer = n = m, the setMn(Rn×n) coincides with the general

linear group GLn of invertible matrices in Rn×n, which is an analytic manifold trivially
embedded in Rn×n. In all other cases are addressed in this paper, our geometric descrip-
tion ofMr(Rn×m) relies on a geometric description of the Grassmann manifold Gr(Rk),
with k = n or m.

Therefore, we start in Section 2 by introducing a geometric description of Gr(Rk). A
classical approach consists of describing Gr(Rk) as the quotient manifoldMr(Rk×r)/GLr
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of equivalent classes of full-rank matrices Z inMr(Rk×r) with the same column space
colk,r(Z). Here, we avoid the use of equivalent classes and provide an explicit description
of an atlas Ak,r = {(UZ, ϕZ)}Z∈Mr(Rk×r) for Gr(Rk), with local chart

ϕZ : UZ → R(k−r)×r, ϕ−1
Z (X) = colk,r(Z + Z⊥X),

where Z⊥ ∈ Rk×(k−r) is such that ZT
⊥Z = 0 (see Remark 1 for a practical choice) and

colk,r(A) denotes the column space of a matrix A ∈ Rk×r, and we prove that the neighbour-
hood UZ has the structure of a Lie group. This parametrization of the Grassmann manifold
is introduced in ([24] Section 2), but the authors do not elaborate on it.

Then, in Section 3, we consider the particular case of full-rank matrices. We introduce
an atlas Bk,r = {(VZ, ξZ)}Z∈Mr(Rk×r) for the manifoldMr(Rk×r) of matrices with full rank
r < k, with local chart

ξZ : VZ → R(k−r)×r ×GLr, ξ−1
Z (X, G) = (Z + Z⊥X)G,

and prove thatMr(Rk×r) is an analytic principal bundle with base Gr(Rk) and typical fibre
GLr. Moreover, we prove that Mr(Rk×r) is an embedded submanifold of (Rk×r, τ∗Rk×r )
and that each of the neighbourhoods VZ have the structure of a Lie group.

Finally, in Section 4, we provide an analytic atlas Bn,m,r = {(UZ, θZ)}Z∈Mr(Rn×m) for
the setMr(Rn×m) of matrices Z = UGVT with rank r < min{n, m}, with local chart

θZ : UZ → R(n−r)×r ×R(m−r)×r ×GLr, θ−1
Z (X, Y, H) = (U + U⊥X)H(V + V⊥Y),

and we prove thatMr(Rn×m) is an analytic principal bundle with base Gr(Rn)×Gr(Rm)
and typical fibre GLr. Then, we prove thatMr(Rn×m) is an embedded submanifold of
(Rn×m, τ∗Rn×m) and that each of the neighbourhoods UZ have the structure of a Lie group.

2. The Grassmann Manifold Gr(Rk)

In this section, we present a geometric description of the Grassmann manifold Gr(Rk)
of all subspaces of dimension r in Rk, 0 < r < k,

Gr(Rk) = {V ⊂ Rk : V is a linear subspace with dim(V) = r},

with an explicit description of local charts. We first introduce the surjective map

colk,r :Mr(Rk×r) −→ Gr(Rk), Z 7→ colk,r (Z),

where colk,r(Z) is the column space of the matrix Z, which is the subspace spanned by the
column vectors of Z. Given V ∈ Gr(Rk), there are infinitely many matrices Z such that
colk,r(Z) = V . Given a matrix Z ∈ Mr(Rk×r), the set of matrices inMr(Rk×r) with the
same column space as Z is

ZGLr := {ZG : G ∈ GLr}.

2.1. An Atlas for Gr(Rk)

For a given matrix Z inMr(Rk×r), we let Z⊥ ∈ Mk−r(Rk×(k−r)) be a matrix such that
ZTZ⊥ = 0, and we introduce an affine cross section

SZ := {W ∈ Mr(Rk×r) : ZTW = ZTZ}, (3)

which has the following equivalent characterization.

Lemma 1. The affine cross section SZ is characterized by

SZ = {Z + Z⊥X : X ∈ R(k−r)×r}, (4)
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and the map
ηZ : R(k−r)×r −→ SZ, X 7→ Z + Z⊥X

is bijective.

Proof. We first observe that ZT(Z + Z⊥XZ) = ZTZ for all X ∈ R(k−r)×r, which implies
that {Z + Z⊥X : X ∈ R(k−r)×r} ⊂ SZ. For the other inclusion, we observe that if W ∈ SZ,
then ZTW = ZTZ and hence W − Z ∈ colk,r(Z)⊥, the orthogonal subspace to colk,r(Z) in
Rk. Since colk,r(Z)⊥ = colk,k−r (Z⊥), there exists X ∈ R(k−r)×r such that W − Z = Z⊥X.
Proving that ηZ is bijective is straightforward.

Proposition 1. For each W ∈ Mr(Rk×r) such that det(ZTW) 6= 0, there exists a unique
GW ∈ GLr such that

WGLr ∩ SZ = {WG−1
W }

holds, which means that the set of matrices with the same column space as W intersects SZ at the
single point WG−1

W . Furthermore, GW = idr if and only if W ∈ SZ.

Proof. By Lemma 1, a matrix A ∈ WGLr ∩ SZ is such that A = WG−1
W = Z + Z⊥X for a

certain GW ∈ GLr and a certain X ∈ R(k−r)×r. Then ZTWG−1
W = ZTZ and GW is uniquely

defined by GW = (ZTZ)−1(ZTW), which proves that WGLr ∩ SZ is the singleton {WG−1
W },

and GW = idr if and only if W ∈ SZ.

Corollary 1. For each Z ∈ Mr(Rk×r), the map colk,r : SZ −→ Gr(Rk) is injective.

Proof. Let us assume the existence of W, W̃ ∈ SZ such that colk,r(W) = colk,r(W̃). Then
W = W̃ by Proposition 1.

Lemma 1 and Corollary 1 allow us to construct a system of local charts for Gr(Rk) by
defining for each Z ∈ Mr(Rk×r) a neighbourhood of colk,r(Z) by

UZ := colk,r(SZ) = {colk,r (W) : W ∈ SZ}

together with the bijective map

ϕZ := (colk,r ◦ ηZ)
−1 : UZ → R(k−r)×r

such that
ϕ−1

Z (X) = colk,r(Z + Z⊥X)

for X ∈ R(k−r)×r. We denote by Z+ the Moore–Penrose pseudo-inverse of the full rank
matrix Z ∈ Mr(Rr×k), defined by

Z+ := (ZTZ)−1ZT ∈ Mr(Rr×k).

It satisfies Z+Z = idr and Z+Z⊥ = 0. Moreover, ZZ+ ∈ Rk×k is the projection onto
colk,r(Z) parallel to colk,r(Z)⊥. Finally, we have the following result.

Theorem 1. The collection Ak,r := {(UZ, ϕZ) : Z ∈ Mr(Rk×r)} is an analytic atlas for Gr(Rk)

and hence (Gr(Rk),Ak,r) is an analytic r(k− r)-dimensional manifold modelled on R(k−r)×r.

Proof. Clearly {UZ}Z∈Mr(Rk×r) is a covering of Gr(Rk). Now let Z and Z̃ be such that UZ ∩
UZ̃ 6= ∅. Let V ∈ UZ such that V = ϕ−1

Z (X) = colk,r(Z + Z⊥X), with X ∈ Rk×(k−r). We
can write Z + Z⊥X = (Z̃ + Z̃⊥X̃)G with G = Z̃+(Z + Z⊥X) and X̃ = Z̃+

⊥(Z + Z⊥X)G−1.
Therefore, V = colk,r((Z̃ + Z̃⊥X̃)G) = colk,r(Z̃ + Z̃⊥X̃) = ϕ−1

Z̃ (X̃) ∈ UZ̃, which implies
that UZ = UZ ∩ UZ̃. Therefore, ϕZ(UZ ∩ UZ̃) = ϕZ(UZ) = Rk×(n−k) is an open set. In the
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same way, we show that UZ̃ = UZ ∩ UZ̃ and ϕZ̃(UZ) = Rk×(n−k) is an open set. Finally,
the map ϕZ̃ ◦ ϕ−1

Z from R(k−r)×r to R(k−r)×r is given by ϕZ̃ ◦ ϕ−1
Z (X) = Z̃+

⊥(Z + Z⊥X)G−1,
with G = Z̃+(Z + Z⊥XZ), which is clearly an analytic map.

Remark 1. A possible choice for Z⊥ satisfying ZT
⊥Z = 0 is Z⊥ = (idk − ZZ+)B⊥ where

B⊥ ∈ Mk−r(Rk×(k−r)) is such that its column space is a complement of the column space of Z. In
practice, we can determine a set of r linear independent rows of Z (see, e.g., [25,26]), with indices I,
and then choose B⊥ such that (B⊥)i,j = δi,j if i /∈ I and 0 if i ∈ I, for 1 ≤ i ≤ k, 1 ≤ j ≤ k− r. For
a given X ∈ R(k−r)×r, the computation of Z⊥X does not require Z⊥ and has a complexity O(r2k).

2.2. Lie Group Structure of Neighbourhoods UZ

Here we prove that each neighbourhood UZ of Gr(Rk) is a Lie group. For that, we
first note that a neighbourhood UZ of Gr(Rk) can be identified with the set SZ through the
application colk,r : SZ → UZ. The next step is to identify SZ with a closed Lie subgroup
of GLk, denoted by GZ, with associated Lie algebra gZ isomorphic to Rr×(k−r), and such
that the exponential map exp : gZ −→ GZ is a diffeomorphism. (We recall that the matrix
exponential exp : Rk×k → GLk is defined by exp(A) = ∑∞

n=0
An

n! .) To this end, for a given
Z ∈ Mr(Rk×r), we introduce the vector space

gZ := {Z⊥XZ+ : X ∈ R(k−r)×r} ⊂ Rk×k. (5)

The following proposition proves that gZ is a commutative subalgebra of Rk×k.

Proposition 2. For all X, X̃ ∈ R(k−r)×r,

(Z⊥XZ+)(Z⊥X̃Z+) = 0

holds, and gZ is a commutative subalgebra of Rk×k. Moreover,

exp(Z⊥XZ+) = idk + Z⊥XZ+, (6)

exp(Z⊥XZ+)Z = Z + Z⊥X, (7)

and

exp(Z⊥XZ+)Z⊥ = Z⊥ (8)

hold for all X ∈ R(k−r)×r.

Proof. Since (Z⊥XZ+)(Z⊥X̃Z+) = 0 holds for all X, X̃ ∈ R(k−r)×r, the vector space gZ is
a closed subalgebra of the matrix unitary algebra Rk×k. As a consequence, (Z⊥XZ+)p = 0
holds for all X ∈ R(k−r)×r and all p ≥ 2, which proves (6). We directly deduce (7) using
ZZ+ = idr and (8) using Z+Z⊥ = 0.

From Proposition 2 and the definition of SZ, we obtain the following results.

Corollary 2. The affine cross section SZ satisfies

SZ = {exp(Z⊥XZ+)Z : X ∈ R(k−r)×r}, (9)

and

[exp(Z⊥XZ+)Z |Z⊥] ∈ GLk (10)

for all X ∈ R(k−r)×r, where the brackets [·|·] are used for matrix concatenation.
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Proof. From Proposition 2 and (4), we obtain (9) and we can write

[exp(Z⊥XZ+)Z |Z⊥] = [exp(Z⊥XZ+)Z | exp(Z⊥XZ+)Z⊥] = exp(Z⊥XZ+)[Z|Z⊥].

Since exp(Z⊥XZ+), [Z|Z⊥] ∈ GLk, (10) follows.

Now we need to introduce the following definition and proposition (see ([27] p. 80)).

Definition 1. Let (K,+, ·) be a ring and let (K,+) be its additive group. A subset I ⊂ K is
called a two-sided ideal (or simply an ideal) of K if it is an additive subgroup of K such that
I ·K := {r · x : r ∈ I and x ∈ K} ⊂ I and K · I := {x · r : r ∈ I and x ∈ K} ⊂ I.

Proposition 3. If g ⊂ h is a two-sided ideal of the Lie algebra h of a groupH, then the subgroup
G ⊂ H generated by exp(g) = {exp(G) : G ∈ g} is normal and closed, with Lie algebra h.

From the above proposition, we deduce the following result.

Lemma 2. Let Z ∈ Mr(Rk×r) and Z⊥ ∈ Mk−r(Rk×(k−r)) be such that ZTZ⊥ = 0. Then
gZ ⊂ Rk×k is a two-sided ideal of the Lie algebra Rk×k and hence

GZ := {exp(Z⊥XZ+) : X ∈ R(k−r)×r} (11)

is a closed Lie group with Lie algebra gZ. Furthermore, the map exp : gZ −→ GZ is bijective.

Proof. Consider Z⊥XZ+ ∈ gZ and A ∈ Rk×k. Noting that Z+Z = idr and (Z⊥)+Z⊥ =
idk−r, we have that

(Z⊥XZ+)A = Z⊥(XZ+AZ)Z+,

which proves that gZ ·Rk×k ⊂ gZ. Similarly, we have that

A(Z⊥XZ+) = Z⊥((Z⊥)+AZ⊥X)Z+,

which proves that Rk×k · gZ ⊂ gZ. This proves that gZ is a two-sided ideal. The map exp is
clearly surjective. To prove that it is injective, we assume exp(Z⊥XZ+) = exp(Z⊥X̃Z+)
for X, X̃ ∈ R(k−r)×r. Then, from (6), we obtain Z + Z⊥X = Z + Z⊥X̃ and hence X = X̃,
i.e., Z⊥XZ+ = Z⊥X̃Z+ in gZ.

Finally, we can prove the following result.

Theorem 2. The set SZ together with the group operation ×Z defined by

exp(Z⊥XZ+)Z×Z exp(Z⊥X̃Z+)Z = exp(Z⊥(X + X̃)Z+)Z (12)

for X, X̃ ∈ R(k−r)×r is a Lie group.

Proof. To prove that it is a Lie group, we simply note that the multiplication and inver-
sion maps

µ : SZ × SZ −→ SZ, (W, W̃) 7→ exp(Z⊥(Z+
⊥(W − Z) + Z+

⊥(W̃ − Z))Z+)Z

and
δ : SZ −→ SZ, W 7→ exp(−Z⊥Z+

⊥(W − Z)Z+)Z

are analytic.

It follows that UZ can be identified with a Lie group through the map ϕZ.
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Theorem 3. Each neighbourhood UZ of Gr(Rk) together with the group operation ◦Z defined by

V ◦Z V ′ = ϕ−1
Z (ϕZ(V) + ϕZ(V ′))

for V ,V ′ ∈ UZ, is a Lie group, and the map γZ : UZ −→ GZ given by

γZ(U ) = exp(Z⊥ϕZ(U )Z+)

is a Lie group isomorphism.

3. The Non-Compact Stiefel Principal BundleMr(Rk×r)

In this section, we give a new geometric description of the setMr(Rk×r) of matrices
with full rank r < k, which is based on the geometric description of the Grassmann
manifold given in Section 2.

3.1. Principal Bundle Structure ofMr(Rk×r)

For Z ∈ Mr(Rk×r), we define a neighbourhood of Z as

VZ := {W ∈ Mr(Rk×r) : det(ZTW) 6= 0} ⊃ SZ. (13)

From Proposition 1, we know that for a given matrix W ∈ VZ, there exists a unique
pair of matrices (X, G) ∈ R(k−r)×r ×GLr such that W = (Z + Z⊥X)G. Therefore,

VZ = {(Z + Z⊥X)G : X ∈ R(k−r)×r, G ∈ GLr}.

It allows us to introduce a parametrisation ξ−1
Z (see Figure 1) defined through

the bijection

ξZ : VZ −→ R(k−r)×r ×GLr, (14)

such that
ξ−1

Z (X, G) = (Z + Z⊥X)G

for (X, G) ∈ R(k−r)×r ×GLr and

ξZ(W) = (Z+
⊥W(Z+W)−1, Z+W)

for W ∈ VZ. In particular,
ξ−1

Z (0, idr) = Z.
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Figure 1. Illustration of the chart ξZ which associates with W = (Z + Z⊥X)G ∈ VZ ⊂ Mr(Rk×r),
the parameters (X, G) in R(k−r)×r ×GLr.

Theorem 4. The collection Bk,r := {(VZ, ξZ) : Z ∈ Mr(Rk×r)} is an analytic atlas for
Mr(Rk×r), and hence (Mr(Rk×r),Bk,r) is an analytic kr-dimensional manifold modelled on
R(k−r)×r ×Rr×r.
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Proof. {VZ}Z∈Mr(Rk×r) is clearly a covering ofMr(Rk×r). Moreover, since ξZ is bijective

from VZ to R(k−r)×r ×GLr we claim that if VZ ∩ VZ̃ 6= ∅ for Z, Z̃ ∈ Mr(Rk×r), then the
following statements hold:

(i) ξZ(VZ ∩ VZ̃) and ξZ̃(VZ ∩ VZ̃) are open sets in R(k−r)×r ×GLr and
(ii) the map ξZ̃ ◦ ξ−1

Z is analytic from ξZ(VZ ∩ VZ̃) ⊂ R(k−r)×r ×GLr to ξZ̃(VZ ∩ VZ̃) ⊂
R(k−r)×r ×GLr.

In this proof, we equip Rk×r with the topology τRk×r induced by matrix norms. For any
Z ∈ Mr(Rk×r), VZ = {W ∈ Rk×r : det(ZTW) 6= 0} is the inverse image of the open set
R \ {0} by the continuous map W 7→ det(ZTW) from Rk×r to R, and therefore, VZ is an
open set of Rk×r. Since VZ and VZ̃ are open sets in Rk×r, VZ ∩ VZ̃ is also an open set in
Rk×r and since ξ−1

Z is a continuous map from R(k−r)×r ×GLr to Rk×r, the set ξZ(VZ ∩ VZ̃),
as the inverse image of an open set by a continuous map, is an open set in R(k−r)×r ×
GLr. Similarly, ξZ̃(VZ ∩ VZ̃) is an open set. Now let (X, G) ∈ R(k−r)×r ×GLr such that
ξ−1

Z (X, G) ∈ VZ ∩ VZ̃. From the expressions of ξ−1
Z and ξZ̃, the map ξZ̃ ◦ ξ−1

Z is defined by

ξZ̃ ◦ ξ−1
Z (X, G) = (Z̃+

⊥ξ−1
Z (X, G)(Z̃+ξ−1

Z (X, G))−1, Z̃+ξ−1
Z (X, G)),

with ξ−1
Z (X, G) = (Z + Z⊥X)G, which is clearly an analytic map.

Before stating the next result, we recall the definition of a morphism between man-
ifolds and of a fibre bundle. We introduce notions of C p maps and C p manifolds, with
p ∈ N∪ {∞} or p = ω. In the latter case, C→ means analytic.

Definition 2. Let (M,A) and (N,B) be two C p manifolds. Let F : M→ N be a map. We say that
F is a C p morphism between (M,A) and (N,B) if given m ∈M, there exists a chart (U, ϕ) ∈ A
such that m ∈ U and a chart (W, ψ) ∈ B such that F(m) ∈W where F(U) ⊂W, and the map

ψ ◦ F ◦ ϕ−1 : ϕ(U)→ ψ(W)

is a map of class C p. If it is a C p diffeomorphism, then we say that F is a C p diffeomorphism
between manifolds. We say that ψ ◦ F ◦ ϕ−1 is a representation of F using a system of local
coordinates given by the charts (U, ϕ) and (W, ψ).

Definition 3. Let B be a C p manifold with atlasA = {(Ub, ϕb) : b ∈ B}, and let F be a manifold.
A C p fibre bundle E with base B and typical fibre F is a C p manifold which is locally a product
manifold; that is, there exists a surjective morphism π : E −→ B such that for each b ∈ B there is
a C p diffeomorphism between manifolds

χb : π−1(Ub) −→ Ub × F,

such that pb ◦ χb = π where pb : Ub × F −→ Ub is the projection. For each b ∈ B, π−1(b) = Eb
is called the fibre over b. The C p diffeomorphisms χb are called fibre bundle charts. If p = 0, E,B
and F are only required to be topological spaces and {Ub : b ∈ B} an open covering of B. In the
case where F is a Lie group, we say that E is a C p principal bundle, and if F is a vector space, we
say that it is a C p vector bundle.

Theorem 5. The setMr(Rk×r) is an analytic principal bundle with typical fibre GLr and base
Gr(Rk), with a surjective morphism betweenMr(Rk×r) and Gr(Rk) given by the map colk,r.

Proof. To show that it is an analytic principal bundle, we first observe that

colk,r : (Mr(Rk×r),Bk,r) −→ (Gr(Rk),Ak,r)

is a surjective morphism. Indeed, let Z ∈ Mr(Rk×r) and (VZ, ξZ) ∈ Bk,r and (UZ, ϕZ) ∈
Ak,r. Noting that colk,r(YG) = colk,r(Y) for all Y ∈ SZ, we obtain that colk,r(VZ) = UZ.
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Moreover, a representation of colk,r by using a system of local coordinates given by the
charts is

(ϕZ ◦ colk,r ◦ ξ−1
Z )(X, G) = X,

which is clearly an analytic map from R(k−r)×r×GLr to R(k−r)×r such that col−1
k,r (UZ) = VZ.

Now, a representation of the morphism

χZ : (VZ, {(VZ, ξZ)}) −→ (UZ, {(UZ, ϕZ)})× (GLr, {(GLr, idRr×r )}), W 7→ (colk,r(W), G)

using the system of local coordinates given by the charts is

((ϕZ × idRr×r ) ◦ χZ ◦ ξ−1
Z ) : R(k−r)×r ×GLr −→ R(k−r)×r ×GLr,

defined by
((ϕZ × idRr×r ) ◦ χZ ◦ ξ−1

Z )(X, G) = (X, G),

which is clearly an analytic diffeomorphism. To conclude, consider the projection

pZ : UZ ×GLr −→ UZ, (V, G) 7→ V,

and observe that (pZ ◦ χZ)(W) = colk,r(W) holds for all W ∈ VZ.

3.2.Mr(Rk×r) as a Submanifold and Its Tangent Space

Here, we prove that the non-compact Stiefel manifoldMr(Rk×r) equipped with the
topology given by the atlas Bk,r is an embedded submanifold in Rk×r. For that, we have to
prove that the standard inclusion map

i : (Mr(Rk×r),Bk,r) −→ (Rk×r, {(Rk×r, idRk×r )})

as a morphism is an embedding. To see this, we need to recall some definitions and results.

Definition 4. Let F : (M,A) → (N,B) be a morphism between C p manifolds and let m ∈ M.
We say that F is an immersion at m if there exists an open neighbourhood Um of m in M such that
the restriction of F to Um induces an isomorphism from Um onto a submanifold of N. We say that F
is an immersion if it is an immersion at each point of M.

The next step is to recall the definition of the differential as a morphism which gives
a linear map between the tangent spaces of the manifolds (in local coordinates) involved
with the morphism. Let us recall that for any m ∈M, we denote by TmM the tangent space
of M at m (in local coordinates).

Definition 5. Let (M,A) and (N,B) be two C p manifolds. Let F : (M,A) → (N,B) be a
morphism of class C p; i.e., for any m ∈M,

ψ ◦ F ◦ ϕ−1 : ϕ(U)→ ψ(W)

is a map of class C p, where (U, ϕ) ∈ A is a chart in M containing m and (W, ψ) ∈ B is a chart in
N containing F(m). Then we define

TmF : Tm(M) −→ TF(m)(N), υ 7→ D(ψ ◦ F ◦ ϕ−1)(ϕ(m))[υ].

For finite dimensional manifolds we have the following criterion for immersions (see
Theorem 3.5.7 in [28]).

Proposition 4. Let (M,A) and (N,B) be C p manifolds. Let

F : (M,A)→ (N,B)
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be a C p morphism and m ∈M. Then F is an immersion at m if and only if TmF is injective.

A concept related to an immersion between manifolds is given in the following definition.

Definition 6. Let (M,A) and (N,B) be C p manifolds and let f : (M,A) −→ (N,B) be a C p

morphism. If f is an injective immersion, then f (M) is called an immersed submanifold of N.

Finally, we give the definition of embedding.

Definition 7. Let (M,A) and (N,B) be C p manifolds and let f : (M,A) −→ (N,B) be a
C p morphism. If f is an injective immersion, and f : (M, τA) −→ ( f (M), τB | f (M)) is a
topological homeomorphism, then we say that f is an embedding and f (M) is called an embedded
submanifold of N.

We first note that the representation of the inclusion map i using the system of local
coordinates given by the charts (VZ, ξZ) ∈ Bk,r inMr(Rk×r) and (Rk×r, idRk×r ) in Rk×r is

(idRk×r ◦ i ◦ ξ−1
Z ) = (i ◦ ξ−1

Z ) : R(k−r)×r ×GLr → Rk×r, (X, G) 7→ (Z + Z⊥X)G.

Then the tangent map TZi at Z = ξ−1
Z (0, idr), defined by TZi = D(i ◦ ξ−1

Z )(0, idr), is

TZi : R(k−r)×r ×Rr×r → Rk×r, (Ẋ, Ġ) 7→ Z⊥Ẋ + ZĠ.

Proposition 5. The tangent map TZi : R(k−r)×r ×Rr×r → Rk×r at Z ∈ Mr(Rk×r) is a linear
isomorphism, with inverse (TZi)−1 given by

(TZi)−1(Ż) = (Z+
⊥ Ż, Z+Ż),

for Ż ∈ Rk×r. Furthermore, the standard inclusion map i is an embedding from Mr(Rk×r)
to Rk×r.

Proof. Let us assume that TZi(Ẋ, Ġ) = Z⊥Ẋ + ZĠ = 0. Multiplying this equality by Z+

and Z+
⊥ on the left, we obtain Ġ = 0 and Ẋ = 0, respectively, which implies that TZi is

injective. To prove that it is also surjective, we consider a matrix Ż ∈ Rk×r and observe
that Ẋ = Z+

⊥ Ż ∈ R(k−r)×r and Ġ = Z+Ż ∈ Rr×r is such that TZi(Ẋ, Ġ) = Ż. Since TZi is
injective, the inclusion map i is an immersion.

To prove that it is an embedding, we equipMr(Rk×r) with the topology τBk,r given
by the atlas and we equip Rk×r with the topology τRk×r induced by matrix norms. We need
to check that

i : (Mr(Rk×r), τBk,r ) −→ (Mr(Rk×r), τRk×r |Mr(Rk×r))

is a topological homeomorphism. Since the topology in (Mr(Rk×r), τBk,r ) has the property
that each local chart ξZ is indeed a homeomorphism from VZ inMr(Rk×r) to ξZ(VZ) =
R(k−r)×r × GLr (see Section 1.1), we only need to show that the bijection (i ◦ ξ−1

Z ) :
R(k−r)×r ×GLr → VZ ⊂ Rk×r given by

(i ◦ ξ−1
Z )(X, G) = (Z + Z⊥X)G

is a topological homeomorphism for all Z ∈ Mr(Rk×r). Observe that D(i ◦ ξ−1
Z )(X, G) ∈

L(R(k−r)×r ×Rr×r,Rk×r) is given by

D(i ◦ ξ−1
Z )(X, G)[(Ẋ, Ġ)] = Z⊥ẊG + (Z + Z⊥X)Ġ.

Assume that Z⊥ẊG + (Z + Z⊥X)Ġ = 0. Multiplying this equality by Z+ on the
left we obtain Ġ = 0, and hence Z⊥ẊG = 0. Multiplying by Z+

⊥ on the left, we obtain
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ẊG = 0. Thus, Ẋ = 0 and as a consequence D(i ◦ ξ−1
Z )(X, G) is a linear isomorphism for

each (X, G) ∈ R(k−r)×r × GLr. The inverse function theorem says us that (i ◦ ξ−1
Z ) is a

diffeomorphism, in particular a homeomorphism„ and hence i is an embedding.

The tangent space toMr(Rk×r) at Z is the image through TZi of the tangent space at
Z in local coordinates TZMr(Rk×r) = R(k−r)×r ×Rr×r, i.e.,

TZMr(Rk×r) = {Z⊥Ẋ + ZĠ : Ẋ ∈ R(k−r)×r, Ġ ∈ Rr×r} = Rk×r,

and can be decomposed into a vertical tangent space

TV
ZMr(Rk×r) = {ZĠ : Ġ ∈ Rr×r},

and a horizontal tangent space

TH
ZMr(Rk×r) = {Z⊥Ẋ : Ẋ ∈ R(k−r)×r}.

3.3. Lie Group Structure of Neighbourhoods VZ

We here prove that each neighbourhood VZ ofMr(Rk×r) has the structure of a Lie
group. For that, we first note that VZ can be identified with SZ ×GLr, with SZ given by
(9). Noting that SZ can be identified with the Lie group GZ defined in (11), we then have
that VZ can be identified with a product of two Lie groups GZ ×GLr, which is a Lie group
with the group operation �Z given by

(exp(Z⊥XZ+), G)�Z (exp(Z⊥X′Z+), G′) = (exp(Z⊥(X + X′)Z+), GG′),

for X, X′ ∈ R(k−r)×r and G, G′ ∈ GLr. This allows us to define a group operation ?Z over
VZ defined for W = ξ−1

Z (X, G) and W ′ = ξ−1
Z (X′, G′) by

W ?Z W ′ = ξ−1
Z (X + X′, GG′), (15)

and to state the following result.

Theorem 6. The set VZ together with the group operation ?Z defined by (15) is a Lie group and
the map ηZ : VZ −→ GZ ×GLr given by

ηZ(ξ
−1
Z (X, G)) = (exp(Z⊥XZ+), G, )

is a Lie group isomorphism.

4. The Principal BundleMr(Rn×m) for 0 < r < min(m, n)

In this section, we give a geometric description of the set of matricesMr(Rn×m) with
rank r < min(m, n).

4.1.Mr(Rn×m) as a Principal Bundle

For Z ∈ Mr(Rn×m), there exists U ∈ Mr(Rn×r), V ∈ Mr(Rm×r), and G ∈ GLr
such that

Z = UGVT ,

where the column space of Z is coln,r(U) and the row space of Z is colm,r(V).
Let us first introduce the surjective map

$r :Mr(Rn×m) −→ Gr(Rn)×Gr(Rm), UGVT 7→ (coln,r(U), colm,r (V)).

The set
$−1

r (coln,r(U), colm,r (V)) = {UHVT : H ∈ GLr}
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can be identified with GLr. Let us consider U⊥ ∈ Mn−r(Rn×(n−r)) such that UT U⊥ = 0
and V⊥ ∈ Mm−r(Rm×(m−r)) such that VT V⊥ = 0 (see Remark 1 for a practical definition).
Then we define a neighbourhood of UGVT in the setMr(Rn×m) by

UZ := $−1
r (UU × UV),

where UU and UV are the neighbourhoods of coln,r(U) and colm,r(V), respectively (see
Section 2.2). Noting that UU = ϕ−1

U (R(n−r)×r) = coln,r(SU) and UV = ϕ−1
V (R(m−r)×r) =

colm,r(SV), where SU and SV are the affine cross sections of U and V, respectively (defined
by (4)), the neighbourhood of UGVT can be written

UZ = {(U + U⊥X)H(V + V⊥Y)T : (X, Y, H) ∈ R(n−r)×r ×R(m−r)×r ×GLr}.

We can associate with UZ the parametrisation θ−1
Z given by the chart (see Figure 2)

θZ : UZ → R(n−r)×r ×R(m−r)×r ×GLr

defined by
θ−1

Z (X, Y, H) = (U + U⊥X)H(V + V⊥Y)T

for (X, Y, H) ∈ R(n−r)×r ×R(m−r)×r ×GLr, and

θZ(A) = (U+
⊥A(V+)T(U+A(V+)T)−1, V+

⊥ AT(U+)T(V+AT(U+)T)−1, U+A(V+)T)

for A ∈ UZ. In particular, we have θ−1
Z (0, 0, G) = Z. We point out that UZ = UZ′ and

θZ = θZ′ for every Z′ = UG′VT with G′ 6= G.
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Figure 2. Illustration of the chart θZ which associates with W = (U + U⊥X)H(V + V⊥Y)T ∈ UZ ⊂
Mr(Rn×m), the parameters (X, Y, G) in R(n−r)×r ×R(m−r)×r ×GLr.

Theorem 7. The collection Bn,m,r := {(UZ, θZ) : Z ∈ Mr(Rn×m)} is an analytic atlas for
Mr(Rn×m), and hence (Mr(Rn×m),Bn,m,r) is an analytic r(n + m− r)-dimensional manifold
modelled on R(n−r)×r ×R(m−r)×r ×Rr×r.

Proof. {UZ}Z∈Mr(Rn×m) is clearly a covering ofMr(Rn×m). Moreover, since θZ is bijective
from UZ to R(n−r)×r ×R(m−r)×r ×GLr, we claim that if UZ ∩ UZ̃ 6= ∅ for Z = UGVT and
Z̃ = ŨG̃ṼT ∈ Mr(Rn×m), then the following statements hold:

(i) θZ(UZ ∩ UZ̃) and θZ̃(UZ ∩ UZ̃) are open sets in R(n−r)×r ×R(m−r)×r ×GLr and
(ii) the map θZ̃ ◦ θ−1

Z is analytic from θZ(UZ ∩ UZ̃) ⊂ R(n−r)×r × R(m−r)×r × GLr to
θZ̃(UZ ∩ UZ̃) ⊂ R(n−r)×r ×R(m−r)×r ×GLr.

In this proof, we equip Rn×m with the topology τRn×m induced by matrix norms. We
first observe that the set UZ = {A ∈ Mr(Rn×m) : det(UT AV) 6= 0} = OZ ∩Mr(Rn×m),
where OZ = {A ∈ Rn×m : det(UT AV) 6= 0}, as the inverse image of the open set R \ {0}
through the continuous map A 7→ det(UT AV) from Rn×m to R, is an open set in Rn×m.
In the same way, we have that UZ̃ = OZ̃ ∩Mr(Rn×m), with UZ̃ as an open set in Rn×m.
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Since UZ ∩ UZ̃ = OZ ∩OZ̃ ∩Mr(Rn×m), and since the image of θ−1
Z is inMr(Rn×m), we

have
θZ(UZ ∩ UZ̃) = (θ−1

Z )−1(UZ ∩ UZ̃) = (θ−1
Z )−1(OZ ∩OZ̃),

the inverse image through θ−1
Z of the open set OZ ∩OZ̃ in Rn×m. Since θ−1

Z is a continuous
map from R(n−r)×r × R(m−r)×r ×GLr to Rn×m, we deduce that θZ(UZ ∩ UZ̃) is an open
set in R(n−r)×r × R(m−r)×r × GLr. Similarly, θZ̃(UZ ∩ UZ̃) is an open set in R(n−r)×r ×
R(m−r)×r ×GLr. Now, let (X, Y, H) ∈ R(n−r)×r ×R(m−r)×r ×GLr such that θ−1

Z (X, Y, H) ∈
UZ ∩ UZ̃. From the expressions of θ−1

Z and θZ̃, the map θZ̃ ◦ θ−1
Z is defined by

θZ̃ ◦ θ−1
Z (X, Y, H) = (Ũ+

⊥θ−1
Z (X, Y, H)(Ṽ+)T(Ũ+θ−1

Z (X, Y, H)(Ṽ+)T)−1,

Ṽ+
⊥ θ−1

Z (X, Y, H)T(Ũ+)T(Ṽ+θ−1
Z (X, Y, H)T(Ũ+)T)−1,

Ũ+θ−1
Z (X, Y, H)(Ṽ+)T),

with θ−1
Z (X, Y, H) = (U + U⊥X)H(V + V⊥Y)T , which is clearly an analytic map.

Theorem 8. The setMr(Rn×m) is an analytic principal bundle with typical fibre GLr and base
Gr(Rn) ×Gr(Rm) with surjective morphism $r between Mr(Rn×m) and Gr(Rn) ×Gr(Rm)
given by $r.

Proof. To prove that it is an analytic principal bundle, we consider the surjective map

$r :Mr(Rn×m) −→ Gr(Rn)×Gr(Rm), UGVT 7→ (coln,r(U), colm,r(V)),

the atlas An,r := {(UU , ϕU) : U ∈ Mr(Rn×r)} of Gr(Rn) and the atlas Am,r := {(UV , ϕV) :
V ∈ Mr(Rm×r)} of Gr(Rm). Recall that

UZ = {colk,r(Z + Z⊥X) : X ∈ R(k−r)×r},

with k = n if Z = U or k = m if Z = V, and hence

$−1
r (UU ,UV) =

{
(U + U⊥X)H(V + V⊥Y)T : X ∈ R(n−r)×r, Y ∈ R(m−r)×r, H ∈ GLr

}
.

Observe that for each fixed G ∈ GLr, we have that $−1
r (UU ,UV) = UZ, where Z =

UGVT . Since UZ = UZ′ holds for Z′ = UG′VT , where G′ ∈ GLr, the map

χZ : UZ −→ UU × UV ×GLr

defined by
χZ(U′H′(V′)T) := (coln,r(U′), colm,r(V′), H′),

is independent of the choice of Z = UGVT , where G ∈ GLr. Now, the representation of χZ
in local coordinates is the map

((ϕU × ϕV × idRr×r ) ◦ χZ ◦ θ−1
Z ) : R(n−r)×r ×R(m−r)×r ×GLr −→ R(n−r)×r ×R(m−r)×r ×GLr

given by ((ϕU × ϕV × idRr×r ) ◦ χZ ◦ θ−1
Z )(X, Y, H) = (X, Y, H), which is an analytic diffeo-

morphism. Moreover, let pZ : UU × UV ×GLr −→ UU × UV be the projection over the first
two components. Then

(pZ ◦ χZ)(UHVT) = (coln,r(U), colm,r(V)) = $r(UHVT)

and the theorem follows.
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4.2.Mr(Rn×m) as a Submanifold and Its Tangent Space

Here, we prove thatMr(Rn×m) equipped with the topology given by the atlas Bn,m,r is
an embedded submanifold in Rn×m. For that, we have to prove that the standard inclusion
map i :Mr(Rn×m)→ Rn×m is an embedding. Noting that the inclusion map restricted to
the neighbourhood UZ of Z = UGVT is identified with

(i ◦ θ−1
Z ) : R(n−r)×r×R(m−r)×r×GLr −→ Rn×m, (X, Y, H) 7→ (U +U⊥X)H(V +V⊥Y)T ,

the tangent map TZi at Z = θ−1
Z (0, 0, G), defined by TZi = D(i ◦ θ−1

Z )(0, 0, G), is

TZi : R(n−r)×r ×R(m−r)×r ×Rr×r → Rn×m, (Ẋ, Ẏ, Ḣ) 7→ U⊥ẊGVT + UG(V⊥Ẏ)T + UḢVT .

Proposition 6. The tangent map TZi : R(n−r)×r×R(m−r)×r×Rr×r → Rn×m at Z = UGVT ∈
Mr(Rn×m) is a linear isomorphism with inverse (TZi)−1 given by

(TZi)−1(Ż) = (U+
⊥ Ż(V+)TG−1, V+

⊥ ŻT(U+)TG−T , U+Ż(V+)T)

for Ż ∈ Rn×m. Furthermore, the standard inclusion map i is an embedding from Mr(Rn×m)
to Rn×m.

Proof. Let us suppose that TZi(Ẋ, Ẏ, Ḣ) = 0. Multiplying this equality by (U⊥)+ and U+

on the left leads to
ẊGVT = 0 and G(V⊥Ẏ)T + ḢVT = 0,

respectively. By multiplying the first equation by (V+)T on the right, we obtain Ẋ = 0.
By multiplying the second equation on the right by (V+)T and (V+

⊥ )
T , we respectively

obtain Ḣ = 0 and Ẏ = 0. Then, TZi is injective and then i is an immersion. For Ż ∈ Rn×m,
we note that Ẋ = U+

⊥ Ż(V+)TG−1 ∈ Rn×r, Ẏ = V+
⊥ ŻT(U+)TG−T ∈ Rm×r, and Ġ =

U+Ż(V+)T ∈ Rr×r is such that TZi(Ẋ, Ẏ, Ġ) = Ż, and TZi is also surjective. Let us now
equipMr(Rn×m) with the topology τBn,m,r given by the atlas and Rn×m with the topology
τRn×m induced by matrix norms. We have to prove that

i : (Mr(Rn×m), τBn,m,r ) −→ (Mr(Rn×m), τRn×m |Mr(Rn×m))

is a topological isomorphism. The topology in (Mr(Rn×m), τBn,m,r ) is such that a local chart
θZ is a homeomorphism from UZ ⊂ Mr(Rn×m) to θZ(UZ) = R(n−r)×r ×R(m−r)×r ×GLr
(see Section 1.1). Then, to prove that the map i is an embedding, we need to show that
the bijection

(i ◦ θ−1
Z ) : R(n−r)×r ×R(m−r)×r ×GLr −→ UZ ⊂ Rn×m

is a topological homeomorphism. For that, observe that its differential

D(i ◦ θ−1
Z )(X, Y, H) ∈ L(R(n−r)×r ×R(m−r)×r ×Rr×r,Rn×m)

at (X, Y, H) ∈ R(n−r)×r ×R(m−r)×r ×GLr is given by

D(i ◦ θ−1
Z )(X, Y, H)[(Ẋ, Ẏ, Ḣ)]

= (U⊥Ẋ)H(V + V⊥Y)T + (U + U⊥X)H(V⊥Ẏ)T + (U + U⊥X)Ḣ(V + V⊥Y)T .

Assume that

(U⊥Ẋ)H(V + V⊥Y)T + (U + U⊥X)H(V⊥Ẏ)T + (U + U⊥X)Ḣ(V + V⊥Y)T = 0. (16)

Multiplying on the left by U+ and on the right by (V+)T , we obtain Ḣ = 0. Mul-
tiplying on the left by U+

⊥ and on the right by (V+)T we deduce that ẊH = 0, that
is, Ẋ = 0. Finally, multiplying on the left by U+ and on the right by (V+

⊥ )
T , we ob-
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tain HẎT = 0, and hence Ẏ = 0. Thus, D(i ◦ θ−1
Z )(X, Y, H) is a linear isomorphism

from R(n−r)×r ×R(m−r)×r ×Rr×r to D(i ◦ θ−1
Z )(X, Y, H)[R(n−r)×r ×R(m−r)×r ×Rr×r] for

each (X, Y, H) ∈ R(n−r)×r ×R(m−r)×r ×GLr. The inverse function theorem tells us that
(i ◦ θ−1

Z ) is a diffeomorphism from R(n−r)×r×R(m−r)×r×GLr to UZ = (i ◦ θ−1
Z )(R(n−r)×r×

R(m−r)×r×GLr) and, in particular, that it is a topological homeomorphism. In consequence,
the map i is an embedding.

The tangent space toMr(Rn×m) at Z = UGVT , which is the image through TZi of the
tangent space in local coordinates TZMr(Rn×m) = R(n−r)×r ×R(m−r)×r ×Rr×r, is

TZMr(Rn×m) = {U⊥ẊGVT + UG(V⊥Ẏ)T + UĠVT : Ẋ ∈ R(n−r)×r, Ẏ ∈ R(m−r)×r, Ġ ∈ Rr×r},

and can be decomposed into a vertical tangent space

TV
ZMr(Rn×m) = {UĠVT : Ġ ∈ Rr×r},

and a horizontal tangent space

TH
ZMr(Rn×m) = {U⊥ẊGVT + UG(V⊥Ẏ)T : Ẋ ∈ R(n−r)×r, Ẏ ∈ R(m−r)×r}.

4.3. Lie Group Structure of Neighbourhoods UZ

We here prove thatMr(Rn×m) locally has the structure of a Lie group by proving that
the neighbourhoods UZ can be identified with Lie groups.

Let Z = UGVT ∈ Mr(Rn×m). We first note that UZ can be identified with SU × SV ×
GLr, with SU and SV defined by (9). Noting that SU and SV can be identified with Lie
groups GU and GV defined in (11), we then have that UZ can be identified with a product
of three Lie groups, which is a Lie group with the group operation �Z given by

(exp(U⊥XU+), exp(V⊥YV+), G)�Z (exp(U⊥X′U+), exp(V⊥Y′V+), G′)

= (exp(U⊥(X + X′)U+), exp(V⊥(Y + Y′)V+), GG′).

This allows us to define a group operation ?Z over UZ defined for W = θ−1
Z (X, Y, G)

and W ′ = θ−1
Z (X′, Y′, G′) by

W ?Z W ′ = θ−1
Z (X + X′, Y + Y′, GG′), (17)

and to state the following result.

Theorem 9. Let Z = UGVT ∈ Mr(Rn×m). Then the set UZ together with the group operation
?Z defined by (17) is a Lie group with identity element UVT , and the map ηZ : UZ → GU × GV ×
GLr given by

ηZ(θ
−1
Z (X, Y, H)) = (exp(U⊥XU+), exp(V⊥YV+), H)

is a Lie group isomorphism.

Author Contributions: M.B.-F., A.F. and A.N. equally contributed. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by the RTI2018-093521-B-C32 grant from the Ministerio de
Ciencia, Innovación y Universidades and by the grant number INDI20/13 from Universidad CEU
Cardenal Herrera.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.



Mathematics 2021, 9, 1669 17 of 17

References
1. Zhou, X.; Yang, C.; Zhao, H.; Yu, W. Low-Rank Modeling and Its Applications in Image Analysis. ACM Comput. Surv. 2014, 47,

1–33. [CrossRef]
2. Antoulas, A.; Sorensen, D.; Gugercin, S. A survey of model reduction methods for large-scale systems. Contemp. Math. 2001, 280,

193–220.
3. Benner, P.; Gugercin, S.; Willcox, K. A survey of projection-based model reduction methods for parametric dynamical systems.

SIAM Rev. 2015, 57, 483–531. [CrossRef]
4. Nouy, A. Low-rank tensor methods for model order reduction. In Handbook of Uncertainty Quantification; Ghanem, R., Higdon, D.,

Owhadi, H., Eds.; Springer International Publishing: Cham, Switzerland, 2016.
5. Benner, P.; Cohen, A.; Ohlberger, M.; Willcox, K. (Eds.) Model Reduction and Approximation: Theory and Algorithms; SIAM:

Philadelphia, PA, USA, 2017.
6. Kushner, A.; Lychagin, V.; Rubtsov, V. Contact Geometry and Non-Linear Differential Equations; Encyclopedia of Mathematics and Its

Applications 101; Cambridge University Press: Cambridge, UK, 2007.
7. Goursat, E. Sur les équations du second ordre à n variables analogues à l’équation de Monge-Ampère. Bull. Soc. Math. Fr. 1899,

27, 1–34. [CrossRef]
8. Sylvester, J. On the dimension of spaces of linear transformations satisfying rank conditions. Linear Algebra Its Appl. 1986, 78,

1–10. [CrossRef]
9. Eisenbud, D.; Harris, J. Vector spaces of matrices of low rank. Adv. Math. 1988, 70, 135–155. [CrossRef]
10. Westwick, R. Spaces of matrices of fixed rank. Linear Multilinear Algebra 1987, 20, 171–174. [CrossRef]
11. Westwick, R. Spaces of matrices of fixed rank II. Linear Algebra Its Appl. 1996, 235, 163–169. [CrossRef]
12. Ellia, P.; Menegatti, P. Spaces of matrices of constant rank and uniform vector bundles. Linear Algebra Its Appl. 2016, 507, 474–485.

[CrossRef]
13. Smith, S.T. Optimization techniques on Riemannian manifolds. Fields Inst. Commun. 1994, 3, 113–135.
14. Absil, P.-A.; Mahony, R.; Sepulchre, R. Optimization Algorithms on Matrix Manifolds; Princeton University Press: Princeton, NJ,

USA, 2008.
15. Vandereycken, B. Low-Rank Matrix Complet. Riemannian Optim. SIAM J. Optim. 2013, 23, 1214–1236. [CrossRef]
16. Mishra, B.; Meyer, G.; Bach, F.; Sepulchre, R. Low-rank optimization with trace norm penalty. SIAM J. Optim. 2013, 23, 2124–2149.

[CrossRef]
17. Mishra, B.; Meyer, G.; Bonnabel, S.; Sepulchre, R. Fixed-rank matrix factorizations and Riemannian low-rank optimization.

Comput. Stat. 2014, 29, 591–621. [CrossRef]
18. Koch, O.; Lubich, C. Dynamical low-rank approximation. SIAM J. Matrix Anal. Appl. 2007, 29, 434–454. [CrossRef]
19. Manton, J.H. A framework for generalising the Newton method and other iterative methods from Euclidean Space to manifolds.

Numer. Math. 2015, 129, 91–125. [CrossRef]
20. Billaud-Friess, M.; Falcó, A.; Nouy, A. A New Splitting Algorithm for Dynamical Low-Rank Approximation Motivated by the

Fibre Bundle Structure of Matrix Manifolds. BIT Numerical Mathematics, Accepted. Available online: https://arxiv.org/pdf/20
01.08599 (accessed on 11 July 2021).

21. Michor, P.W. Gauge theory for the diffeomorphism group. In Proceedings of the Conference Differential Geometric Methods in
Theoretical Physics, Como, Italy, 24–29 August 1987; Bleuler, K., Werner, M., Eds.; Kluwer Academic Publishers: Dordrecht, The
Netherlands, 1987; pp. 345–371.

22. Falcó, A.; Hackbusch, A.W.; Nouy, A. On the Dirac-Frenkel variational principle on tensor Banach spaces. Found. Comput. Math.
2019, 19, 159–204. [CrossRef]

23. Lang, S. Differential and Riemannian Manifolds, 3rd ed.; Graduate Texts in Mathematics; Springer: New York, NY, USA, 1995;
Volume 160.

24. Absil, P.-A.; Mahony, R.; Sepulchre, R. Riemannian Geometry of Grassmann Manifolds with a View on Algorithmic Computation.
Acta Appl. Math. 2004, 80, 199–220. [CrossRef]

25. Hoog, F.R.D.; Mattheij, R.M.M. Subset selection for matrices. Linear Algebra Its Appl. 2007, 422, 349–359. [CrossRef]
26. Goreinov, S.A.; Oseledets, I.V.; Savostyanov, D.V.; Tyrtyshnikov, E.E.; Zamarashkin, N.L. How to find a good submatrix. In Matrix

Methods: Theory, Algorithms, Applications; World Scientific: Hackensack, NY, USA, 2010; pp. 247–256.
27. Procesi, C. Lie Groups: An Approach through Invariants and Representations, 1st ed.; Springer: New York, NY, USA, 2007.
28. Abraham, R.; Marsden, J.E.; Ratiu, T. Manifolds, Tensor Analysis, and Applications, 2nd ed.; Springer: New York, NY, USA, 1988;

Volume 75.

http://doi.org/10.1145/2674559
http://dx.doi.org/10.1137/130932715
http://dx.doi.org/10.24033/bsmf.594
http://dx.doi.org/10.1016/0024-3795(86)90013-3
http://dx.doi.org/10.1016/0001-8708(88)90054-0
http://dx.doi.org/10.1080/03081088708817751
http://dx.doi.org/10.1016/0024-3795(94)00134-0
http://dx.doi.org/10.1016/j.laa.2016.06.019
http://dx.doi.org/10.1137/110845768
http://dx.doi.org/10.1137/110859646
http://dx.doi.org/10.1007/s00180-013-0464-z
http://dx.doi.org/10.1137/050639703
http://dx.doi.org/10.1007/s00211-014-0630-4
https://arxiv.org/pdf/2001.08599
https://arxiv.org/pdf/2001.08599
http://dx.doi.org/10.1007/s10208-018-9381-4
http://dx.doi.org/10.1023/B:ACAP.0000013855.14971.91
http://dx.doi.org/10.1016/j.laa.2006.08.034

	Introduction
	Elements of Geometry
	Main Results and Outline

	The Grassmann Manifold Gr(Rk)
	An Atlas for Gr(Rk)
	Lie Group Structure of Neighbourhoods UZ

	The Non-Compact Stiefel Principal Bundle Mr(Rkr)
	Principal Bundle Structure of Mr(Rkr)
	Mr(Rkr) as a Submanifold and Its Tangent Space
	Lie Group Structure of Neighbourhoods VZ

	The Principal Bundle Mr(Rnm) for 0 < r < min(m,n)
	Mr(Rnm) as a Principal Bundle
	Mr(Rnm) as a Submanifold and Its Tangent Space
	Lie Group Structure of Neighbourhoods UZ

	References

