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Simple Summary: Epidemiological studies have identified a link between neurodegenerative dis-
orders and a reduced risk of overall cancer. Increases and decreases in the risk of site-specific
cancers have also been reported. However, it is still unknown whether these associations arise
due to shared genetic and molecular factors or are explained by other phenomena (e.g., biases in
epidemiological studies or the use of medication). In this study, we aimed to investigate the potential
molecular, genetic, and pharmacological links between Alzheimer’s and Parkinson’s diseases and a
large panel of 22 cancer types. To examine the overlapping involvement of genes and pathways, we
obtained differential gene expression profiles through meta-analyses of post-mortem brain tissues
from Alzheimer’s and Parkinson’s disease patients, primary tumors, and tissue-matched controls,
and compared them. Genetic similarities were assessed through network-based methods and the
computation of genetic correlations. Finally, the potential impact of drugs indicated for each disorder
in the identified associations was evaluated using transcriptomic methods. Our research extends
previous work in the field by identifying new significant patterns of transcriptomic associations
(direct and inverse) between Alzheimer’s disease, Parkinson’s disease, and different site-specific
cancers. The results reveal significant genetic correlations between Parkinson’s disease, prostate
cancer, and melanoma. In addition, to our knowledge, this is the first time that the role of drugs
indicated for the treatment of both sets of disorders has been investigated in the context of their
comorbid associations using transcriptomic methods.
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Abstract: Alzheimer’s (AD) and Parkinson’s diseases (PD) are the two most prevalent neurode-
generative disorders in human populations. Epidemiological studies have shown that patients
suffering from either condition present a reduced overall risk of cancer than controls (i.e., inverse
comorbidity), suggesting that neurodegeneration provides a protective effect against cancer. Reduced
risks of several site-specific tumors, including colorectal, lung, and prostate cancers, have also been
observed in AD and PD. By contrast, an increased risk of melanoma has been described in PD patients
(i.e., direct comorbidity). Therefore, a fundamental question to address is whether these associations
are due to shared genetic and molecular factors or are explained by other phenomena, such as flaws
in epidemiological studies, exposure to shared risk factors, or the effect of medications. To this end,
we first evaluated the transcriptomes of AD and PD post-mortem brain tissues derived from the
hippocampus and the substantia nigra and analyzed their similarities to those of a large panel of
22 site-specific cancers, which were obtained through differential gene expression meta-analyses of
array-based studies available in public repositories. Genes and pathways that were deregulated in
both disorders in each analyzed pair were examined. Second, we assessed potential genetic links
between AD, PD, and the selected cancers by establishing interactome-based overlaps of genes
previously linked to each disorder. Then, their genetic correlations were computed using cross-trait
LD score regression and GWAS summary statistics data. Finally, the potential role of medications in
the reported comorbidities was assessed by comparing disease-specific differential gene expression
profiles to an extensive collection of differential gene expression signatures generated by exposing cell
lines to drugs indicated for AD, PD, and cancer treatment (LINCS L1000). We identified significant
inverse associations of transcriptomic deregulation between AD hippocampal tissues and breast,
lung, liver, and prostate cancers, and between PD substantia nigra tissues and breast, lung, and
prostate cancers. Moreover, significant direct (same direction) associations of deregulation were
observed between AD and PD and brain and thyroid cancers, as well as between PD and kidney
cancer. Several biological processes, including the immune system, oxidative phosphorylation,
PI3K/AKT/mTOR signaling, and the cell cycle, were found to be deregulated in both cancer and
neurodegenerative disorders. Significant genetic correlations were found between PD and melanoma
and prostate cancers. Several drugs indicated for the treatment of neurodegenerative disorders
and cancer, such as galantamine, selegiline, exemestane, and estradiol, were identified as potential
modulators of the comorbidities observed between neurodegeneration and cancer.

Keywords: Alzheimer; Parkinson; comorbidity; transcriptomic; meta-analyses; genetic correlations

1. Introduction

The study of comorbidity (or multimorbidity) is becoming a key topic in biomedical
research, and it is especially relevant in the context of population aging [1]. Comorbidities
have profound implications for individuals, practitioners, and healthcare systems [2]. As a
consequence, the scientific community is devoting increasing efforts to the characterization
of relationships between disorders and to the identification of factors that cause these
associations [1].

Central nervous system (CNS) disorders and cancer are among the leading causes
of death and disability worldwide [3–5]. Epidemiological data suggest that the cancer
incidence and mortality patterns of patients with CNS disorders differ from those of the
general population [2]. In particular, several observational studies and meta-analyses
have found that individuals diagnosed with neurodegenerative (NDG) disorders, such as
Alzheimer’s disease (AD) and Parkinson’s disease (PD), are at a lower risk of subsequent
all-cancer incidence and mortality compared to controls [2,6–29]. We observed that this
apparent anti-cancer protective effect, which we term ‘inverse cancer comorbidity’ (ICC),
is produced in many serious CNS and immune disorders [30–32]. In addition, a number of
associations between AD and PD and site-specific cancers have been reported, including
a reduction in the risk of lung cancer [2,10,18–24,33,34], as well as a decrease in the risks
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of bladder, colorectal, and prostate cancers [2,11,18–23,32,34–37] and smoking-related
cancers in general [38] in individuals with PD. Reduced risks of pancreatic, stomach,
liver, blood, and endometrial cancers have also been observed [36,39,40]. By contrast,
some studies have suggested that PD patients are at an increased risk of brain cancer and
melanoma [17,21–23,41–43], and others have found an increased risk of these cancer types
in the first-degree relatives of PD patients [36,44]. Increases in breast cancer [36,39,40,45,46]
have also been reported. Several hypotheses have been proposed to account for these
associations, including the presence of systematic biases in observational studies [10,47,48],
a lack of adjustment for important confounding variables such as smoking status [49],
differential exposure to risk factors [50], the presence of shared alterations in genes and
pathways [51,52], the coinciding effects of variants [53], and the potential role of drugs
indicated for these disorders [54,55].

The opposite patterns of cell behavior observed in cancer and neurodegeneration, with
cancer arising as a consequence of uncontrolled cell proliferation and neurodegeneration
resulting from post-mitotic cell death, have prompted researchers to examine the potential
molecular bases of their inverse comorbid associations. Early studies revealed that genes
upregulated in the substantia nigra in PD patients are biologically linked to cancer, diabetes,
and inflammation [56]. More recent works have shown that transcriptomic deregulation
patterns in brain tissues derived from AD and PD patients are the opposite of those in lung,
prostate, and colorectal cancers. Conversely, patterns of transcriptomic deregulation in
AD have been found to be similar to those observed in glioblastomas [51,52]. In addition,
at least one study has investigated the involvement of shared genetic variability between
AD and a set of site-specific cancers by computing genetic correlations based on GWAS
summary statistics and cross-trait LD score regression. The results revealed significant
positive genetic correlations between AD and both breast and lung cancers [53]. However, it
is still unknown whether these results can be generalized to other cancer types and whether
alterations produced by drugs indicated for the treatment of these disorders could be
involved in modulating the identified comorbid associations.

To our knowledge, this is the first study to investigate the molecular associations
between AD and PD and a panel of 22 site-specific cancers using different approaches. First,
we generated differential gene expression profiles for each included disorder through meta-
analyses of previously published array data. Then, we compared the AD and PD profiles
to those derived from the 22 cancer types and assessed whether they shared patterns of
transcriptomic deregulation. Second, Gene Set Enrichment Analyses (GSEAs) were carried
out to identify alterations in biological processes and pathways that were common to both
neurodegenerative disorders and cancers. A Shiny application was created in order to easily
visualize the biological processes and pathways altered in each specific disorder and those
jointly deregulated in NDG and cancer. The results were validated using an independent
cohort of samples profiled using RNA-seq methods. Gene co-expression network analyses
were also performed through the construction of consensus co-expression modules for each
disease. Up- and downregulated modules were identified for each disorder and compared
between diseases. Third, it has been shown that disease-associated genes, variant genes,
and proteins are not randomly distributed in the human interactome [57]. Instead, they tend
to interact with each other more than expected by chance, forming connected subgraphs
that are known as disease modules. According to this view, a disease is produced by a local
perturbation in the underlying disease module, and a comorbidity arises as a consequence
of perturbations in overlapping disease modules. In other words, if two disease modules
overlap, local perturbations leading to one disease could disrupt pathways involved in the
module of the other disease. Therefore, we computed interactome-based overlaps between
the disease modules of AD and PD and those derived from the 22 included cancers. To test
whether genetic variation is shared between the development of AD, PD, and cancer,
we obtained GWAS summary statistics and computed genetic correlations using cross-
trait LD score regression [58]. Finally, the potential role of medications indicated for the
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treatment of AD, PD, and cancer in their reported comorbid associations was assessed
using transcriptomic methods and data derived from LINCS L1000.

2. Materials and Methods
2.1. Differential Gene Expression Meta-Analyses, Gene Set Enrichment Analyses, Weighted
Co-Expression Network Analyses, and Measures of Transcriptomic Association between NDG
Disorders and Cancer

Searches for transcriptomic datasets, including tissue-matched case and control sam-
ples, were carried out in public repositories (i.e., the Gene Expression Omnibus (GEO), Ar-
ray Express (AE), and The Cancer Genome Atlas (TCGA)) for AD, PD, and 22 tumor types:
acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), bladder cancer (BLCA),
breast cancer (BRCA), brain cancer (BRNCA), cervical cancer (CERV), cholangiocarcinoma
(CHLCA), chronic lymphocytic leukemia (CLL), chronic myeloid leukemia (CML), colorectal
cancer (CRCA), diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FLYMPH), head
and neck carcinoma (HANC), kidney cancer (KDNCA), lung cancer (LGCA), liver cancer
(LIVCA), ovarian cancer (OVCA), pancreatic cancer (PACA), prostate cancer (PRCA), skin
cancer melanoma (SKCM), stomach cancer (STCA), and thyroid cancer (THCA) (see Supple-
mentary Methods 1.1 at Supplementary File S1). The data were preprocessed using standard
methods, and sample- and study-level quality control and outlier detection and removal meth-
ods were applied (Supplementary Methods 1.2, 1.3, and 1.4). For each disorder, differential gene
expression meta-analyses were carried out using all of the available studies and the MetaDE
package [59] (Supplementary Methods 1.5). Transcriptomic associations between AD and PD
and each included cancer were determined through intersection analyses and the computation
of correlations (Supplementary Methods 1.6). The observed associations were validated using
additional cohorts of cancers derived from TCGA (Supplementary Methods 1.7). Consensus
modules of co-expressed genes were obtained for each disorder and correlated with disease sta-
tus using the WGCNA package [60], and disease-associated modules were compared between
disorders using hypergeometric tests (Supplementary Methods 1.8 and 1.9). Altered biological
processes and pathways were identified by applying different types of enrichment methods
(Supplementary Methods 1.10).

2.2. Human Interactome-Based Overlaps and Cross-Trait LD Score Regression Analyses

Three different human interactomes (Supplementary Methods 1.11) and lists of disease-
associated genes and variant genes (Supplementary Methods 1.12) were employed in
order to compute measures of network localization and network separation between
NDG disorders and cancers (Supplementary Methods 1.13 and 1.14). The presence of
shared genetic variability between NDG disorders and cancer was tested by employing
GWAS summary statistics data and cross-trait LD score regression [58]. GWAS summary
statistics were obtained from public repositories or directly requested from the authors
(Supplementary Methods 1.15 and 1.16).

2.3. Identification of Drugs Indicated for the Treatment of AD, PD, and Cancer as Potential
Modulators of their Comorbidities through LINCS L1000 Analysis

We explored the potential role of indicated medications in the comorbidities ob-
served between NDG disorders and cancer. First, drugs indicated for the treatment of
AD, PD, and the 22 studied cancers were identified using MEDI-an, a medication indica-
tion repository that gathers information from multiple resources. Then, transcriptomic
effects induced by treatment with these drugs were tested using LINCS L1000 data by
constructing differential gene expression consensus signatures and computing correlations
between profiles induced by drug treatment and those derived from the studied disorders
(Supplementary Methods 1.17).
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3. Results
3.1. Results of Differential Gene Expression Meta-Analyses

Data from 176 array-based studies were identified in GEO and AE. After quality
control and sample- and study-level outlier detection and removal, 144 studies remained,
resulting in a total of 15,136 samples divided into 11,359 cases and 3777 controls. Of the
32 excluded studies with SRM values larger than 7, there was one on AML, three on
BRNCA, eight on CRCA, two on KDNCA, nine on LGCA, four on LIVCA, and five on
PD. Seven studies, which included 226 samples derived from hippocampal samples of
124 AD cases and 102 tissue-matched controls, were selected for analyses. In the case of
PD, data from six studies encompassing 149 samples derived from the substantia nigra
of 83 cases and 66 controls were selected for further analysis. The number of samples of
different site-specific cancers ranged between 139 (CERV) and 1500 (ALL). Supplementary
Table S1 shows the number of studies and samples identified for each of the included
cancers. The differential gene expression meta-analysis yielded totals of 3341 and 3473
differentially expressed genes (DEGs) with FDR-adjusted p-values lower than 0.05 for AD
and PD, respectively. The number of DEGs resulting from cancer analyses ranged from 581
in AML to 9757 in BRNCA. Table 1 shows the number of DEGs obtained in each analysis
under two significance thresholds (0.05 and 0.01), as well as the number of studies and
samples included in each meta-analysis. Supplementary File S2 provides the complete
differential gene expression meta-analysis results for all of the included disorders.

Table 1. Number of differentially expressed genes found in each meta-analysis.

Disease Included
Studies

No. Samples
(Case/Control)

DEGs
0.05/Tested
Genes, %

Up 0.05/Down
0.05

DEGs
0.01/Tested
Genes, %

Up 0.01/Down
0.01

Mean
Q

Mean
Tau

AD 7 226 (124/102) 3341/11,536
(28.96%) 1364/1977 1641/11,536

(14.23%) 563/1078 10.59 0.33

PD 6 149 (83/66) 3473/11,714
(29.65%) 1626/1847 2267/11,714

(19.35%) 949/1318 7.24 0.31

ALL 5 1500 (1406/94) 2315/12,436
(18.62%) 1373/942 1387/12,436

(11.15%) 920/467 16.67 0.63

AML 8 1162 (949/213) 581/16,271
(3.57%) 415/166 217/16,271

(1.33%) 163/54 39.52 0.47

BCLA 5 228 (199/29) 5277/16,054
(32.87%) 3209/2068 3069/16,054

(19.12%) 1983/1086 10.41 0.85

BRCA 8 1396 (1164/232) 8362/20,536
(40.72%) 4700/3662 6662/20,536

(32.44%) 3781/2881 33.97 0.46

BRNCA 7 1218 (1124/94) 9757/15,401
(63.35%) 5161/4596 8228/15,401

(53.43%) 4437/3791 19.89 0.35

CERV 4 139 (82/57) 3612/15,683
(23.03%) 2215/1397 2344/15,683

(14.95%) 1517/827 11.73 0.64

CHLCA 4 152 (130/22) 1234/16,111
(7.66%) 766/468 535/16,111

(3.32%) 346/189 15.6 1.55

CLL 6 1021 (884/137) 2547/16,634
(15.31%) 1670/877 1488/16,634

(8.95%) 996/492 62.94 1.24

CML 3 226 (128/98) 1593/15,125
(10.53%) 1115/478 740/15,125

(4.89%) 461/279 6.88 0.33

CRCA 7 1261 (968/293) 9041/13,595
(66.5%) 4793/4248 7872/13,595

(57.9%) 4235/3637 27.98 0.3

DLBCL 3 246 (173/73) 4673/20,503
(22.79%) 3284/1389 3184/20,503

(15.53%) 2339/845 32.7 1.67

FLYMPH 6 214 (147/67) 1945/15,456
(12.58%) 1195/750 854/15,456

(5.53%) 542/312 26.71 1.22

HANC 9 560 (436/124) 6964/14,760
(47.18%) 3617/3347 5280/14,760

(35.77%) 2874/2406 24.94 0.5

KDNCA 8 650 (396/254) 9575/13,828
(69.24%) 4974/4601 8193/13,828

(59.25%) 4426/3767 31.65 0.38
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Table 1. Cont.

Disease Included
Studies

No. Samples
(Case/Control)

DEGs
0.05/Tested
Genes, %

Up 0.05/Down
0.05

DEGs
0.01/Tested
Genes, %

Up 0.01/Down
0.01

Mean
Q

Mean
Tau

LGCA 5 850 (522/328) 9468/14,718
(64.33%) 5637/3831 7954/14,718

(54.04%) 4695/3259 26.39 0.23

LIVCA 8 839 (383/456) 6624/10,648
(62.21%) 3567/3057 5401/10,648

(50.72%) 2996/2405 26.91 0.23

OVCA 6 222 (154/68) 5241/18,544
(28.26%) 3704/1537 3415/18,544

(18.42%) 2496/919 21.1 0.9

PACA 9 463 (318/145) 8306/14,257
(58.26%) 3938/4368 6270/14,257

(43.98%) 3061/3209 39.27 0.79

PRCA 6 1019 (648/371) 4663/15,169
(30.74%) 2001/2662 3253/15,169

(21.45%) 1378/1875 24.06 0.17

SKCM 5 486 (409/77) 4158/11,651
(35.69%) 2271/1887 2752/11,651

(23.62%) 1453/1299 13.43 0.38

STCA 9 664 (393/271) 7047/15,066
(46.77%) 3766/3281 5243/15,066

(34.8%) 2920/2323 44.96 0..42

THCA 5 245 (139/106) 8662/20,536
(42.18%) 4271/4391 6356/20,536

(30.95%) 2975/3381 10.02 0.39

The results for two different FDR thresholds (FDR < 0.05 and FDR < 0.01) are provided. The number of DEGs and their percentages
(with respect to the total number of tested genes) are listed in columns 3 and 5, whereas the numbers of up- and downregulated genes are
in columns 4 and 6 for FDR thresholds of 0.05 and 0.01. Columns 7 and 8 show the mean Q and tau values, respectively.

3.2. Transcriptomic Associations between Neurodegenerative Disorders and Cancers

Transcriptomic associations between AD and PD and all of the studied cancers were
computed by determining whether the number of genes placed at the four possible inter-
sections of significantly upregulated and downregulated genes in each member of a given
disease pair was larger than expected by chance (see SM 1.6). The significance of these
overlaps was measured using Fisher’s exact tests.

Overrepresentation analysis of deregulated genes shared between each disease pair was
carried out using Gene Ontology (GO) as the source of gene sets linked to specific biological
processes. The significant overrepresented pathways mentioned in the text are presented
alongside their GO identifiers and the adjusted p-values (p-adj). Figures 1 and 2 show the
intersection analysis and overrepresentation analyses results for AD and all the included cancer
types, whereas Figures 3 and 4 show the same analyses results for PD. Supplementary Figures
S1 and S2 show the correlations computed using the µ̂ values derived from the differential
expression profiles of both NDG disorders and all of the included cancers. The complete
overrepresentation enrichment analyses results of the genes placed at the significant intersections
can be found in Supplementary File S3.

3.2.1. Transcriptomic Associations between AD and Cancer

AD was directly associated with BRNCA and THCA (henceforth, AD’s same-direction
deregulated cancers (SDDCs)): the intersections formed by genes that were upregulated
and downregulated in both diseases were significant after adjustment by multiple compar-
isons. Several cancer types were inversely associated with AD, including LGCA, CERV,
HANC, CRCA, PACA, BRCA, LIVCA, BLCA, and SKCM. These cancers are termed AD’s
opposite-direction deregulated cancers (ODDCs). In these cases, intersections formed by
genes upregulated in one disorder and downregulated in the other were both significant.
The differential gene expression profiles of BRNCA and THCA were positively correlated
with the AD profile (BRNCA r = 0.32, THCA r = 0.11). Negatively associated cancers had
Pearson’s correlations of −0.22, −0.17, −0.12, −0.11, −0.1, −0.09, −0.09, −0.08, and −0.05
for LGCA, CERV, HANC, CRCA, PACA, BRCA, LIVCA, BLCA, and SCKM, respectively.
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Figure 1. Results of AD and cancer intersection analysis. Each column shows the number of genes at the four possible
intersections of up- and downregulated genes in each AD and cancer pair, as well as the FDR-adjusted p-values of Fisher’s
exact tests. Column 1 shows genes upregulated in both conditions, column 2 shows genes downregulated in both conditions,
column 3 shows genes upregulated in AD and downregulated in each cancer, and column 4 shows genes downregulated in
AD and upregulated in each cancer.

Genes upregulated in both AD and its SDDCs were enriched in functions linked to
extracellular matrix organization, and immune system-related processes, such as adap-
tive immune response, T-cell activation, and positive regulation of cytokine production.
Genes upregulated in both AD and BRNCA were also enriched in lymphocyte activation
and blood vessel morphogenesis (Figure 2A).

Genes that were downregulated in both AD and its SDDCs were enriched in biological
processes linked to energy production such as, oxidative phosphorylation, and respiratory
electron transport chain. Genes jointly downregulated in AD and BRNCA were also
enriched in neural-related processes such as, vesicle-mediated transport in synapse and
neurotransmitter transport (Figure 2B).
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Genes upregulated in AD and downregulated in its ODDCs were enriched in immune-
related processes, including, the regulation of cell activation, adaptive immune response,
and the positive regulation of cytokine production, and other processes such as angiogene-
sis, vasculogenesis, and extracellular matrix organization (Figure 2C).

Finally, genes downregulated in AD and upregulated in its ODDCs were enriched in
biological processes linked to the G2/M transition of the mitotic cell cycle and its regulation.
Other processes downregulated in AD and upregulated in its ODDCs were mitochondrial
gene expression, oxidative phosphorylation, and proteasomal-related processes, such as
SCF-dependent ubiquitin-dependent protein catabolic process, as well as pathways linked
to DNA repair, protein folding, and telomere maintenance (Figure 2D).
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3.2.2. Transcriptomic Associations between PD and Cancer

PD was found to present direct transcriptomic associations with BRNCA, KDNCA,
THCA, and STCA and inverse transcriptomic associations with LGCA, BRCA, and PRCA,
as well as chronic lymphocytic leukemia (CLL) to a minor extent. The differential gene
expression profiles of BRNCA, KDNCA, and STCA were positively correlated with the PD
profile (BRNCA r = 0.33, KDNCA r = 0.17, STCA r = 0.05), whereas the correlation between
Parkinson’s disease and THCA gene expression signatures was negligible (THCA r = 0.03).
Among the negatively associated cancers, only LGCA presented a negative correlation
with an absolute value higher than 0.1 (LGCA r = −0.13, BRCA r = −0.06, PRCA r = −0.04,
CLL r = −0.01).
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Upregulated genes at the intersections formed by PD and its SDDCs were enriched
in immune-related processes, including leukocyte and neutrophil degranulation, myeloid
leukocyte, macrophage, and mircroglia activation, and Toll-like receptor signaling pathway,
and in processes linked to phagocytosis and blood vessel morphogenesis (Figure 4A).

Genes downregulated in both PD and its SDDCs were enriched in processes linked
to oxidative phosphorylation and ATP synthesis coupled electron transport. Genes that
were downregulated in both PD and BRNA were also heavily enriched in related neu-
ronal processes, such as the chemical synaptic transmission and the synaptic vesicle cycle
(Figure 4B).
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and cell migration, as well as angiogenesis and the positive regulation of apoptotic pro-
cesses. Genes upregulated in PD and downregulated in LGCA were also enriched in
myeloid leukocyte activation and phagocytosis (Figure 4C).

Genes that were downregulated in PD and upregulated in inversely associated can-
cer types were enriched in mitochondrial processes, such as mitochondrial translation
and mitochondrial gene expression. In the case of lung cancer, enrichment in oxidative
phosphorylation-related genes was also observed. Finally, genes linked to the negative reg-
ulation of cell cycle G2/M phase transition were also downregulated in PD and upregulated
in lung and breast cancers (Figure 4D).

3.3. Validation of the Intersection Analyses Using an Alternative Set of Cancer Data

The cancer datasets used for validation consisted of 7361 samples comprising 6717 cases
and 644 controls from 17 tumor types, including 15 of the cancer types included in the array-
based analyses, which were obtained from TCGA. Not all cancer types included in the array-
based analyses were available. The data for leukemias, lymphomas, melanoma, and ovarian
cancer did not include matched normal tissue. Therefore, differential gene expression analysis
could not be carried out for these cancers. In addition, some tumor types were represented
by more than one dataset. For instance, lung cancer was divided into two datasets: lung
adenocarcinomas and lung squamous cell carcinomas. Supplementary Table S2 shows the study
and sample characteristics of the cancer datasets used for validation and the number of DEGs
identified in each differential gene expression analysis. The intersection analysis results carried
out using the differential gene expression analyses results derived from the alternative source of
cancer data (TCGA) and the array-based NDG data served to validate the direct associations
observed between AD and brain cancers and the inverse associations between AD and bladder,
breast, lung, liver, and prostate cancers in the array-based analyses. The direct associations
between PD and brain and kidney cancers were also validated, as were the negative associations
between PD and breast, lung, and prostate cancers. Supplementary Figures S3 and S4 show
the intersection analysis results obtained using independent cohorts of cancer samples derived
from TCGA for AD and PD, respectively.

3.4. Pathways and Consensus Co-Expression Modules Deregulated in Both Neurodegenerative
Disorders and Cancer
3.4.1. Gene Set Enrichment Analyses (GSEA) Results

Gene Set Enrichment Analysis was carried out for each disorder using the full list of genes
ordered by their z-scores (computed by Choi’s meta-analysis method) as input. Compared to
traditional overrepresentation enrichment analysis methods, GSEA makes use of the complete
profile and is able to detect small but consistent changes in the expression of genes linked
to specific biological processes. The presented results include the Normalized Enrichment
Score (NES) and the adjusted p-value (p-adj). GSEA, carried out using the Hallmark molecular
signature database, showed that genes upregulated in neurodegenerative disorders tended
to be enriched in immune system-related processes, including the inflammatory response
(AD: NES = 2.12, p-adj = 4.46 × 10−8, PD: NES = 1.99, p-adj = 8.68 × 10−7), allograft re-
jection (AD: NES = 2.09, p-adj = 7.03 × 10−8, PD: NES = 1.44, p-adj = 7.95 × 10−3), and
IL6-JAK-STAT3 signaling (AD: NES = 2.19, p-adj = 4.69 × 10−6, PD: NES = 2.09, p-adj = 1.26
× 10−5), among others. Downregulated genes were enriched in several processes, includ-
ing oxidative phosphorylation (AD: NES = −3.37, p-adj = 2.50 × 10−9, PD: NES = −3.09,
p-adj = 5.00 × 10−9), protein secretion (AD: NES = −2.31, p-adj = 4.14 × 10−8, PD: NES =
−2.37, p-adj = 6.87 × 10−9), mTORC1 signaling (AD: NES = −2.19, p-adj = 6.78 × 10−9, PD:
NES = −1.9, p-adj = 1.67 × 10−6), and MYC targets (AD: NES = −2.54, p-adj = 2.50 × 10−9,
PD: NES = −1.98, p-adj = −1.98). The canonical pathway (C2) and GO analyses showed that
altered expression patterns in additional biological processes were present in AD and PD brains,
including the downregulation of genes linked to cell cycle checkpoints (AD: NES = −2.16, p-adj
= 5.07 × 10−9, PD: NES = −1.88, p-adj = 5.27 × 10−6), the proteasome (AD: NES = −2.64, p-adj
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= 7.66 × 10−9, PD: NES = −2.59, p-adj = 7.41 × 10−9), and autophagy (AD: NES = −2.19, p-adj
= 2.24 × 10−6, PD: NES = −1.84, p-adj = 4.88 × 10−4), among others.

The most frequently upregulated hallmark gene sets in cancers were MYC targets v1,
E2F targets, and MYC targets v2, which were upregulated in 17, 17, and 16 site-specific
cancers, respectively. mTORC1 signaling and G2M checkpoints were upregulated in 16
cancers, and DNA repair, glycolysis, unfolded protein response, and E2F targets were
upregulated in 15 cancer types. The most common downregulated pathways in cancer
were bile acid metabolism, which was downregulated in 13 site-specific cancers, and
KRAS signaling. Figure 5 summarizes the GSEA enrichment analysis results with the
up- and downregulation status for all studied disorders and the Hallmark gene sets, and
Supplementary Files S4–S6 provide the complete GSEA results for all studied disorders
and all employed sources of molecular signatures.
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Figure 5. Hallmark molecular signatures in GSEA enrichment results for all studied disorders. Green and red cells indicate
the upregulation and downregulation of pathways, respectively, with color intensity being proportional to NES values.
Cancers showing direct (same direction) transcriptomic associations of deregulation with AD and/or PD (SDDCs) are coded
in blue in the annotation bar below the heatmap, whereas cancers exhibiting inverse (opposite-direction) associations of
transcriptomic deregulation with AD and/or PD (ODDCs) are coded in red. NDGs are annotated using purple. The yellow
bar indicates cancers with no transcriptomic associations with AD or PD, termed as no associated cancers (NAC).
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Pathways that were upregulated in both AD and its SDDCs were linked to immune
function, including cytokine–cytokine receptor interaction, interleukin 4 and interleukin
13 signaling, IL6-JAK-STAT3 signaling, inflammatory response, and allograft rejection, as
well as other processes, such as extracellular matrix organization, epithelial–mesenchymal
transition, and coagulation. Pathways that were downregulated in both AD and its SDDCs
differed between THCA and BRNCA. While pathways that were downregulated in both
AD and BRNCA were mainly linked to neuronal-related processes, such as the neuronal
system and transmission across chemical synapses, those that were downregulated in both
AD and THCA were mainly linked to oxidative phosphorylation and the citric acid cycle.

Pathways that were upregulated in AD and downregulated in its ODDCs included
myogenesis, KRAS signaling, allograft rejection, and the complement cascade, among oth-
ers (downregulated in at least three ODDCs), whereas pathways that were downregulated
in AD and upregulated in its ODDCs included MYC targets, mTORC1 signaling, cell cycle
checkpoints, DNA repair, unfolded protein response, proteasome, and stabilization of p53
(upregulated in all eight of AD’s ODDCs). Pathways linked to ATP synthesis through the
electron transport chain were downregulated in AD and upregulated in LGCA.

As in the case of AD, immune system-related pathways were upregulated in both
PD and its SDDCs, whereas pathways that were downregulated in both diseases included
oxidative phosphorylation and the neural system. Pathways upregulated in PD and down-
regulated in its ODDCs presented high variability in the different cancers and included
ribosome and translation-related pathways in BRCA; immune system-related pathways,
such as signaling via NF-kB, inflammatory response, and interferon-gamma response, in
LGCA; and epithelial-to-mesenchymal transition and extracellular matrix organization in
PRCA. Finally, pathways downregulated in PD and upregulated in its ODDCs were linked
to mTORC1 signaling, cell cycle checkpoints, mitochondrial translations, proteasomal
functions, and stabilization of p53, among others. Oxidative phosphorylation was also
downregulated in PD and upregulated in LGCA.

Supplementary Tables S3–S22 show the pathways that were deregulated (FDR < 0.01)
in both AD or PD and specific cancers with significant transcriptomic associations (SDDCs
and ODDCs). We developed a Shiny application designed to easily visualize the GSEA
analysis results identifying biological processes and pathways altered in each specific
disorder and those jointly deregulated in NDG and cancer for the three molecular sig-
nature databases employed in our analyses (Hallmarks, Canonical Pathways, and Gene
Ontology). It allows filtering by different parameters (e.g., NES, FDR, and direction of
the observed deregulation), as well as an interactive network-based visualization of the
significant transcriptomic associations observed between AD, PD, and cancer. The applica-
tion can be found on the following website: http://disease-perception.bsc.es/ndg_cancer_
comorbidities/. The application source code is available at the following GitHub repository:
https://github.com/bsc-life/neurodegenerative_diseases-cancer_comorbidities (accessed
on 7 June 2021).

3.4.2. Consensus Weighted Gene Co-Expression Network Analysis (WGCNA)
Analysis Results

Consensus co-expression module analyses identified a total of 691 modules, of which
448 were significantly associated with disease status: 249 presented significant posi-
tive correlations with disease status, and 199 presented significant negative correlations.
Supplementary Table S23 shows the number of modules identified in the consensus module
co-expression analysis of each disorder. By default, WGCNA assigns a color as a name
for each identified co-expression module. To discriminate between modules named with
the same color in different disorders, we added the disease abbreviation to all modules
identified for a particular disease.

Among neurodegenerative disorders, several co-expression modules enriched in
immune system-related processes and specific cell-type markers were positively correlated
with disease status, including AD_brown (r = 0.31, p-adj: 5.15 × 10−5), which was enriched
in the immune response (GO:0006955; p-adj = 6.31 × 10−9) and cell type markers for

http://disease-perception.bsc.es/ndg_cancer_comorbidities/
http://disease-perception.bsc.es/ndg_cancer_comorbidities/
https://github.com/bsc-life/neurodegenerative_diseases-cancer_comorbidities


Cancers 2021, 13, 2990 14 of 30

macrophages (p-adj: 1.80 × 10−6) and microglia (p-adj: 7.68 × 10−5), and PD_black
(r = 0.3, p-adj: 2.93 × 10−3), which was enriched in the cytokine-mediated signaling
pathway (GO:0019221; p-adj = 1.58 × 10−5) and response to cytokines (GO:0034097; p-
adj = 1.65 × 10−5). A particular PD module, PD_yellow (r = 0.35, p-adj: 1.64 × 10−4),
was positively correlated with disease status and enriched in myelination (GO:0042552;
p-adj = 1.98 × 10−6) and oligodendrocyte (p-adj: 2.56 × 10−27) markers.

Neurodegenerative disorders presented gene co-expression modules that were nega-
tively correlated with disease status and heavily enriched in mitochondrial activity, ATP
synthesis functions, and neural cell-type-specific markers. AD_turquoise (r = −0.39, p-
adj: 2.31 × 10−8) was enriched in the mitochondrial inner membrane (GO:0005743; p-adj
= 8.89 × 10−34), ATP synthesis coupled electron transport (GO:0042775; p-adj = 1.57 ×
10−21), synapse (GO:0045202; p-adj = 1.40 × 10−23) functions, and cell type markers for
interneurons (p-adj: 1.08 × 10−7) and neurons (p-adj: 3.07 × 10−9), whereas PD_turquoise
(r = −0.41, p-adj: 1.49 × 10−6) was enriched in mitochondrial ATP synthesis coupled
electron transport (GO: 0042775; p-adj = 3.28 × 10−25), dopaminergic neurons (p-adj: 6.11
× 10−3), and interneurons (p-adj: 1.57 × 10−4).

Most cancers presented gene co-expression modules that were positively correlated
with disease status and enriched in cell-cycle-related functions. A non-comprehensive list
of these instances includes BLCA_turquoise (r = 0.53, p-adj: 1.10 × 10−17), enriched in the
cell cycle (GO:0007049; p-adj = 9.88 × 10−69); BRCA_green (r = 0.43, p-adj: 2.03 × 10−64),
enriched in the cell cycle (GO:0007049; p-adj = 3.98 × 10−115); BRNCA_brown (r = 0.35,
p-adj: 8.62 × 10−37), enriched in the cell cycle (GO:0007049; p-adj = 3.41 × 10−97); and
CHLCA_brown (r = 0.52,p-adj: 1.13 × 10−11), enriched in the mitotic cell cycle process
(GO:1903047; p-adj = 1.81 × 10−64).

Many of the studied cancer modules that had significant negative correlations with
disease status were enriched in biological processes and cell type markers characteristic
of healthy tissues, suggesting that dedifferentiation or tissue substitution has occurred.
For instance, for genes in the CERV_yellow module (r = −0.58, p-adj: 3.14 × 10−13), the
top negatively correlated co-expression module in the cervical cancer analysis was en-
riched in biological processes linked to cornification (GO:0070268; p-adj = 4.56 × 10−28),
keratinocyte differentiation (GO:0030216; p-adj = 3.12 × 10−26), and epidermis devel-
opment (GO:0008544; p-adj = 1.17 × 10−25), as well as in keratinocyte (p-adj: 2.39 ×
10−13), epithelial (p-adj: 1.03 × 10−3), and basal (p-adj: 3.11 × 10−3) cell-type-specific
markers. The BRNCA_blue module (r = −0.55, p-adj: 1.79 × 10−100) was enriched in bio-
logical processes linked to synapse (GO:0045202; p-adj = 2.59 × 10−36), axon (GO:0030424;
p-adj = 6.09 × 10−33), and neuron projection (GO:0043005; p-adj = 1.71 × 10−27) and to
interneural (p-adj: 4.59 × 10−10) and neural (p-adj: 6.24 × 10−7) markers. LGCA_turquoise
(r = −0.74, p-adj: 1.98 × 10−169) and LGCA_pink (r = −0.63, p-adj: 1.73 × 10−100) were
enriched in pulmonary alveolar type I cells (p-adj: 2.54 × 10−10) and pulmonary alve-
olar type II cells (p-adj: 8.14 × 10−5), respectively. Supplementary File S7 shows all
disease-associated modules and the enrichment analysis results for biological functions
and cell-type-specific markers.

We searched for the presence of significant overlaps between consensus co-expression
modules that were significantly associated with neurodegenerative disorders and cancers. Two
hundred and seventy-seven significant overlaps were found between AD and cancer-associated
modules, whereas one hundred and seventy-seven module overlaps were observed in the
case of PD. The AD-associated modules that overlapped with the most cancer modules were
AD_turquoise, AD_brown, AD_purple, AD_darkgreen, and AD_skyblue. AD_turquoise was
negatively correlated with AD disease status (r = −0.39, p-adj: 2.31 × 10−8) and enriched in
ATP synthesis coupled electron transport (GO:0042773; p-adj = 1.57 × 10−21) and interneuron
(p-adj: 1.08 × 10−7) and neuron (p-adj: 3.07 × 10−9) cell-type-specific markers. This module
presented significant overlaps with 86 cancer modules, of which 25 and 61 presented negative
and positive correlations with cancer, respectively. For instance, significant overlaps were
found between AD_turquoise and (i) BRNCA_blue (r = −0.55, p-adj: 1.79 × 10−100), which was



Cancers 2021, 13, 2990 15 of 30

enriched in neuronal-related processes and markers, synapse (GO:0045202; p-adj = 2.59× 10−36),
interneuron (p-adj: 4.59 × 10−10), and neuron (p-adj: 6.24 × 10−7) markers; (ii) CRCA_magenta
(r= −0.44, p-adj: 1.61 × 10−60), which was enriched in oxidative phosphorylation (GO:0006119;
p-adj = 4.91 × 10−60) and mitochondrial ATP synthesis coupled electron transport (GO:0042775;
p-adj = 2.99 × 10−53); (iii) KDNCA_turquoise (r = −0.78, p-adj: 4.95 × 10−155), which contained
genes linked to mitochondrial ATP synthesis coupled electron transport (GO:0042775; p-adj
= 3.530167 × 10−15); and (iv) THCA_salmon (r = −0.32, p-adj: 7.71 × 10−6), which was also
enriched in mitochondrial ATP synthesis coupled electron transport (GO:0042775; p-adj = 2.47
× 10−50). By contrast, significant overlaps were also found between AD_turquoise and 61
consensus modules that were positively correlated with cancer status, which included many
instances of ODDC-related modules, such as BLCA blue, turquoise, and black; BRCA_red;
CERV_darkolive; CRCA cyan and royalblue; LGCA_royalblue; LIVCA_darkmagenta; and
PACA_white, among others. These modules were enriched in mitochondrial genes, oxidative
phosphorylation, and cell-cycle-related processes. AD_brown (r = 0.31, p-adj: 5.15 × 10−5),
which was enriched in biological processes linked to cell adhesion (GO:0007155; p-adj = 6.62
× 10−12) and immune response (GO:0006955; p-adj = 6.31 × 10−9) and in macrophage (p-adj:
1.80 × 10−6) and microglia (p-adj: 7.68 × 10−5) cell markers, was found to present significant
overlaps with several consensus co-expression modules that were both positively and negatively
correlated with disease status. Cancer modules that were positively correlated with disease
status included BRNCA_yellow (r = 0.12, p-adj: 9.43 × 10−5), which was enriched in the
immune response (GO:0006955; p-adj = 3.21 × 10−147), macrophages (p-adj: 6.19 × 10−24), and
microglia (p-adj: 1.56 × 10−13), and THCA_blue (r = 0.42, p-adj: 1.26 × 10−10), which was
enriched in the immune system process (GO:0002376; p-adj = 1.96 × 10−104) and macrophages
(p-adj: 1.79 × 10−36). Cancer modules that displayed a significant overlap with AD_brown
and were negatively correlated with cancer status included modules related to PRCA, PACA,
LIVCA, LGCA, CRCA, BRCA, and BLCA, among others.

In addition, AD_skyblue (r = −0.24, p-adj: 5.26 × 10−3), which was enriched in bio-
logical processes such as protein folding (GO:0006457; p-adj = 1.58 × 10−11), unfolded pro-
tein binding (GO:0051082; p-adj = 7.77 × 10−9), response to topologically incorrect protein
(GO:0035966; p-adj = 9.13 × 10−8), and chaperone complex (GO:0101031; p-adj = 1.13 ×
10−7), presented significant overlaps with 17 upregulated cancer-related co-expression modules.
The PD-associated co-expression modules with the largest number of overlaps with cancer
modules were PD_turquoise, PD_green, PD_black, and PD_yellow. In general, PD and AD
followed similar patterns of module overlap with cancers. The complete information regarding
the analyses of consensus co-expression module overlap for both AD and PD is provided in
Supplementary Figures S5–S7 and Supplementary File S6.

3.5. Interactome-Based Overlaps and Genetic Correlation Analysis Results
3.5.1. Interactome-Based Overlap Analyses Results

To ascertain whether genes associated with each studied disorder tended to cluster in
nearby regions of the human interactome, we computed measures of network localization
using lists of disease-associated genes and variants derived from DisGeNet, PheGenI, and
eDGAR under different settings (see Supplementary Method Section 1.13). Supplementary
Tables S24 and S25 show the disease-associated genes and variant genes previously linked
to each studied disorder under relaxed and stringent settings. In general, AD and PD
genes tended to cluster together in the same region of the human interactome, whereas
diverse results were observed for cancer-associated genes, which depended on the selected
interactome and the stringency level applied for gene selection. The number of cancer
types with average intra-disease distances that were lower than expected by chance ranged
between 12 and 21, depending on the tested settings. Supplementary Tables S26 and S27
include the results of both tested network localization measures (daa and S) for disease-
associated genes and variant genes obtained under the different analysis settings. Then, we
computed interactome-based measures of network separation for each possible disease pair.
We did not find evidence of interactome-based overlaps in the set of disease-associated
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genes between AD or PD and any cancer type under any of the tested settings, suggesting
that neurodegenerative disorders and cancers do not present overlapping disease modules
at the level of the human interactome. Supplementary Table S28 includes the significant
interactome-based overlaps identified under the different tested settings.

3.5.2. Cross-Trait LD Score Analyses Results

To determine whether the same genetic variability could be involved in the modulation of
both neurodegenerative disorders and cancers, we computed the genetic correlations between
them using cross-trait LD score regression and GWAS summary statistics data from previously
published studies to uncover the role of genetic variability in each disorder. We were able to
identify and retrieve GWAS summary statistics from 15 studies. The implication of genetic
variability was explored for AD risk in three studies and PD risk in two studies. We could
only obtain datasets for six site-specific cancers, namely, BRCA (three studies), PRCA (two
studies), CRCA (one study), OVCA (one study), SKCM (two studies), and LGCA (one study).
Table 2 summarizes the information on the available datasets included in the cross-trait LD
score regression analysis. Significant positive genetic correlations (rg) were observed between
pairs of studies targeting the same disorder, including AD_2 and AD_3 (rg = 0.92, p-val = 1.60
× 10−10) and PD 1 and PD 2 (rg = 0.86, p-val = 3.51 × 10−41), among others. Significant genetic
correlations were also observed between AD 3 and PD 1 (rg = 0.21, p-val = 1.21 × 10−2), as well
as between different cancer types, such as BRCA 2 and OVCA 1 (rg = 0.23, p-val = 2.00 × 10−4),
among others. Finally, significant genetic correlations were found between PD 1 and PRCA 2
(rg = 0.09, p-val = 3.16 × 10−2) and SKCM 2 (rg = 0.14, p-val = 4.41 × 10−2) and between PD
2 and PRCA 3 (rg = 0.16, p-val = 4.44 × 10−2). Supplementary Table S29 shows the full set of
significant genetic correlations identified.
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Table 2. Characteristics of the studies included in the genetic correlation analyses.

Study Source N (Cases/Controls)
Tested SNPs after

Merging with
SNP List

Mean Chi2 Lambda GC Max Chi2 Genome-Wide
Significant SNPs SNP Heritability

AD 1 IGAP [61] 54,162 (17,008/37,154) 1,150,200 1.11 1.09 565.21 165 0.07

AD 2 GR@ACE project
[62] 21,235 (11,999/9236) 1,204,123 1.09 1.068 1123.06 59 0.13

AD 3 GWAS catalog [63] 455,258 (71,880AD */383,378) 1,203,908 1.12 1.08 1009.11 320 0.01
PD 1 Nalls et al. [64] 482,730 (33,674/449,056) 1,137,530 1.14 1.09 180.42 276 0.02
PD 2 23andMe [65] 308,557 (6477/302,080) 1,211,658 1.10 1.08 164.95 142 0.02

PRCA 1 GWAS catalog [66] 140,254 (79,148/61,106) 1,206,082 1.51 1.23 846.34 2733 0.16
PRCA 2 UK Biobank 206,770 (6879/199,891) 1,211,361 1.13 1.09 181.15 397 0.03
BRCA 1 BCAC [67] 247,173 (133,384/113,789) 519,352 1.72 1.38 481.43 1389 0.12
BRCA 2 GWAS catalog [68] 139,274 (76,192/63,082) 1,128,758 1.68 1.36 1424.99 2832 0.22
BRCA 3 UK Biobank 245,494 (10,478/235,016) 1,211,361 1.11 1.08 314.15 276 0.02
CRCA UK Biobank 387,318 (4562/382,756) 1,215,182 1.058 1.052 51.049 22 0.01
OVCA GWAS catalog [69] 85,426 (16,924/68,502) 1,149,515 1.09 1.06 169.17 209 0.04

SKCM 1 UK Biobank 452,264 (2465/449,799) 1,211,361 1.04 1.03 121.09 144 0.00
SKCM 2 Genomel [70] 32,383 (11,523/20,860) 1,100,284 1.12 1.08 372.76 561 0.17
LGCA UK Biobank 452,264 (1655/450,609) 1,211,361 1.02 1.01 26.03 0 0.00

* This dataset includes AD patients and individuals with a family history of AD as cases. PGC = Psychiatric Genomic Consortium. BCAC = Breast Cancer Association Consortium.
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3.6. Transcriptomic Effects of Drugs Indicated for the Treatment of Neurodegenerative Disorders
and Cancers

Next, we investigated the potential role of drugs indicated for the treatment of cancer
and neurodegenerative disorders in their comorbidities. With this aim, we first obtained
the differential gene expression consensus signatures of the indicated drugs using LINCS
L1000 data. These signatures provide information regarding the gene expression changes
driven by treatment with each indicated drug. Then, correlations were computed be-
tween the consensus signatures and the differential gene expression profiles of the studied
neurodegenerative disorders and cancer types.

High-precision set queries in MEDI-AN yielded 272 indications for the studied disorders,
encompassing 158 unique drugs. Level 5 gene expression signatures for 91 out of the 158
drugs were identified in LINCS L1000. These signatures are generated by treating different
cell lines with each perturbagen at different concentrations and for different exposure times.
The results are then compared to appropriate controls, resulting in multiple differential gene
expression signatures. For each LINCS perturbation, we combined all available signatures into
one consensus gene expression signature, as detailed in Supplementary Methods Section 1.17.2.

Supplementary Table S30 shows the drugs indicated for the treatment of each disorder
for which LINCS L1000 consensus signatures were available. Correlations were computed
between each drug-induced consensus signature and the differential gene expression pro-
files of each studied disorder obtained through DEG meta-analysis. Several drugs indicated
for the treatment of neurodegenerative disorders presented negative correlations (Spear-
man’s < −0.2) with the differential gene expression profiles of different cancer types. For
instance, the profile of carbidopa (DB00190), an inhibitor of dopamine decarboxylase used
for the treatment of PD, was negatively correlated with the differential gene expression pro-
files of PACA and CHLCA. Donepezil (DB00843), a reversible cholinesterase inhibitor used
in AD treatment, was negatively correlated with CERV, CHLCA, LIVCA, PACA, and STCA.
Galantamine (DB00674), an allosteric potentiating ligand of human nicotinic acetylcholine
receptors, presented negative correlations with the differential gene expression profiles
of nine cancers (BRNCA, CERV, CHLCA, CRCA, DLBCL, HANC, LIVCA, PACA, and
STCA), whereas selegiline, a monoamine oxidase inhibitor used as an antiparkinsonian and
anti-depressive, was negatively correlated with eight cancer types (BRCA, CERV, CHLCA,
DLBCL, FLYMPH, LIVCA, PACA, and STCA).

GSEA showed that carbidopa had the potential to downregulate genes linked to oxidative
phosphorylation (NES = −2.81, p-adj = 9.76 × 10−9) and eukaryotic translation (NES = −3.17, p-
adj = 9.76 × 10−9), among other processes, and to upregulate genes linked to immune function,
such as the complement cascade (NES = 2.08, p-adj = 5.75 × 10−5) and the cytokine–cytokine
receptor interaction (NES = 1.89, p-adj = 1.07 × 10−6). Donepezil treatment produced the
downregulation of cell-cycle-related processes, such as cell cycle checkpoints (NES = −2.18,
p-adj = 7.60 × 10−9), as well as genes linked to other processes, such as splicing and oxidative
phosphorylation (NES = −2.53, p-adj = 4.28 × 10−8). Galantamine treatment also appeared
to lower the expression levels of genes related to oxidative phosphorylation (NES = −3.77,
p-adj = 2.49 × 10−9) and the cell cycle (NES = −2.09, p-adj = 9.04 × 10−6) and also affected
other processes, such as those linked to the proteasome (NES = −3.42, p-adj = 2.49 × 10−9) and
the spliceosome (NES = −3.80, p-adj = 1.80 × 10−9), among others. Similar sets of genes were
affected by selegiline treatment.

By contrast, the profiles of several drugs indicated for the treatment of neurodegen-
erative disorders presented positive correlations (Spearman’s > 0.2) with the differential
gene expression profiles of different cancers. Entacapone, a selective and reversible in-
hibitor of catechol-O-methyltransferase, was positively correlated with eight cancer types
(BRNCA, CERV, CHLCA, DLBCL, FLYMPH, LIVCA, PACA, and STCA). Pergolide was
positively correlated with 11 (BRNCA, CERV, CHLCA, CRCA, DLBCL, FLYMPH, HANC,
KDNCA, LIVCA, PACA, and STCA), and valproic acid, an anticonvulsant also used to
control agitations in patients with dementia, was positively correlated with the differential
gene expression profiles of eight cancers (BRNCA, CERV, CHLCA, CRCA, DLBCL, LIVCA,
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PACA, and STCA). Entacapone treatment was found to increase the expression levels of
ribosomal genes, as well as DNA replication pre-initiation and p53 stabilization genes,
among others, and valproic acid treatment was found to upregulate proteasomal and p53
stabilization genes.

Several drugs indicated for cancer treatment presented negative correlations with AD
profiles, including the aromatase inhibitor exemestane (r = −0.28) used for the treat-
ment of BRCA, the progestin medication megestrol (r = −0.27), the alkylating agent
thiotepa (r = −0.25), tretinoin (r = −0.25), and estradiol (r = −0.24). Eight drugs indicated
for the treatment of diverse cancers presented positive correlations with the differential
gene expression profile of AD, including medroxyprogesterone (r = 0.27), temozolomide
(r = 0.26), chlorambucil (r = 0.26), and testosterone (r = 0.25), among others. No drugs indi-
cated for cancer presented correlations with PD above the selected threshold. Exemestane
treatment was linked to the upregulation of genes related to oxidative phosphorylation
(NES = 3.42, p-adj = 4.52 × 10−9), ribosomes (NES = 4.33, p-adj = 4.52 × 10−9), and DNA
replication (NES = 3.20, p-adj = 4.52 × 10−9) and the downregulation of genes linked to
immune function, such as cytokine–cytokine receptor interactions (NES = −1.88, p-adj
= 4.52 × 10−9), JAK- STAT signaling (NES = −2.03, p-adj = 5.56 × 10−8), and Toll-like
receptor signaling (NES = −1.98, p-adj = 1.54 × 10−6), among others. Similar results were
observed for megestrol and estradiol.

Figure 6A shows the indicated drugs with the highest correlations, and Supplementary
Figure S6B,C show the top 10 up- and downregulated pathways induced by galantamine
and exemestane treatment, respectively. Supplementary File S8 presents the complete
results of the correlation analyses between the indicated drugs and disease signatures, and
Supplementary File S9 contains the complete gene set enrichment analysis results for NDG
disorders and drugs indicated for cancer that had absolute correlation values higher than
0.2 for at least one member of the other disease set.
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Figure 6. (A) Top associated drugs indicated for cancer treatment based on their correlations with AD, PD, and cancer signa-
tures. Red and blue represent positive and negative correlations, respectively. The disorder/s for which a particular drug is
indicated can be found between brackets after the drug name. (B) Riddle plot depicting the top 10 up- and downregulated
pathways induced by treatment with galantamine. (C) Riddle plot depicting the top 10 up- and downregulated pathways
induced by treatment with exemestane.

4. Discussion

We observed diverse patterns of transcriptomic deregulation shared between AD,
PD, and the 22 studied tumor types. BRNCA and THCA presented significant direct
(same direction) associations of transcriptomic deregulation with both AD and PD. Direct
associations of transcriptomic deregulation were also observed between AD and PD and
KDNCA and STCA. In contrast, AD and PD presented inverse (opposite direction) associa-
tions of transcriptomic deregulation with BRCA, LGCA, and PRCA. In addition, AD also
presented inverse associations of transcriptomic deregulation with BLCA, CRCA, HANC,
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LIVCA, PACA, and SKCM. All associations were validated using alternative cohorts of
cancer samples derived from TCGA, with the exception of the direct associations between
AD and PD and THCA and the inverse associations between AD and CRCA, HANC,
PACA, and SKCM. Our results are in agreement with previously reported transcriptomic
association studies [51,52] despite differences in the study designs and included cohorts.
Interestingly, a number of pairs of NDG disorders and site-specific cancers that showed
significant inverse transcriptomic associations in our analyses have presented inverse
comorbidity patterns at a population level in epidemiological research. For example, a
reduced risk of lung cancer has been observed in patients with AD or PD [2,10,18–24,33,34],
and reduced risks of prostate and liver cancers have been detected in PD and AD patients,
respectively [2,18,20,21,23,24,33,35]. In addition, the significant direct transcriptomic as-
sociation found between PD and brain cancers is consistent with several observational
studies that reported an increased risk of brain cancer in PD patients [22,41,42]. In contrast,
some results of our transcriptomic analyses are not in agreement with well-documented
epidemiological associations. For example, although PD patients are known to have an
increased risk of melanoma compared to controls [2], no direct transcriptomic associations
were found between them. In general, because of the lack of complete epidemiological and
transcriptomic data covering all CNS and site-specific cancer associations, we were unable
to test the predictive power that the presence of significant transcriptomic deregulation
patterns has on epidemiological associations, which should be explored in future research.

The overrepresentation analyses of genes at significant intersections, together with
the results of GSEA and consensus co-expression module analysis, pointed towards sev-
eral pathways and biological processes that may be involved in the modulation of NDG
disorders and cancer comorbidities. Examples include the presence of shared alterations in
genes linked to the cell cycle, mTORC1 signaling, mitochondrial dysfunction, p53 signal-
ing, DNA damage, apoptosis, proteasome, autophagocytosis, and immune system-related
processes, among others.

Cell cycle-related processes were found to be downregulated in the GSEA analyses
results obtained using the canonical pathways and gene ontology molecular signature
datasets in both NDG disorders. In contrast, genes upregulated in most of the studied
cancers were heavily enriched in cell cycle-related processes. Whereas cycle alterations
constitute one of the hallmarks of cancer that allow tumors to acquire sustained malignant
growth [71], the role of cell cycle alterations in neurodegeneration seems to be more complex
than previously anticipated. An increasing body of evidence indicates that dysfunctional
neuronal cell cycle re-entry could trigger apoptosis and precede neurodegeneration in AD
and PD [72,73]. In this context, the presence of cell cycle markers in neurons in absence
of mitotic structures has been documented [74]. Although further research is needed to
elucidate the nature of the cell cycle alterations observed in NDG disorders and its evolution
with disease progression, we consider that the joint cell cycle alterations observed in NDG
disorders and cancers could represent a candidate to explain the comorbid associations
observed between both sets of disorders.

MYC target pathways were found to be downregulated in AD and PD and upregulated
in most of the studied cancers. MYC constitutes a family of transcription factors classified
as proto-oncogenes, which are involved in the regulation of cell proliferation, cell growth
promotion, and the modulation of apoptotic processes. Increased activity or expression of
MYC has been reported in more than half of human cancers [75]. Therefore, the opposite
patterns of pathway deregulation observed between both NDG disorders and cancer could
constitute a molecular substrate for the inverse patterns of comorbidity observed between
NDG disorders and cancer at an epidemiological level.

The Hallmark mTORC1 signaling pathway was found to be downregulated in both
AD and PD and upregulated in 16 cancer types. The PI3K/AKT/mTOR axis has a well-
documented role in the healthy nervous system, where it is involved in neurogenesis,
axonal sprouting, dendritic spine growth, and myelination, among other processes [76].
Decreased phosphorylation and total levels of components of the PI3K/AKT/mTOR
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signaling pathway have been previously reported in AD brains [77], as well as reduced
levels of PI3K subunits [78,79]. GSK3β, a major tau-phosphorylation kinase, is inhibited by
PI3K-Akt signaling [80]. It has been shown that Aβ oligomers could inhibit the PI3K/AKT
pathway leading to GSK3β activation, tau phosphorylation and neuronal death [81]. AKT
and phosphorylated AKT levels have also been found to be reduced in the substantia
nigra of PD patients [82]. Alterations in the PI3K/AKT/mTOR pathway are thought
to be involved in PD pathogenesis and dopaminergic neuronal loss mainly through the
regulation of apoptotic pathways [83]. Our differential gene expression meta-analyses
showed that the expression levels of AKT3 and the PI3K regulatory subunits PIK3R3
and PIK3R4 were downregulated in both AD and PD, as well as the catalytic subunit
PIK3CB. Furthermore, mTOR itself was found to be downregulated in PD brains compared
to controls. PI3K/AKT/mTOR activation plays a pivotal role in human tumors, where
it is involved in several processes, including cell proliferation, cell survival, metabolic
reprogramming, metastasis, and the suppression of autophagy and apoptosis.

Our analyses suggest that downregulated genes in AD and PD are heavily enriched
in mitochondrial-related processes, such as oxidative phosphorylation and ATP synthesis
through the electron transport chain. Impaired bioenergetic processes have been observed
to be a common feature of neurodegenerative disorders [84–86]. In cancers, higher rates of
glycolysis and the suppression of mitochondrial function, even in the presence of oxygen,
are frequently observed, a phenomenon known as the Warburg effect. Recent research
has suggested that the Warburg effect is driven by increased demand for NAD+ relative
to ATP [87]. Our data indicate that different cancer types present diverse patterns of
transcriptomic alterations in genes linked to oxidative phosphorylation and ATP synthesis
pathways, with upregulation trends observed for seven of them (BLCA, DLBCL, FLY-
MPH, LGCA, LIVCA, and OVCA) and downregulation trends identified for five (BRNCA,
CRCA, KDNCA, STCA, and THCA). These observations highlight the heterogeneity of
energy metabolism alterations in cancer and suggest that they may contribute to the
modulation of NDG and cancer comorbidities. The joint downregulation of oxidative
phosphorylation-related pathways seems particularly relevant in the direct patterns of
transcriptomic deregulation observed between AD, PD and THCA, and between PD and
KDNCA. Reductions in cellular respiration and increases in glycolytic pathways are known
to take place in thyroid tumors, particularly in poorly differentiated and fast-growing
types [88]. In addition, protein levels of complex I elements were reported to be reduced
in papillary thyroid carcinomas [89]. Furthermore, oncolytic cell tumors of the thyroid
are characterized by the accumulation of defective mitochondrial carrying mutations in
elements of the electron transport system complex I [90]. Previous research has also high-
lighted the importance of metabolic reprogramming in kidney cancers in which the loss
of VHL-dependent oxygen sensing results in HIFα stabilization that triggers increases in
glycolysis and reductions in the expression of genes linked to the tricarboxylic acid cycle
(TCA) [91].

In addition to the joint alterations observed in oxidative phosphorylation-related genes,
the Hallmark fatty acid (FA) metabolism pathway was found to be downregulated in AD,
PD, and nine of the studied cancers. A closer examination of the top downregulated genes
belonging to this pathway revealed that genes linked to pyruvate dehydrogenase activity
(PDHB, DLD, and PDHA1), mitochondrial β-oxidation (ACADS, ETFA, ETFB, ECHS1,
PCCA, PCCB, ACAT2, and ACOT8), and mitochondrial fatty acid synthesis (AASDHPPT,
ACACA, MCAT, MECR, NDUFAB1, OXSM) were downregulated in AD brains compared
to controls. The same genes linked to the pyruvate dehydrogenase activity were also found
to be downregulated in PD brains compared to controls, as well as other genes linked
to lipid metabolism, such as DLD, ALDH1A, IDI1, AUH, HMGCL, RDH11, HMGCS1,
SERINC1, ACADM, ACAT2, YWHAH, GSTZ1, NSDHL, HSD17B10, MIF, ELOVL5, CPT1A,
ACSL4, HPGD, and IDH1. Two genes linked to the mitochondrial β-oxidation were found
to be downregulated in PD (ACADM and PCCB). Among the nine cancer types, seven
(BRCA, STCA, KDNCA, LIVCA, HANC, CRCA, and SKCM) presented downregulation
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in β-oxidation-related genes, whereas three of them (BRCA, LIVCA, and STCA) were
also enriched in downregulated genes linked fatty acid biosynthesis. Fatty acid oxidation
has been previously found to be downregulated and associated with disease outcome in
multiple cancer types [92] and alterations in the metabolism of fatty acids have been linked
to neurodegeneration. In particular, the excessive levels of FA produce mitochondrial
uncoupling and dysfunction [93]. In this context, β-oxidation insufficiency has been
documented in early PD in peripheral tissues [94,95]. In addition, a recent report has
shown that the allelic variant ε4 of apolipoprotein E, which constitutes the most important
genetic risk factor of late onset AD, is linked to a reduction in the β-oxidation capacity of
astrocytes which leads to lipid accumulation in astrocytes and the hippocampus [96].

Our data suggest that p53 signaling could be upregulated in both AD and PD. This
is in agreement with previous studies that have reported that increases in p53 activity
are a common feature of NDG disorders [97,98]. Increased p53 levels have been found
in both human AD patients and animal models [99–101]. The same pattern has been
observed in the case of PD [102]. In contrast, the results derived from the Hallmark gene
set enrichment analysis did not indicate a general downregulation of this pathway in
the studied cancers. However, p53 inactivation is a widespread phenomenon in human
cancers produced mainly by the acquisition of inactivating mutations of p53 itself which
take place in approximately 50% of human tumors [103]. This implies that even if p53
pathway impairment is not detected at a transcriptomic level, it would likely be inactivated
in the vast majority of studied cancers. Therefore, the increased activity of p53 observed
in both NDG disorders could be an interesting candidate to explain the reduction in all
cancer risk reported in AD and PD patients.

Shared alterations in proteasomal and autophagocytic processes may also be involved
in the modulation of NDG disorders and cancer comorbidities. Both AD and PD have been
previously linked to the downregulation of elements of the ubiquitin–proteasome system,
as well as impairments in autophagy; in contrast, tumor cells have often been found to
upregulate the ubiquitin–proteasome system [104].

Finally, our data suggest that NDG disorders and cancer share an extensive overlap of
deregulated immune system-related processes. Activated microglia have been detected
in almost all neurodegenerative disorders, whereas peripheral lymphocyte and mono-
cyte activation has been found in some instances [105]. Additionally, the capacity to
evade the host’s immune system is one of the hallmarks of cancer and the cornerstone of
immunotherapy [106].

Although our transcriptomic approach provides an interesting descriptive tool to
identify genes and pathways jointly downregulated in AD, PD, and cancer, it also presents
some important limitations. First, the gene expression data included in our analyses
provide a picture of a specific time-point of the disease physiopathology. In the case of
NDG disorders, working with post-mortem brain tissues gives us a view that is likely
biased towards the disease’s latest stages, preventing us from characterizing the complex
changes that take place in the disorders along the temporal axis. Second, the transcriptomic
datasets employed were derived from tissues that are composed of a heterogeneous set of
cell types. This limits the possibility of determining if the alterations observed are due to
changes in the patterns of gene expression of specific cell types or to differences in tissue
composition. Further research dedicated to the analysis of transcriptomic deregulation
patterns along the temporal axis could allow us to characterize better the alterations of
specific disorders, which will result in a more accurate description of jointly altered in
NDG and cancer. In addition, the emergence of single-cell RNA-seq studies will allow the
identification of specific transcriptomic changes occurring in specific cell-types.

The computation of measures of network localization showed that disease-associated
genes and variants tended to be clustered in nearby regions of the human interactomes
in AD and PD, as well as in a variable number of cancer types, which depended on the
employed analysis setting. The computed measures of network separation did not yield
significant overlaps between the disease modules of neurodegenerative disorders and
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cancers under any of the tested settings, suggesting the lack of interactome-based overlaps
between the sets of disease-associated genes and proteins in neurodegenerative disorders
and cancers. As Menche and co-workers noted, the human interactome and the sets of
disease-associated proteins and genes are still incomplete [57]. Therefore, further research
employing more complete versions of the human interactome and highly accurate lists of
disease-associated genes will be needed to confirm or refute our observations. In contrast,
we were able to identify significant genetic correlations between PD and both PRCA and
SKCM, although the observed effect sizes were small. This observation implies that shared
genetic variability modulates the risk of developing both disorders. This is particularly
interesting in the case of PD and SCKM, as a growing body of evidence suggests that
PD patients are at an increased risk of SKCM [17,21–23,41–43]. The interpretation of the
positive genetic correlation found between PD and PRCA is more challenging because
epidemiological data suggest that PD patients are at a lower risk of PRCA compared to
controls. Previous studies have reported significant genetic correlations between AD and
BRCA and LGCA [53]. We could not reproduce any of these associations, presumably due
to the use of different datasets. GWAS summary statistics data were obtained for a reduced
number of cancer types. We are aware of the existence of additional cancer datasets derived
from GWAS studies that could not be obtained due to data access and time constraints.
Further research will be needed to complete the picture of genetic correlations between
NDG disorders and cancer.

Several drugs indicated for the treatment of neurodegenerative disorders were found
to produce transcriptomic alterations that mimicked or reversed those observed in several
cancer types. For instance, galantamine and selegiline consensus signatures presented
negative correlations with the differential gene expression profiles of nine and eight cancer
types, respectively, indicating its potential role in the reduced cancer risk observed in
patients with NDG disorders.

Galantamine (DB00674), an allosteric potentiating ligand of human nicotinic acetyl-
choline receptors, presented negative correlations with the differential gene expression
profiles of nine cancers, and selegiline, a monoamine oxidase inhibitor used as an an-
tiparkinsonian and anti-depressive, was negatively correlated with eight cancer types
(BRCA, CERV, CHLCA, DLBCL, FLYMPH, LIVCA, PACA, and STCA). Some authors
have suggested that acetylcholinesterase inhibitors such as galantamine could be used as
potential anti-cancer medications [55]. Several lines of evidence support this possibility;
for instance, nicotinic agonists (e.g., tobacco nicotine) are thought to modify the synthesis
of antigenic, growth, and neurotrophic factors through perturbations in signaling cascades
triggered by nicotinic acetylcholine receptors [31], and Schuller and co-workers proposed
that smoking and other factors could affect the signaling of nicotinic acetylcholine receptors
by increasing the function of homomeric receptors that stimulate cancer cells [107]. Addi-
tionally, selegiline has been shown to induce apoptosis in melanoma cell lines and acute
myeloid leukemia cell lines through the inhibition of mitochondrial respiration [108,109].

Finally, we identified a number of drugs indicated for cancer treatment with the
potential to reverse the transcriptomic changes observed in AD brain tissues. Among
them were two breast cancer drugs (exemestane and estradiol). The use of aromatase
inhibitors in BRCA treatment has recently been found to reduce the risk of AD as well as
other dementias [110], and new evidence suggests that estradiol replacement therapy could
prevent the tau protein from adopting its pathological conformation, helping to prevent
AD [111]. Additionally, epidemiological data suggest that estrogen replacement therapy
significantly decreases the risk of the onset and development of AD and PD.

5. Conclusions

In conclusion, our work provides evidence that shared alterations in biological pro-
cesses may play a role in AD, PD and cancer associations. Further research will be needed
to determine if these observations extend to other NDG disorders. The results suggest the
presence of specific instances of shared genetic variability and highlight the potential role of
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different indicated medications in comorbid associations between the two sets of disorders.
The shared transcriptomic alterations identified between NDG disorders and cancer could
suggest that the presence of biological substrates underlie the inverse comorbid associ-
ations observed between neurodegeneration and both overall and site-specific cancers
(i.e., LGCA, BRCA, PRCA), as well as the direct comorbidities observed with particular
tumor types (i.e., PD and BRNCA). Further research using animal models and organoids
could be key to providing additional insights into the role that some of the processes
identified in our work actually play in the comorbid associations between neurodegener-
ation and cancer. Although the effect sizes were low, the significant genetic correlations
observed suggest that shared genetic variability may be involved in the modulation of the
risk of both NDG disorders and cancers in specific instances (i.e., PD and SKCM). Future
investigation carried out as new GWAS data are released are needed to confirm these
findings and to complete the landscape of genetic correlations between NDG disorders
and cancer. Finally, our work supports the potential anti-cancer role of some medications
indicated for the treatment of NDG disorders, including cholinesterase inhibitors, such as
galantamine, and monoamine oxidase inhibitors, such as selegiline, among others. Future
experimental research is needed to better characterize the anti-cancer properties of these
compounds and to evaluate their inclusion as potential drug repurposing candidates.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13122990/s1. Supplementary File S1: Complete description of materials and methods,
Supplementary Tables S1–S30, and Supplementary Figures S1–S7. Supplementary File S2: Complete
differential gene expression meta-analysis results for all included disorders. Supplementary File S3:
Gene Ontology overrepresentation enrichment analyses results of genes placed at the significant
intersections. Supplementary File S4: GSEA results for all studied disorders using the Hallmark
molecular signatures. Supplementary File S5: GSEA results for all studied disorders using the
C2 canonical molecular signatures. Supplementary File S6: GSEA results for all studied disorders
using Gene Ontology molecular signatures. Supplementary File S7: List of consensus co-expression
modules significantly correlated with disease status and enrichment analysis results in biological
functions and cell-type-specific markers of their gene content for all studied disorders. Supplementary
File S8: Correlations between indicated drugs and disease signatures. Supplementary File S9: GSEA
results of the differential gene expression profiles of indicated drugs.

Author Contributions: Conceptualization, R.T.-S. and J.F.-M.; methodology, J.F.-M., C.B., and
J.S.-V.; software, J.F.-M. and J.S.-V.; writing—original draft preparation, R.T.-S., J.F.-M., and D.R.-D.;
writing—review and editing, D.R.-D., J.S.-V., R.T.-S., and J.F.-M.; supervision, B.S.-G., J.C., A.F., A.V.,
J.A.P.-B., and S.P.; funding acquisition, R.T.-S. All authors have read and agreed to the published
version of the manuscript.

Funding: The research was supported by grant number PROMETEOII/2015/021 from Generalitat
Valenciana and the national grant PI17/00719 from ISCIII-FEDER.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All raw data employed in this work were derived from the following
public repositories: Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/), Array
Express (AE, https://www.ebi.ac.uk/arrayexpress/), The Cancer Genome Atlas (TCGA, https://
www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga), DrugBank (DB,
https://go.drugbank.com/), and the Ensemble MEDIcation Indication Resource (MEDI-an, https:
//www.vumc.org/cpm/cpm-blog/medi-ensemble-medication-indication-resource-0). The last
access to all databases occurred in 1 September 2020.

Acknowledgments: We would like to thank the research participants and employees of 23andMe for
making this work possible.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/cancers13122990/s1
https://www.mdpi.com/article/10.3390/cancers13122990/s1
https://www.ncbi.nlm.nih.gov/geo/
https://www.ebi.ac.uk/arrayexpress/
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://go.drugbank.com/
https://go.drugbank.com/
https://www.vumc.org/cpm/cpm-blog/medi-ensemble-medication-indication-resource-0
https://www.vumc.org/cpm/cpm-blog/medi-ensemble-medication-indication-resource-0


Cancers 2021, 13, 2990 26 of 30

References
1. Catala-Lopez, F.; Hutton, B.; Driver, J.A.; Page, M.J.; Ridao, M.; Valderas, J.M.; Alonso-Arroyo, A.; Fores-Martos, J.; Martinez, S.;

Genova-Maleras, R.; et al. Cancer and central nervous system disorders: Protocol for an umbrella review of systematic reviews
and updated meta-analyses of observational studies. Syst. Rev. 2017, 6, 69. [CrossRef] [PubMed]

2. Catala-Lopez, F.; Suarez-Pinilla, M.; Suarez-Pinilla, P.; Valderas, J.M.; Gomez-Beneyto, M.; Martinez, S.; Balanza-Martinez, V.;
Climent, J.; Valencia, A.; McGrath, J.; et al. Inverse and direct cancer comorbidity in people with central nervous system disorders:
A meta-analysis of cancer incidence in 577,013 participants of 50 observational studies. Psychother. Psychosom. 2014, 83, 89–105.
[CrossRef]

3. Catala-Lopez, F.; Genova-Maleras, R.; Vieta, E.; Tabares-Seisdedos, R. The increasing burden of mental and neurological disorders.
Eur. Neuropsychopharmacol. 2013, 23, 1337–1339. [CrossRef] [PubMed]

4. Collaborators, G.B.D.N. Global, regional, and national burden of neurological disorders, 1990–2016: A systematic analysis for the
Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 459–480.

5. Diseases, G.B.D.C. Injuries, Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic
analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222.

6. Roe, C.M.; Behrens, M.I.; Xiong, C.; Miller, J.P.; Morris, J.C. Alzheimer disease and cancer. Neurology 2005, 64, 895–898. [CrossRef]
[PubMed]

7. Roe, C.M.; Fitzpatrick, A.L.; Xiong, C.; Sieh, W.; Kuller, L.; Miller, J.P.; Williams, M.M.; Kopan, R.; Behrens, M.I.; Morris, J.C.
Cancer linked to Alzheimer disease but not vascular dementia. Neurology 2010, 74, 106–112. [CrossRef]

8. Driver, J.A.; Beiser, A.; Au, R.; Kreger, B.E.; Splansky, G.L.; Kurth, T.; Kiel, D.P.; Lu, K.P.; Seshadri, S.; Wolf, P.A. Inverse association
between cancer and Alzheimer’s disease: Results from the Framingham Heart Study. BMJ 2012, 344, e1442. [CrossRef]

9. Musicco, M.; Adorni, F.; Di Santo, S.; Prinelli, F.; Pettenati, C.; Caltagirone, C.; Palmer, K.; Russo, A. Inverse occurrence of cancer
and Alzheimer disease: A population-based incidence study. Neurology 2013, 81, 322–328. [CrossRef]

10. Ou, S.-M.; Lee, Y.-J.; Hu, Y.-W.; Liu, C.-J.; Chen, T.-J.; Fuh, J.-L.; Wang, S.-J. Does Alzheimer’s Disease Protect against Cancers?
A Nationwide Population-Based Study. Neuroepidemiology 2013, 40, 42–49. [CrossRef]

11. Freedman, D.M.; Wu, J.; Chen, H.; A Engels, E.; Enewold, L.R.; Freedman, N.D.; Goedert, J.J.; Kuncl, R.W.; Gail, M.H.; Pfeiffer,
R.M. Associations between cancer and Parkinson’s disease in U.S. elderly adults. Int. J. Epidemiol. 2016, 45, 741–751. [CrossRef]

12. Beard, C.M.; Kokmen, E.; Sigler, C.; Smith, G.E.; Petterson, T.; O’Brien, P.C. Cause of death in Alzheimer’s disease. Ann. Epidemiol.
1996, 6, 195–200. [CrossRef]

13. Ganguli, M.; Dodge, H.H.; Shen, C.; Pandav, R.S.; DeKosky, S.T. Alzheimer disease and mortality: A 15-year epidemiological
study. Arch. Neurol. 2005, 62, 779–784. [CrossRef]

14. Chamandy, N.; Wolfson, C. Underlying cause of death in demented and non-demented elderly Canadians. Neuroepidemiology
2005, 25, 75–84. [CrossRef] [PubMed]

15. Romero, J.P.; Benito-Leon, J.; Louis, E.D.; Bermejo-Pareja, F. Alzheimer’s disease is associated with decreased risk of cancer-specific
mortality: A prospective study (NEDICES). J. Alzheimers Dis. 2014, 40, 465–473. [CrossRef] [PubMed]

16. Barbeau, A.; Joly, J.G. Parkinsonism and cancer. Union Med. Can. 1963, 92, 169–174. [PubMed]
17. Jansson, B.; Jankovic, J. Low cancer rates among patients with Parkinson’s disease. Ann. Neurol. 1985, 17, 505–509. [CrossRef]
18. Guttman, M.; Slaughter, P.M.; Theriault, M.E.; DeBoer, D.P.; Naylor, C.D. Parkinsonism in Ontario: Comorbidity associated with

hospitalization in a large cohort. Mov. Disord. 2004, 19, 49–53. [CrossRef]
19. Becker, C.; Brobert, G.P.; Johansson, S.; Jick, S.S.; Meier, C.R. Cancer risk in association with Parkinson disease: A population-based

study. Parkinsonism Relat. Disord. 2010, 16, 186–190. [CrossRef]
20. Fois, A.F.; Wotton, C.J.; Yeates, D.; Turner, M.R.; Goldacre, M.J. Cancer in patients with motor neuron disease, multiple sclerosis

and Parkinson’s disease: Record linkage studies. J. Neurol. Neurosurg. Psychiatry 2010, 81, 215–221. [CrossRef]
21. Rugbjerg, K.; Friis, S.; Lassen, C.F.; Ritz, B.; Olsen, J.H. Malignant melanoma, breast cancer and other cancers in patients with

Parkinson’s disease. Int. J. Cancer 2012, 131, 1904–1911. [CrossRef]
22. Ong, E.L.; Goldacre, R.; Goldacre, M. Differential risks of cancer types in people with Parkinson’s disease: A national record-

linkage study. Eur. J. Cancer 2014, 50, 2456–2462. [CrossRef] [PubMed]
23. Wirdefeldt, K.; Weibull, C.E.; Chen, H.; Kamel, F.; Lundholm, C.; Fang, F.; Ye, W. Parkinson’s disease and cancer: A register-based

family study. Am. J. Epidemiol. 2014, 179, 85–94. [CrossRef] [PubMed]
24. Chen, Y.-J.; Lin, G.-M.; Wu, Y.-C.; Tseng, W.-S.; Kuo, D.-J.; Chu, C.-I.; Li, Y.-H. Does Parkinsons Disease Dementia Reduce Cancer

Risk more than Alzheimers Disease Alone? Neuropsychiatry 2018, 7, 354–361. [CrossRef]
25. Hoehn, M.M.; Yahr, M.D. Parkinsonism: Onset, progression and mortality. Neurology 1967, 17, 427–442. [CrossRef] [PubMed]
26. Kessler, R.C.; Berglund, P.; Demler, O.; Jin, R.; Koretz, D.; Merikangas, K.R.; Rush, A.J.; Walters, E.E.; Wang, P.S. National

Comorbidity Survey, The epidemiology of major depressive disorder: Results from the National Comorbidity Survey Replication
(NCS-R). JAMA 2003, 289, 3095–3105. [CrossRef]

27. Gorell, J.M.; Johnson, C.C.; Rybicki, B.A. Parkinson’s disease and its comorbid disorders: An analysis of Michigan mortality data,
1970 to 1990. Neurology 1994, 44, 1865–1868. [CrossRef] [PubMed]

28. Vanacore, N.; Spila-Alegiani, S.; Raschetti, R.; Meco, G. Mortality cancer risk in parkinsonian patients: A population-based study.
Neurology 1999, 52, 395–398. [CrossRef]

http://doi.org/10.1186/s13643-017-0466-y
http://www.ncbi.nlm.nih.gov/pubmed/28376926
http://doi.org/10.1159/000356498
http://doi.org/10.1016/j.euroneuro.2013.04.001
http://www.ncbi.nlm.nih.gov/pubmed/23643344
http://doi.org/10.1212/01.WNL.0000152889.94785.51
http://www.ncbi.nlm.nih.gov/pubmed/15753432
http://doi.org/10.1212/WNL.0b013e3181c91873
http://doi.org/10.1136/bmj.e1442
http://doi.org/10.1212/WNL.0b013e31829c5ec1
http://doi.org/10.1159/000341411
http://doi.org/10.1093/ije/dyw016
http://doi.org/10.1016/1047-2797(95)00068-2
http://doi.org/10.1001/archneur.62.5.779
http://doi.org/10.1159/000086287
http://www.ncbi.nlm.nih.gov/pubmed/15947494
http://doi.org/10.3233/JAD-132048
http://www.ncbi.nlm.nih.gov/pubmed/24448786
http://www.ncbi.nlm.nih.gov/pubmed/13966497
http://doi.org/10.1002/ana.410170514
http://doi.org/10.1002/mds.10648
http://doi.org/10.1016/j.parkreldis.2009.11.005
http://doi.org/10.1136/jnnp.2009.175463
http://doi.org/10.1002/ijc.27443
http://doi.org/10.1016/j.ejca.2014.06.018
http://www.ncbi.nlm.nih.gov/pubmed/25065294
http://doi.org/10.1093/aje/kwt232
http://www.ncbi.nlm.nih.gov/pubmed/24142916
http://doi.org/10.4172/Neuropsychiatry.1000222
http://doi.org/10.1212/WNL.17.5.427
http://www.ncbi.nlm.nih.gov/pubmed/6067254
http://doi.org/10.1001/jama.289.23.3095
http://doi.org/10.1212/WNL.44.10.1865
http://www.ncbi.nlm.nih.gov/pubmed/7936238
http://doi.org/10.1212/WNL.52.2.395


Cancers 2021, 13, 2990 27 of 30

29. Shi, H.B.; Tang, B.; Liu, Y.W.; Wang, X.F.; Chen, G.J. Alzheimer disease and cancer risk: A meta-analysis. J. Cancer Res. Clin. Oncol.
2015, 141, 485–494. [CrossRef]

30. Tabares-Seisdedos, R.; Rubenstein, J.L. Chromosome 8p as a potential hub for developmental neuropsychiatric disorders:
Implications for schizophrenia, autism and cancer. Mol. Psychiatry 2009, 14, 563–589. [CrossRef]

31. Tabarés-Seisdedos, R.; Dumont, N.; Baudot, A.; Valderas, J.M.; Climent, J.; Valencia, A.; Crespo-Facorro, B.; Vieta, E.; Gómez-
Beneyto, M.; Martinez, S.; et al. No paradox, no progress: Inverse cancer comorbidity in people with other complex diseases.
Lancet Oncol. 2011, 12, 604–608. [CrossRef]

32. Tabarés-Seisdedos, R.; Rubenstein, J.L. Inverse cancer comorbidity: A serendipitous opportunity to gain insight into CNS
disorders. Nat. Rev. Neurosci. 2013, 14, 293–304. [CrossRef]

33. Freedman, D.M.; Wu, J.; Chen, H.; Kuncl, R.W.; Enewold, L.R.; Engels, E.A.; Freedman, N.D.; Pfeiffer, R.M. Associations between
cancer and Alzheimer’s disease in a U.S. Medicare population. Cancer Med. 2016, 5, 2965–2976. [CrossRef]

34. Peretz, C.; Gurel, R.; Rozani, V.; Gurevich, T.; El-Ad, B.; Tsamir, J.; Giladi, N. Cancer incidence among Parkinson’s disease patients
in a 10-yrs time-window around disease onset: A large-scale cohort study. Parkinsonism Relat. Disord. 2016, 28, 68–72. [CrossRef]

35. Jespersen, C.G.; Nørgaard, M.; Borre, M. Parkinson’s disease and risk of prostate cancer: A Danish population-based case-control
study, 1995–2010. Cancer Epidemiol. 2016, 45, 157–161. [CrossRef]

36. Ganguli, M. Cancer and Dementia: It’s Complicated. Alzheimer Dis. Assoc. Disord. 2015, 29, 177–182. [CrossRef] [PubMed]
37. Boursi, B.; Mamtani, R.; Haynes, K.; Yang, Y.-X. Parkinson’s disease and colorectal cancer risk—A nested case control study.

Cancer Epidemiol. 2016, 43, 9–14. [CrossRef] [PubMed]
38. Olsen, J.H.; Friis, S.; Frederiksen, K. Malignant Melanoma and Other Types of Cancer Preceding Parkinson Disease. Epidemiology

2006, 17, 582–587. [CrossRef] [PubMed]
39. Ajdacic-Gross, V.; Rodgers, S.; Aleksandrowicz, A.; Mütsch, M.; Steinemann, N.; von Wyl, V.; von Känel, R.; Bopp, M. Cancer

co-occurrence patterns in Parkinson’s disease and multiple sclerosis—Do they mirror immune system imbalances? Cancer
Epidemiol. 2016, 44, 167–173. [CrossRef] [PubMed]

40. Feng, D.D.; Cai, W.; Chen, X. The associations between Parkinson’s disease and cancer: The plot thickens. Transl. Neurodegener.
2015, 4, 1–14. [CrossRef]

41. Lin, P.-Y.; Chang, S.-N.; Hsiao, T.-H.; Huang, B.-T.; Lin, C.-H.; Yang, P.-C. Association Between Parkinson Disease and Risk of
Cancer in Taiwan. JAMA Oncol. 2015, 1, 633–640. [CrossRef] [PubMed]

42. Tang, C.F.; Lu, M.K.; Muo, C.H.; Tsai, C.H.; Kao, C.H. Increased risk of brain tumor in patients with Parkinson’s disease:
A nationwide cohort study in Taiwan. Acta Neurol. Scand. 2016, 134, 148–153. [CrossRef] [PubMed]

43. Constantinescu, R.; Elm, J.; Auinger, P.; Sharma, S.; Augustine, E.F.; Khadim, L.; Kieburtz, K. Investigators, Malignant melanoma
in early-treated Parkinson’s disease: The NET-PD trial. Mov. Disord. 2014, 29, 263–265. [CrossRef] [PubMed]

44. Kareus, S.A.; Figueroa, K.P.; Cannon-Albright, L.A.; Pulst, S.M. Shared predispositions of parkinsonism and cancer: A population-
based pedigree-linked study. Arch. Neurol. 2012, 69, 1572–1577. [CrossRef]

45. Tacik, P.; Curry, S.; Fujioka, S.; Strongosky, A.; Uitti, R.J.; van Gerpen, J.A.; Diehl, N.N.; Heckman, M.G.; Wszolek, Z.K. Cancer in
Parkinson’s disease. Parkinsonism Relat. Disord. 2016, 31, 28–33. [CrossRef]

46. Stoyanov, A.; Pamphlett, R. Is the risk of motor neuron disease increased or decreased after cancer? An. Australian case-control
study. PLoS ONE 2014, 9, e103572. [CrossRef]

47. Ahn, H.K.; Bae, J.H.; Hwang, I.C. Risk of cancer among patients with depressive disorder: A meta-analysis and implications.
Psycho-Oncology 2016, 25, 1393–1399. [CrossRef]

48. Heflin, M.T.; Oddone, E.Z.; Pieper, C.F.; Burchett, B.M.; Cohen, H.J. The Effect of Comorbid Illness on Receipt of Cancer Screening
by Older People. J. Am. Geriatr. Soc. 2002, 50, 1651–1658. [CrossRef]

49. Catts, V.S.; Catts, S.V.; O’Toole, B.I.; Frost, A.D.J. Cancer incidence in patients with schizophrenia and their first-degree relatives—A
meta-analysis. Acta Psychiatr. Scand. 2008, 117, 323–336. [CrossRef]

50. Kilian, R.; Becker, T.; Krüger, K.; Schmid, S.; Frasch, K. Health behavior in psychiatric in-patients compared with a German
general population sample. Acta Psychiatr. Scand. 2006, 114, 242–248. [CrossRef]

51. Sanchez-Valle, J.; Tejero, H.; Ibanez, K.; Portero, J.L.; Krallinger, M.; Al-Shahrour, F.; Tabares-Seisdedos, R.; Baudot, A.; Valencia, A.
A molecular hypothesis to explain direct and inverse co-morbidities between Alzheimer’s Disease, Glioblastoma and Lung cancer.
Sci. Rep. 2017, 7, 4474. [CrossRef] [PubMed]

52. Ibáñez, K.; Boullosa, C.; Tabares-Seisdedos, R.; Baudot, A.; Valencia, A. Molecular Evidence for the Inverse Comorbidity between
Central Nervous System Disorders and Cancers Detected by Transcriptomic Meta-analyses. PLoS Genet. 2014, 10, e1004173.
[CrossRef] [PubMed]

53. Feng, Y.-C.A.; Cho, K.; Lindstrom, S.; Kraft, P.; Cormack, J.; Liang, L.; Driver, J.A.; Discovery, B.; ELLIPSE. Transdisciplinary
Research in Cancer of the Lung (TRICL) Investigating the genetic relationship between Alzheimer’s disease and cancer using
GWAS summary statistics. Qual. Life Res. 2017, 136, 1341–1351.

54. Fiala, K.H.; Whetteckey, J.; Manyam, B.V. Malignant melanoma and levodopa in Parkinson’s disease: Causality or coincidence?
Parkinsonism Relat. Disord. 2003, 9, 321–327. [CrossRef]

55. Lazarevic-Pasti, T.; Leskovac, A.; Momic, T.; Petrovic, S.; Vasic, V. Modulators of Acetylcholinesterase Activity: From Alzheimer’s
Disease to Anti-Cancer Drugs. Curr. Med. Chem. 2017, 24, 3283–3309. [CrossRef]

http://doi.org/10.1007/s00432-014-1773-5
http://doi.org/10.1038/mp.2009.2
http://doi.org/10.1016/S1470-2045(11)70041-9
http://doi.org/10.1038/nrn3464
http://doi.org/10.1002/cam4.850
http://doi.org/10.1016/j.parkreldis.2016.04.028
http://doi.org/10.1016/j.canep.2016.11.002
http://doi.org/10.1097/WAD.0000000000000086
http://www.ncbi.nlm.nih.gov/pubmed/25710132
http://doi.org/10.1016/j.canep.2016.05.007
http://www.ncbi.nlm.nih.gov/pubmed/27232063
http://doi.org/10.1097/01.ede.0000229445.90471.5e
http://www.ncbi.nlm.nih.gov/pubmed/16837822
http://doi.org/10.1016/j.canep.2016.08.018
http://www.ncbi.nlm.nih.gov/pubmed/27612279
http://doi.org/10.1186/s40035-015-0043-z
http://doi.org/10.1001/jamaoncol.2015.1752
http://www.ncbi.nlm.nih.gov/pubmed/26181771
http://doi.org/10.1111/ane.12524
http://www.ncbi.nlm.nih.gov/pubmed/26508469
http://doi.org/10.1002/mds.25734
http://www.ncbi.nlm.nih.gov/pubmed/24323565
http://doi.org/10.1001/archneurol.2012.2261
http://doi.org/10.1016/j.parkreldis.2016.06.014
http://doi.org/10.1371/journal.pone.0103572
http://doi.org/10.1002/pon.4084
http://doi.org/10.1046/j.1532-5415.2002.50456.x
http://doi.org/10.1111/j.1600-0447.2008.01163.x
http://doi.org/10.1111/j.1600-0447.2006.00850.x
http://doi.org/10.1038/s41598-017-04400-6
http://www.ncbi.nlm.nih.gov/pubmed/28667284
http://doi.org/10.1371/journal.pgen.1004173
http://www.ncbi.nlm.nih.gov/pubmed/24586201
http://doi.org/10.1016/S1353-8020(03)00040-3
http://doi.org/10.2174/0929867324666170705123509


Cancers 2021, 13, 2990 28 of 30

56. Moran, L.B.; Graeber, M.B. Towards a pathway definition of Parkinson’s disease: A complex disorder with links to cancer,
diabetes and inflammation. Neurogenetics 2008, 9, 1–13. [CrossRef]

57. Menche, J.; Sharma, A.; Kitsak, M.; Ghiassian, S.D.; Vidal, M.; Loscalzo, J.; Barabási, A.-L. Uncovering disease-disease relationships
through the incomplete interactome. Science 2015, 347, 1257601. [CrossRef]

58. Bulik-Sullivan, B.; Finucane, H.K.; Anttila, V.; Gusev, A.; Day, F.R.; Loh, P.R.; ReproGen Consortium; Psychiatric Genomics
Consortium; Genetic Consortium for Anorexia Nervosa of the Wellcome Trust Case Control Consortium 3; Duncan, L.; et al. An
atlas of genetic correlations across human diseases and traits. Nat. Genet. 2015, 47, 1236–1241. [CrossRef]

59. Wang, X.; Kang, D.D.; Shen, K.; Song, C.; Lu, S.; Chang, L.-C.; Liao, S.G.; Huo, Z.; Tang, S.; Ding, Y.; et al. An R package
suite for microarray meta-analysis in quality control, differentially expressed gene analysis and pathway enrichment detection.
Bioinformatics 2012, 28, 2534–2536. [CrossRef]

60. Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9, 1–13.
[CrossRef]

61. Lambert, J.C.; Ibrahim-Verbaas, C.A.; Harold, D.; Naj, A.C.; Sims, R.; Bellenguez, C.; DeStafano, A.L.; Bis, J.C.; Beecham, G.W.;
Grenier-Boley, B.; et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat. Genet.
2013, 45, 1452–1458. [CrossRef]

62. Moreno-Grau, S.; de Rojas, I.; Hernandez, I.; Quintela, I.; Montrreal, L.; Alegret, M.; Hernandez-Olasagarre, B.; Madrid,
L.; Gonzalez-Perez, A.; Maronas, O.; et al. Genome-wide association analysis of dementia and its clinical endophenotypes
reveal novel loci associated with Alzheimer’s disease and three causality networks: The GR@ACE project. Alzheimers Dement.
2019, 15, 1333–1347. [CrossRef]

63. Jansen, I.E.; Savage, J.E.; Watanabe, K.; Bryois, J.; Williams, D.M.; Steinberg, S.; Sealock, J.; Karlsson, I.K.; Hägg, S.; Athanasiu, L.;
et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat. Genet.
2019, 51, 404–413. [CrossRef]

64. Nalls, M.A.; Blauwendraat, C.; Vallerga, C.L.; Heilbron, K.; Bandres-Ciga, S.; Chang, D.; Tan, M.; Kia, D.A.; Noyce, A.J.; Xue, A.;
et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: A meta-analysis of genome-wide
association studies. Lancet Neurol. 2019, 18, 1091–1102. [CrossRef]

65. Chang, D.; Nalls, M.A.; Hallgrimsdottir, I.B.; Hunkapiller, J.; van der Brug, M.; Cai, F.; Kerchner, G.A.; Ayalon, G.; Bingol, B.;
Sheng, M.; et al. A meta-analysis of genome-wide association studies identifies 17 new Parkinson’s disease risk loci. Nat. Genet.
2017, 49, 1511–1516. [CrossRef] [PubMed]

66. Schumacher, F.R.; Al Olama, A.A.; Berndt, S.I.; Benlloch, S.; Ahmed, M.; Saunders, E.J.; Dadaev, T.; Leongamornlert, D.;
Anokian, E.; Cieza-Borrella, C.; et al. Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility
loci. Nat. Genet. 2018, 50, 928–936. [CrossRef]

67. Zhang, H.; Ahearn, T.U.; Lecarpentier, J.; Barnes, D.; Beesley, J.; Qi, G.; Jiang, X.; O’Mara, T.A.; Zhao, N.; Bolla, M.K.; et al.
Genome-wide association study identifies 32 novel breast cancer susceptibility loci from overall and subtype-specific analyses.
Nat. Genet. 2020, 52, 572–581. [CrossRef]

68. Michailidou, K.; Collaborators, N.; Lindström, S.; Dennis, J.; Beesley, J.; Hui, S.; Kar, S.; Lemaçon, A.; Soucy, P.; Glubb, D.; et al.
Association analysis identifies 65 new breast cancer risk loci. Nature 2017, 551, 92–94. [CrossRef]

69. Phelan, C.M.; AOCS Study Group; Kuchenbaecker, K.B.; Tyrer, J.P.; Kar, S.P.; Lawrenson, K.; Winham, S.; Dennis, J.; Pirie, A.;
Riggan, M.J.; et al. Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer. Nat. Genet.
2017, 49, 680–691. [CrossRef]

70. Bishop, D.T.; Demenais, F.; Iles, M.M.; Harland, M.; Taylor, J.C.; Corda, E.; Randerson-Moor, J.; Aitken, J.; Avril, M.-F.; Azizi,
E.; et al. Genome-wide association study identifies three loci associated with melanoma risk. Nat. Genet. 2009, 41, 920–925.
[CrossRef]

71. Hanahan, D.; Weinberg, R.A. The Hallmarks of Cancer. Cell 2000, 100, 57–70. [CrossRef]
72. Moh, C.; Kubiak, J.Z.; Bajic, V.P.; Zhu, X.; Smith, M.A.; Lee, H.G. Cell cycle deregulation in the neurons of Alzheimer’s disease.

Results Probl. Cell Differ. 2011, 53, 565–576.
73. Esteras, N.; Alquezar, C.; Bartolomé, F.; De La Encarnación, A.; Bermejo-Pareja, F.; Molina, J.A.; Martín-Requero, Á. G1/S Cell

Cycle Checkpoint Dysfunction in Lymphoblasts from Sporadic Parkinson’s Disease Patients. Mol. Neurobiol. 2015, 52, 386–398.
[CrossRef]

74. Zhu, X.; Raina, A.K.; Perry, G.; Smith, M.A. Alzheimer’s disease: The two-hit hypothesis. Lancet Neurol. 2004, 3, 219–226.
[CrossRef]

75. Gabay, M.; Li, Y.; Felsher, D.W. MYC Activation Is a Hallmark of Cancer Initiation and Maintenance. Cold Spring Harb.
Perspect. Med. 2014, 4, a014241. [CrossRef]

76. Ignácio, Z.M.; Réus, G.Z.; Arent, C.O.; Abelaira, H.M.; Pitcher, M.R.; Quevedo, J. New perspectives on the involvement of mTOR
in depression as well as in the action of antidepressant drugs. Br. J. Clin. Pharmacol. 2016, 82, 1280–1290. [CrossRef]

77. Gabbouj, S.; Ryhänen, S.; Marttinen, M.; Wittrahm, R.; Takalo, M.; Kemppainen, S.; Martiskainen, H.; Tanila, H.; Haapasalo,
A.; Hiltunen, M.; et al. Altered Insulin Signaling in Alzheimer’s Disease Brain—Special Emphasis on PI3K-Akt Pathway.
Front. Neurosci. 2019, 13, 629. [CrossRef] [PubMed]

http://doi.org/10.1007/s10048-007-0116-y
http://doi.org/10.1126/science.1257601
http://doi.org/10.1038/ng.3406
http://doi.org/10.1093/bioinformatics/bts485
http://doi.org/10.1186/1471-2105-9-559
http://doi.org/10.1038/ng.2802
http://doi.org/10.1016/j.jalz.2019.06.4950
http://doi.org/10.1038/s41588-018-0311-9
http://doi.org/10.1016/S1474-4422(19)30320-5
http://doi.org/10.1038/ng.3955
http://www.ncbi.nlm.nih.gov/pubmed/28892059
http://doi.org/10.1038/s41588-018-0142-8
http://doi.org/10.1038/s41588-020-0609-2
http://doi.org/10.1038/nature24284
http://doi.org/10.1038/ng.3826
http://doi.org/10.1038/ng.411
http://doi.org/10.1016/S0092-8674(00)81683-9
http://doi.org/10.1007/s12035-014-8870-y
http://doi.org/10.1016/S1474-4422(04)00707-0
http://doi.org/10.1101/cshperspect.a014241
http://doi.org/10.1111/bcp.12845
http://doi.org/10.3389/fnins.2019.00629
http://www.ncbi.nlm.nih.gov/pubmed/31275108


Cancers 2021, 13, 2990 29 of 30

78. Moloney, A.M.; Griffin, R.J.; Timmons, S.; O’Connor, R.; Ravid, R.; O’Neill, C. Defects in IGF-1 receptor, insulin receptor and
IRS-1/2 in Alzheimer’s disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiol. Aging 2010, 31, 224–243.
[CrossRef]

79. Steen, E.; Terry, B.M.; Rivera, E.J.; Cannon, J.L.; Neely, T.R.; Tavares, R.; Xu, X.J.; Wands, J.R.; de la Monte, S.M. Impaired
insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease—Is this type 3 diabetes?
J. Alzheimers Dis. 2005, 7, 63–80. [CrossRef]

80. Talbot, K.; Wang, H.Y.; Kazi, H.; Han, L.Y.; Bakshi, K.P.; Stucky, A.; Fuino, R.L.; Kawaguchi, K.R.; Samoyedny, A.J.; Wilson,
R.S.; et al. Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1
dysregulation, and cognitive decline. J. Clin. Investig. 2012, 122, 1316–1338. [CrossRef]

81. Tokutake, T.; Kasuga, K.; Yajima, R.; Sekine, Y.; Tezuka, T.; Nishizawa, M.; Ikeuchi, T. Hyperphosphorylation of Tau induced
by naturally secreted amyloid-beta at nanomolar concentrations is modulated by insulin-dependent Akt-GSK3beta signaling
pathway. J. Biol. Chem. 2012, 287, 35222–35233. [CrossRef]

82. Luo, S.; Kang, S.S.; Wang, Z.H.; Liu, X.; Day, J.X.; Wu, Z.; Peng, J.; Xiang, D.; Springer, W.; Ye, K. Akt Phosphorylates NQO1
and Triggers its Degradation, Abolishing Its Antioxidative Activities in Parkinson’s Disease. J. Neurosci. 2019, 39, 7291–7305.
[CrossRef]

83. Xu, F.; Na, L.; Li, Y.; Chen, L. Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours.
Cell Biosci. 2020, 10, 54. [CrossRef] [PubMed]

84. Perez Ortiz, J.M.; Swerdlow, R.H. Mitochondrial dysfunction in Alzheimer’s disease: Role in pathogenesis and novel therapeutic
opportunities. Br. J. Pharmacol. 2019, 176, 3489–3507. [CrossRef] [PubMed]

85. Terada, T.; Obi, T.; Bunai, T.; Matsudaira, T.; Yoshikawa, E.; Ando, I.; Futatsubashi, M.; Tsukada, H.; Ouchi, Y. In vivo mitochon-
drial and glycolytic impairments in patients with Alzheimer disease. Neurology 2020, 94, e1592–e1604. [CrossRef]

86. Wang, G.; Pan, J.; Chen, S.D. Kinases and kinase signaling pathways: Potential therapeutic targets in Parkinson’s disease.
Prog. Neurobiol. 2012, 98, 207–221. [CrossRef]

87. Luengo, A.; Li, Z.; Gui, D.Y.; Sullivan, L.; Zagorulya, M.; Do, B.T.; Ferreira, R.; Naamati, A.; Ali, A.; Lewis, C.A.; et al. Increased
demand for NAD+ relative to ATP drives aerobic glycolysis. Mol. Cell 2021, 81, 691–707. [CrossRef]

88. Lee, J.; Chang, J.Y.; Kang, Y.E.; Yi, S.; Lee, M.H.; Joung, K.H.; Kim, K.S.; Shong, M. Mitochondrial Energy Metabolism and Thyroid
Cancers. Endocrinol. Metab. 2015, 30, 117–123. [CrossRef]

89. Zimmermann, F.A.; Neureiter, D.; Sperl, W.; Mayr, J.A.; Kofler, B. Alterations of Oxidative Phosphorylation Complexes in
Papillary Thyroid Carcinoma. Cells 2018, 7, 40. [CrossRef]

90. Mussazhanova, Z.; Shimamura, M.; Kurashige, T.; Ito, M.; Nakashima, M.; Nagayama, Y. Causative role for defective expression
of mitochondria-eating protein in accumulation of mitochondria in thyroid oncocytic cell tumors. Cancer Sci. 2020, 111, 2814–2823.
[CrossRef] [PubMed]

91. Linehan, W.M.; Schmidt, L.S.; Crooks, D.R.; Wei, D.; Srinivasan, R.; Lang, M.; Ricketts, C.J. The Metabolic Basis of Kidney Cancer.
Cancer Discov. 2019, 9, 1006–1021. [CrossRef] [PubMed]

92. Aiderus, A.; Black, M.A.; Dunbier, A.K. Fatty acid oxidation is associated with proliferation and prognosis in breast and other
cancers. BMC Cancer 2018, 18, 1–15. [CrossRef] [PubMed]

93. Schönfeld, P.; Reiser, G. Brain energy metabolism spurns fatty acids as fuel due to their inherent mitotoxicity and potential
capacity to unleash neurodegeneration. Neurochem. Int. 2017, 109, 68–77. [CrossRef]

94. Ueno, S.I.; Saiki, S.; Fujimaki, M.; Takeshige-Amano, H.; Hatano, T.; Oyama, G.; Ishikawa, K.I.; Yamaguchi, A.; Nojiri, S.;
Akamatsu, W.; et al. Zonisamide Administration Improves Fatty Acid beta-Oxidation in Parkinson’s Disease. Cells 2018, 8, 14.
[CrossRef]

95. Saiki, S.; Hatano, T.; Fujimaki, M.; Ishikawa, K.I.; Mori, A.; Oji, Y.; Okuzumi, A.; Fukuhara, T.; Koinuma, T.; Imamichi, Y.; et al.
Decreased long-chain acylcarnitines from insufficient beta-oxidation as potential early diagnostic markers for Parkinson’s disease.
Sci. Rep. 2017, 7, 7328. [CrossRef]

96. Qi, G.; Mi, Y.; Shi, X.; Gu, H.; Brinton, R.D.; Yin, F. ApoE4 Impairs Neuron-Astrocyte Coupling of Fatty Acid Metabolism. Cell Rep.
2021, 34, 108572. [CrossRef]

97. Szybinska, A.; Lesniak, W. P53 Dysfunction in Neurodegenerative Diseases—The Cause or Effect of Pathological Changes?
Aging Dis. 2017, 8, 506–518. [CrossRef]

98. Seo, J.; Park, M. Molecular crosstalk between cancer and neurodegenerative diseases. Cell Mol. Life Sci. 2020, 77, 2659–2680.
[CrossRef]

99. Cenini, G.; Sultana, R.; Memo, M.; Butterfield, D.A. Elevated levels of pro-apoptotic p53 and its oxidative modification by the
lipid peroxidation product, HNE, in brain from subjects with amnestic mild cognitive impairment and Alzheimer’s disease.
J. Cell Mol. Med. 2008, 12, 987–994. [CrossRef]

100. Kitamura, Y.; Shimohama, S.; Kamoshima, W.; Matsuoka, Y.; Nomura, Y.; Taniguchi, T. Changes of p53 in the brains of patients
with Alzheimer’s disease. Biochem. Biophys. Res. Commun. 1997, 232, 418–421. [CrossRef]

101. Ohyagi, Y.; Asahara, H.; Chui, D.H.; Tsuruta, Y.; Sakae, N.; Miyoshi, K.; Yamada, T.; Kikuchi, H.; Taniwaki, T.; Murai, H.; et al.
Intracellular Abeta42 activates p53 promoter: A pathway to neurodegeneration in Alzheimer’s disease. FASEB J. 2005, 19, 255–257.
[CrossRef]

http://doi.org/10.1016/j.neurobiolaging.2008.04.002
http://doi.org/10.3233/JAD-2005-7107
http://doi.org/10.1172/JCI59903
http://doi.org/10.1074/jbc.M112.348300
http://doi.org/10.1523/JNEUROSCI.0625-19.2019
http://doi.org/10.1186/s13578-020-00416-0
http://www.ncbi.nlm.nih.gov/pubmed/32266056
http://doi.org/10.1111/bph.14585
http://www.ncbi.nlm.nih.gov/pubmed/30675901
http://doi.org/10.1212/WNL.0000000000009249
http://doi.org/10.1016/j.pneurobio.2012.06.003
http://doi.org/10.1016/j.molcel.2020.12.012
http://doi.org/10.3803/EnM.2015.30.2.117
http://doi.org/10.3390/cells7050040
http://doi.org/10.1111/cas.14501
http://www.ncbi.nlm.nih.gov/pubmed/32458504
http://doi.org/10.1158/2159-8290.CD-18-1354
http://www.ncbi.nlm.nih.gov/pubmed/31088840
http://doi.org/10.1186/s12885-018-4626-9
http://www.ncbi.nlm.nih.gov/pubmed/30092766
http://doi.org/10.1016/j.neuint.2017.03.018
http://doi.org/10.3390/cells8010014
http://doi.org/10.1038/s41598-017-06767-y
http://doi.org/10.1016/j.celrep.2020.108572
http://doi.org/10.14336/AD.2016.1120
http://doi.org/10.1007/s00018-019-03428-3
http://doi.org/10.1111/j.1582-4934.2008.00163.x
http://doi.org/10.1006/bbrc.1997.6301
http://doi.org/10.1096/fj.04-2637fje


Cancers 2021, 13, 2990 30 of 30

102. Mogi, M.; Kondo, T.; Mizuno, Y.; Nagatsu, T. p53 protein, interferon-gamma, and NF-kappaB levels are elevated in the
parkinsonian brain. Neurosci. Lett. 2007, 414, 94–97. [CrossRef]

103. Herrero, A.B.; Rojas, E.A.; Misiewicz-Krzeminska, I.; Krzeminski, P.; Gutierrez, N.C. Molecular Mechanisms of p53 Deregulation
in Cancer: An Overview in Multiple Myeloma. Int. J. Mol. Sci. 2016, 17, 2003. [CrossRef]

104. Houck, A.L.; Seddighi, S.; Driver, J.A. At the Crossroads Between Neurodegeneration and Cancer: A Review of Overlapping
Biology and Its Implications. Curr. Aging Sci. 2018, 11, 77–89. [CrossRef] [PubMed]

105. Doty, K.R.; Guillot-Sestier, M.-V.; Town, T. The role of the immune system in neurodegenerative disorders: Adaptive or
maladaptive? Brain Res. 2015, 1617, 155–173. [CrossRef] [PubMed]

106. Pandya, P.H.; Murray, M.E.; Pollok, K.E.; Renbarger, J.L. The Immune System in Cancer Pathogenesis: Potential Therapeutic
Approaches. J. Immunol. Res. 2016, 2016, 1–13. [CrossRef]

107. Schuller, H.M. Is cancer triggered by altered signalling of nicotinic acetylcholine receptors? Nat. Rev. Cancer 2009, 9, 195–205.
[CrossRef] [PubMed]

108. Szende, B.; Magyar, K.; Szegedi, Z. Apoptotic and antiapoptotic effect of (-)deprenyl and (-)-desmethyl-deprenyl on human cell
lines. Neurobiology 2000, 8, 249–255. [PubMed]

109. Ryu, I.; Ryu, M.; Han, J.; Kim, S.; Lee, M.; Ju, X.; Yoo, B.; Lee, Y.; Jang, Y.; Song, I.; et al. L-Deprenyl exerts cytotoxicity towards
acute myeloid leukemia through inhibition of mitochondrial respiration. Oncol. Rep. 2018, 40, 3869–3878. [CrossRef]

110. Branigan, G.L.; Soto, M.; Neumayer, L.; Rodgers, K.; Brinton, R.D. Association between Hormone-Modulating Breast Cancer
Therapies and Incidence of Neurodegenerative Outcomes for Women With Breast Cancer. JAMA Netw. Open 2020, 3, e201541.
[CrossRef]

111. Guglielmotto, M.; Manassero, G.; Vasciaveo, V.; Venezia, M.; Tabaton, M.; Tamagno, E. Estrogens Inhibit Amyloid-beta-Mediated
Paired Helical Filament-Like Conformation of Tau Through Antioxidant Activity and miRNA 218 Regulation in hTau Mice.
J. Alzheimers Dis. 2020, 77, 1339–1351. [CrossRef] [PubMed]

http://doi.org/10.1016/j.neulet.2006.12.003
http://doi.org/10.3390/ijms17122003
http://doi.org/10.2174/1874609811666180223154436
http://www.ncbi.nlm.nih.gov/pubmed/29552989
http://doi.org/10.1016/j.brainres.2014.09.008
http://www.ncbi.nlm.nih.gov/pubmed/25218556
http://doi.org/10.1155/2016/4273943
http://doi.org/10.1038/nrc2590
http://www.ncbi.nlm.nih.gov/pubmed/19194381
http://www.ncbi.nlm.nih.gov/pubmed/11225516
http://doi.org/10.3892/or.2018.6753
http://doi.org/10.1001/jamanetworkopen.2020.1541
http://doi.org/10.3233/JAD-200707
http://www.ncbi.nlm.nih.gov/pubmed/32804095

	Introduction 
	Materials and Methods 
	Differential Gene Expression Meta-Analyses, Gene Set Enrichment Analyses, Weighted Co-Expression Network Analyses, and Measures of Transcriptomic Association between NDG Disorders and Cancer 
	Human Interactome-Based Overlaps and Cross-Trait LD Score Regression Analyses 
	Identification of Drugs Indicated for the Treatment of AD, PD, and Cancer as Potential Modulators of their Comorbidities through LINCS L1000 Analysis 

	Results 
	Results of Differential Gene Expression Meta-Analyses 
	Transcriptomic Associations between Neurodegenerative Disorders and Cancers 
	Transcriptomic Associations between AD and Cancer 
	Transcriptomic Associations between PD and Cancer 

	Validation of the Intersection Analyses Using an Alternative Set of Cancer Data 
	Pathways and Consensus Co-Expression Modules Deregulated in Both Neurodegenerative Disorders and Cancer 
	Gene Set Enrichment Analyses (GSEA) Results 
	Consensus Weighted Gene Co-Expression Network Analysis (WGCNA) Analysis Results 

	Interactome-Based Overlaps and Genetic Correlation Analysis Results 
	Interactome-Based Overlap Analyses Results 
	Cross-Trait LD Score Analyses Results 

	Transcriptomic Effects of Drugs Indicated for the Treatment of Neurodegenerative Disorders and Cancers 

	Discussion 
	Conclusions 
	References

