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Abstract: The variability of methicillin-resistant Staphylococcus aureus (MRSA), its rapid adaptive
response against environmental changes, and its continued acquisition of antibiotic resistance deter-
minants have made it commonplace in hospitals, where it causes the problem of multidrug resistance.
In this study, we used molecular topology to develop several discriminant equations capable of
classifying compounds according to their anti-MRSA activity. Topological indices were used as
structural descriptors and their relationship with anti-MRSA activity was determined by applying
linear discriminant analysis (LDA) on a group of quinolones and quinolone-like compounds. Four
extra equations were constructed, named DFMRSA1, DFMRSA2, DFMRSA3 and DFMRSA4 (DFMRSA was
built in a previous study), all with good statistical parameters, such as Fisher–Snedecor F (>68 in all
cases), Wilk’s lambda (<0.13 in all cases), and percentage of correct classification (>94% in all cases),
which allows a reliable extrapolation prediction of antibacterial activity in any organic compound.
The results obtained clearly reveal the high efficiency of combining molecular topology with LDA for
the prediction of anti-MRSA activity.

Keywords: antibacterial; antibiotics; anti-MRSA; computational chemistry; linear discriminant
analysis; molecular topology; molecular connectivity; topological indices; quinolones; QSAR

1. Introduction

Staphylococcus aureus is a Gram-positive bacterium that causes important infections in
humans. The first strain of methicillin-resistant Staphylococcus aureus (MRSA) was identified
in 1960, almost immediately after the introduction of methicillin in therapeutics [1,2].

Antibiotic resistance occurs when the bacteria that cause the infection survive after
exposure to a drug that, under normal conditions, would kill or inhibit its growth [3]. As a
result, these surviving strains multiply and spread, due to the lack of competition from
other strains sensitive to the same drug. This has led to the emergence of what we call
“superbugs”, such as MRSA, which are difficult to treat with available antibiotics [4].

MRSA is an important cause of infections, both of community and hospital origin,
and represents a major clinical and public health problem due to the limited treatment
options (partly due to its worldwide spread), well-established resistance to vancomycin
(formerly the antibiotic of choice for MRSA infections), and high number of therapeutic
failures [5,6]. In fact, the World Health Organization (WHO) has placed MRSA as a
priority 2 (high-priority) pathogen on its list of priority pathogens for the development
of new antibiotics [7]. Furthermore, according to the latest antibacterial resistance report
developed by the European Center for Disease Prevention and Control (ECDC), MRSA
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strains are present in virtually the entire European continent, being one of the most common
causes of nosocomial infections [8].

There are several factors that contribute to the success of this bacterium as a pathogen,
among which are its ability to persist as a commensal, its frequent resistance to multiple
antibacterials, and its variety of virulence determinants [9]. These bacteria have a great
capacity to survive in adverse environments, which, after entering the hospital environment
through patients, visitors, and/or healthcare workers, spread to other patients, mainly
through the hands of healthcare personnel [10]. However, although initially related to the
hospital setting, MRSA infections are common at the community level as well [11].

Its morbidity is variable and depends on factors specific to the host, the type of
infection, and the precociousness of treatment. Although most of these infections affect the
skin and soft tissues, these organisms are also capable of causing devastating diseases in
certain patients. These infections include necrotizing fasciitis, septic thrombophlebitis of the
extremities, Waterhouse–Frederickson syndrome, and rapidly progressive pneumonia [12].

Hence, MRSA can be regarded as a serious health problem worldwide. The current
interest in the study of this pathogen is due to its high frequency and because it repre-
sents one of the main causes of nosocomial infection outbreaks around the world. The
growing increase in resistant strains, which is now spreading faster in comparison to the
development of new molecules, makes it necessary to investigate new antibacterial agents
to expand the current therapeutic arsenal. In addition, WHO has repeatedly noted that
current investment in the development of new antimicrobial compounds is insufficient [13].

Empirically establishing rules or filters for drugs, such as Lipinski’s rule of five,
will form the knowledge base to produce libraries tailored to drug discovery, which will
require high-throughput identification of novel compounds within a large background of
known substances [14].

This could be achieved by means of a rational drug design approach such as Quan-
titative Structure–Activity Relationships (QSAR). Within this field is molecular connec-
tivity or molecular topology (MT), an effective and low-cost method capable of predict-
ing molecular properties in new compounds, without the need to obtain or synthesize
them previously [15].

By combining MT with pattern recognition techniques such as linear discriminant
analysis (LDA) [16], neural networks [17], multilinear regression [18], factor analysis [19], or
principal component analysis [20], and appropriately selecting the molecular descriptors to
use, we can build mathematical–topological equations able to identify almost any molecular
property. This makes MT a powerful tool for the search and design of new compounds with
antibacterial activities, but it is not the only one in the field. In fact, a variety of linear and
nonlinear statistical methods are used to develop models based on 2D or 3D representations
of molecules [21]; 1D–3D-QSAR methods pose a series of limitations that have led to the
development of higher dimensional QSAR models (4D–7D). Multi-dimensional models,
although technically more complex, have been developed with the objective of finding the
true binding mode [22].

In this context, this study aims to obtain mathematical–topological equations capable of
predicting anti-MRSA activity. By combining MT and LDA, we use topological indices (TI) [23]
to classify a compound as anti-MRSA or non-anti-MRSA. To do this, we simply select a
group of compounds with antibacterial activity and another one lacking it.

We have selected structures from quinolones and quinolone-like compounds to build
these equations (see Figure 1). Quinolones are a well-known and extensive group that
will allow us to collect numerous data, leading to greater precision of the predictive
equations [24]. In addition, their pharmacokinetic profile, as well as their high antibacterial
activity and broad spectrum of action, makes them very versatile [25]. Furthermore,
compared with the resistance levels of other classes of antibacterial, those of quinolones
are relatively low [26].
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Figure 1. Core structures of the compounds used for the realization of the equations.

The discriminant functions obtained can be applied to quinolones and quinolone-
like compounds not used in the study as well as in molecules that have no structural
relationship, since they will select those that have a similar mathematical–topological
relationship [27]. Since topology is the part of the mathematical analysis that studies the
positions and interconnections of elements within a set, when applied to molecules, it
gives rise to the discipline called MT, which analyzes the positions and interconnections
of atoms within a molecule, giving structural information regarding length, ramifications,
connection between atoms, shape, instaurations, etc.—in short, to the topological assembly
or connectivity of the molecule [28]. Structurally related compounds will usually have
similar values for their topological indices, but this can also occur in compounds with
non-related structures.

The effectiveness of the topological method has also been proven, having been suc-
cessfully applied to different therapeutic groups, such as anti-HIV [29], antihistaminic [30],
antitumor [31], anti-Alzheimer [32], and antibacterial agents [33].

2. Results

To obtain the discriminant functions (DF), we used the data from a previous study [34],
in which the statistical program BMDP randomly formed two training groups with
26 active and 30 inactive compounds and two test groups with seven active and six inactive
compounds. These test groups allowed evaluation of the quality of the selected functions.

The DFs formed in this study along with their statistical parameters are shown in
Equations (1)–(4), while their corresponding classification matrices are shown in Tables 1–4:

DFMRSA1 = 18.11717 − 3.16799S-CH3 + 8.24096S=C< − 6.48843SaSa + 1.91821SCl
N = 43 λ = 0.1223510 F = 68.145

(1)

DFMRSA2 = 62.90981 − 15.34013S>CH- + 14.60322S=C< + 3.06032SCl − 220.709563JV

N = 43 λ = 0.0865409 F = 100.275
(2)

DFMRSA3 = 45.25057 − 3.70040S>N- + 3.76891SCl − 400.807003J + 3.60644PR2
N = 43 λ = 0.0894309 F = 96.727

(3)

DFMRSA4 = 70.32771 + 84.921483χch − 16.26568S-CH= + 3.69496SCl − 394.471993J
N = 43 λ = 0.0628582 F = 141.634

(4)

Table 1. Classification matrix for DFMRSA1.

Group Active Inactive % Success

Training active 18 1 94.7
Training inactive 0 24 100

Test active 7 0 100
Test inactive 0 6 100

JK 1 Training active 18 1 94.7
JK 1 Training inactive 0 24 100

1 Jack-Knife method.
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Table 2. Classification matrix for DFMRSA2.

Group Active Inactive % Success

Training active 19 0 100
Training inactive 0 24 100

Test active 7 0 100
Test inactive 0 6 100

JK Training active 18 1 94.7
JK Training inactive 0 24 100

Table 3. Classification matrix for DFMRSA3.

Group Active Inactive % Success

Training active 19 0 100
Training inactive 0 24 100

Test active 7 0 100
Test inactive 0 6 100

JK Training active 19 0 100
JK Training inactive 0 24 100

Table 4. Classification matrix for DFMRSA4.

Group Active Inactive % Success

Training active 19 0 100
Training inactive 0 24 100

Test active 7 0 100
Test inactive 0 6 100

JK Training active 19 0 100
JK Training inactive 0 24 100

The classification criterion was determined by the value of the DF: if the value of the
equation for a given compound was equal to or greater than 0, such a compound was
classified as active, whereas if the value of the equation for a compound was smaller than 0,
such a compound was classified as inactive.

3. Discussion

All equations have a low value of λ, indicating that there is a low linear dependence
between independent variables. Furthermore, the high value of F in the equations indicates
that the selected independent variables contribute largely to the separation of the active
and inactive groups. Moreover, all equations correctly classify each compound with its
corresponding group with very high success rates (100% in most cases).

We obtained the first three functions using combinations of different types of indices:
DFMRSA1 used the electrotopological state (Si) [35]; DFMRSA2 used electrotopological and
charge indices [36]; while DFMRSA3 used all topological indices excluding the connectivity
indices [37]. We obtained DFMRSA4 using all 136 topological indices.

DFMRSA1 involves four electrotopological indices (S-CH3, S=C<, SaSa and SCl). Its value
is influenced positively by the presence of sp2 carbons (S=C<) and chlorine atoms (SCl).
However, the presence of methyl groups (S-CH3) and sulfur atoms in aromatic rings (SaSa)
have a negative influence on the DF value. It should be noted that, in the latter case, some
of the training and test inactive compounds possess it, while all active compounds lack this
functional group in their structure (the structure of all compounds as well as bibliographic
references about their activity can be found in Tables S1 and S2).
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DFMRSA2 involves one valence charge index (3JV) and three electrotopological indices
(S=C<, S>CH- and SCl). In this case, the presence of sp2 carbons (S=C<) and chlorine atoms
(SCl) increases its value, while the presence of sp3 carbons (S>CH-), and sp2 oxygens (S=O)
decreases it. Regarding the charge index, the value of the DF is influenced negatively by
the topological charge present in third-order sub-pseudographs (3JV). This type of index
describes the distribution of the global charge in the molecule through the evaluation of
charge transfer between pairs of atoms. Moreover, since it is also a valence index, it also
considers heteroatoms and multiple bonds.

DFMRSA3 involves two electrotopological indices (S>N- and SCl), one charge index (3J)
and one geometric index (PR2). In this case, the value of the equation increases due to the
presence of chlorine atoms (SCl) and the geometric index PR2. Geometric indices are related
to the shape and molecular surface [38]. The PR2 index in particular counts the number
of pairs of branches (understanding as branches the points that contain three or more
vertices) separated by two axes. This means that the presence of ramifications favors the
anti-MRSA activity. On the other hand, the value of the equation is negatively influenced
by the presence of tertiary amine groups (S>N-) and very negatively by the topological
charge in third-order sub-graphs (3J).

DFMRSA4 involves one connectivity index (3χch), two electrotopological indices (SCl
and S=CH-), and one charge index (3J). The equation also shows a clear dependence of the
activity relative to the Kier–Hall chain-type third-order index (3χch), which implies that
the presence of a cyclopropyl group greatly enhances the activity against MRSA. Most of
the active compounds have this group. On the contrary, the inactive compounds generally
lack this group (see Tables S1 and S2). This group has been proven to have a positive
influence on the activity of a large number and variety of drugs [39]. The other index that
has a positive influence on the value of the equation is SCl, meaning that the presence of
chlorine atoms favors the anti-MRSA activity, while the presence of sp2 carbons (S=CH-) is
detrimental for such activity. The topological charge in third-order sub-graphs (3J) has also
a negative influence on the anti-MRSA activity.

After analyzing all the equations, we found that the electrotopological index SCl
was common to all of them, with a positive influence in all cases. This indicates that the
presence of this atom favors the anti-MRSA activity, as we concluded in one of our previous
studies [34]. Foroumadi et al. [40] experimentally demonstrated the importance of this
atom by substituting fluorine or hydrogen for chlorine in positions 6 and/or 8 from the
double aromatic ring within the 4-quinolone structure. This change drastically increased
the in vitro activity against two clinically isolated strains of MRSA and other bacterial
species in numerous analog compounds.

We plotted the corresponding pharmacological distribution diagrams (PDD) for every
function in order to visualize the values of the function in which the probability of classify-
ing a compound as active or inactive is maximum—in other words, to find areas where
the overlap between the two groups of compounds is minimal. The PDDs obtained for the
DFs built along with the highest activity range for each function are shown in Figures 2–5.
Compounds with values below the range were considered inactive while compounds with
values over the range were considered unclassified. Thus, the value ranges derived from
these PDDs establish the applicability domain for each of them [41].

DFMRSA1 Highest Activity Expectancy = 4–24
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When PDDs are used, the accuracy for active compounds decreases, whereas that
for inactive ones increases, so the probability of selecting a false active compound after
applying the PDD filter decreases. The average percentage for the four equations of
correctly classified inactive compounds is 100% for both the training and test group, and
the average percentage of accurately classified active compounds is 97.4% for the training
group and 100% for the test group. Tables 5 and 6 summarize the classification of the
results obtained for all functions selected for both training groups, the active group and
inactive group, respectively, and Table 7 summarizes the results for the test groups. As can
be inferred from the tables, the training and test groups exhibit an average overall accuracy
of 99.1%.
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Table 5. Results obtained after combining LDA and PDD for the DFs. Training group: actives.

Compound DFMRSA1
1 Clas 2 DFMRSA2

1 Clas 2 DFMRSA3
1 Clas 2 DFMRSA4

1 Clas 2

11act4 16.626 + 16.357 + 19.694 + 27.203 +
11act5 11.683 + 19.403 + 20.222 + 31.400 +
14act5 15.581 + 21.126 + 20.144 + 27.456 +
17act4 16.644 + 23.153 + 19.97 + 27.456 +
18act4 16.891 + 25.075 + 20.329 + 31.400 +
21act5 5.8776 + 16.021 + 18.056 + 18.668 +
22act4 11.789 + 20.928 + 13.000 + 20.577 +
28act4 17.471 + 26.089 + 20.238 + 31.400 +
30act4 15.632 + 22.201 + 16.962 + 24.358 +
34act5 17.661 + 24.684 + 32.461 + 39.959 +
35act5 17.614 + 23.094 + 32.469 + 39.959 +
4act5 17.676 + 23.776 + 23.800 + 34.920 +

5j-act1 21.524 + 36.244 + 36.171 + 42.102 +
5n-act1 11.424 + 18.699 + 11.661 + 25.305 +
5o-act1 9.171 + 8.2196 + 16.414 + 25.681 +
5q-act1 13.671 + 15.283 + 14.049 + 23.702 +
5r-act1 13.698 + 16.238 + 12.881 + 26.177 +
DX-619 −5.262 - 4.795 + 0.783 - 18.497 +

Sitafloxacin 6.404 + 26.299 + 24.666 + 31.369 +
1 Value of the DF for each compound. 2 The compounds are classified as active (+) if the DF value is within its highest expectancy range or
inactive (-) for values outside of this range.

Table 6. Results obtained after combining LDA and PDD for the DFs. Training group: inactives.

Compound DFMRSA1 Clas DFMRSA2 Clas DFMRSA3 Clas DFMRSA4 Clas

5i-in1 −10.922 - −21.009 - −17.353 - −31.118 -
in1-27j −22.140 - −32.034 - −19.221 - −19.988 -

in10-4Ib −16.168 - −22.602 - −15.965 - −26.738 -
in2-4b −14.542 - −18.473 - −16.944 - −23.370 -
in1-21a −16.970 - −14.755 - −15.335 - −35.360 -
in104IIa −12.625 - −17.332 - −20.429 - −34.317 -
in104IIb −19.293 - −21.486 - −17.198 - −34.565 -
in2-4e −11.261 - −19.599 - −17.474 - −30.255 -
in2-4f −17.167 - −18.987 - −23.238 - −28.553 -
in4-2a −10.009 - −18.479 - −21.815 - −18.213 -
in5-5d −9.646 - −15.358 - −10.418 - −4.134 -
in5-5e −16.077 - −18.117 - −19.044 - −32.963 -
in5-5f −16.923 - −27.682 - −18.119 - −31.946 -
in5-5i −17.294 - −26.764 - −21.206 - −31.331 -
in5-5k −16.676 - −16.353 - −23.087 - −29.665 -
in5-5l −17.522 - −25.918 - −22.162 - −28.649 -

in6-11a −8.490 - −13.852 - −16.405 - −28.032 -
in6-11c −8.617 - −21.238 - −22.280 - −37.466 -
in6-7c −15.449 - −32.295 - −14.505 - −19.063 -
in6-7e −5.119 - −6.883 - −16.149 - −19.063 -

in7pge61 −4.877 - −13.953 - −28.176 - −34.778 -
in8-4b −14.251 - −20.785 - −25.718 - −36.492 -
in8-4c −14.397 - −19.425 - −24.568 - −35.308 -
in9-4 −16.367 - −26.331 - −25.571 - −40.321 -



Int. J. Mol. Sci. 2021, 22, 5823 9 of 12

Table 7. Results obtained after combining LDA and PDD for DF1–4. Test group.

Actives
Compound DFMRSA1 Clas DFMRSA2 Clas DFMRSA3 Clas DFMRSA4 Clas

10act5 11.841 + 16.946 + 18.803 + 26.469 +
13act4 17.105 + 21.453 + 21.328 + 32.447 +
15act4 15.936 + 22.277 + 20.086 + 27.456 +
19act5 11.843 + 20.242 + 19.797 + 27.456 +
28act5 6.900 + 8.470 + 13.988 + 17.946 +

5m-act1 11.522 + 17.914 + 13.113 + 23.108 +
5p-act1 9.293 + 9.373 + 16.326 + 29.218 +

Inactives
Compound DFMRSA1 Clas DFMRSA2 Clas DFMRSA3 Clas DFMRSA4 Clas

25aArt13 −13.76 - −22.394 - −14.901 - −47.111 -
in8-4a −14.613 - −19.761 - −22.232 - −29.320 -
in5-5g −10.006 - −14.539 - −13.525 - −3.536 -
in5-5h −16.448 - −17.199 - −22.131 - −32.348 -
in5-5j −10.225 - −13.780 - −14.556 - −0.929 -

in7pge52 −2.362 - −12.941 - −12.566 - −20.154 -

4. Materials and Methods
4.1. Compound Selection

We collected in vitro activity information on quinolones and quinolone-like com-
pounds using search engines such as ISI Web of Science, Medline, and SciFinder (Caplus).
We only considered as valid those activity data from in vitro tests conducted according to
the criteria of the CLSI [42].

We finally selected in vitro activity data of 56 quinolones and structurally related com-
pounds (Figure 1) against MRSA, which we classified into two groups, active (26 compounds)
and inactive (30 compounds), all of which had a 4-quinolone or a closely related structure
(see Tables S1 and S2).

To consider a compound as active, it should have a minimum inhibitory concentration
(MIC) equal to or under 1 mg/mL against MRSA, while those compounds considered
inactive should have an MIC equal to or over 16 mg/mL against MRSA. Compounds with
MICs between 1 and 16 mg/mL against MRSA were not included in the study. Regarding
stereoisomers, if any of them were active, they were included in the active group. If all
individual stereoisomers or the mixture of them in any ratio were inactive, they were
included as a single graph in the inactive group.

4.2. Topological Descriptors

We calculated 301 topological indices for all 56 molecules. Those indices with values
of 0 or with identical values for all compounds were removed. Finally, all compounds
were characterized by a total of 136 non-redundant, significant descriptors specific to
each molecule. These descriptors do not contain 3D parameters. The description of
all the molecular descriptors can be found in Table S3 along with their definitions and
references. Using MOLCONN-Z [43] and DESMOL13 [44] programs, we computed the
adjacency topological matrix obtained from the hydrogen-depleted chemical pseudographs,
previously drawn with the ChemBioDraw Ultra 12.0 molecule-editing program of the
ChemBioOffice 2010 package.

4.3. Linear Discriminant Analysis (LDA)

LDA is a pattern recognition method that allows the classification of a compound in
a given group or category (e.g., active and inactive) based on a combination of variables
(e.g., topological indices). Based on the Fisher–Snedecor parameter F, which relates the
variance explained by the equation to the residual variance, we chose the variables used
to compute the linear classification functions in a stepwise manner. At each step, the
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variable with the greater value of F (i.e., the variable that causes the larger contribution
to the differentiation of groups in the discriminant function) is entered. On the other
hand, selected variables with a small value of F (i.e., variables that lower the statistical
significance of the classification function) are removed.

The percentage of correct classifications attained for each set assesses the discriminant
ability of each DF. The classification criterion is the minimal Mahalanobis distance (distance
of each case to the mean of all the cases in a category). The quality of the discriminant
function was evaluated through Wilk’s U-statistical parameter, λ, which was obtained by a
multivariate analysis of variance that tests the equality of group means for the variable in
the discriminant model.

The BMDP 7M Biomedical package [45] was the software used for the LDA study.
The program randomly chooses compounds for the training and test groups. With the
training group, a predictive mathematical model relating activity to structural descriptors
is obtained. Internal validation is performed by the Jack-Knife (JK) method. Finally, the
program performs external validation by applying the classification function to the test
group and calculating the percentage of classification success.

4.4. Pharmacological Distribution Diagrams (PDD)

PDDs are histogram-like plots of connectivity functions used to determine the intervals
of the discriminant function in which the expectancy, E, to find active compounds is
maximum. In these plots, expectancies appear on the ordinate axis. For an arbitrary interval
of values of a given function, we can define the expectancy of activity as Ea = a/(i + 1),
where “a” is the number of active compounds in the interval divided by the total number
of active compounds, and “i” is the number of inactive compounds. The expectancy of
inactivity is defined in a symmetrical way, as Ei = i/(a + 1) [41]. This representation provides
good visualization of the regions of minimum overlap and helps selecting intervals in the
abscissa axis with maximum probability of finding active compounds.

PDDs allowed us to carry out the assignment of thresholds useful to discriminate
active from inactive compounds with the highest probability of success.

5. Conclusions

Currently, the development of resistance of microorganisms such as Staphylococcus aureus
is one of the most important problems that has appeared in recent years in the treatment of
infectious diseases. Molecular topology has been demonstrated to be a useful methodology
for identifying new compounds with antimicrobial activity against MRSA. By combining it
with LDA, we developed four mathematical–topological equations with outstanding dis-
criminant ability according to the success rates. These results are supported by internal and
external validation performed on all functions, as well as by all the statistical parameters,
which can be considered very satisfactory in all cases.

We can conclude that the equations obtained in this study confirm molecular topology
as a powerful and efficient tool in the discrimination of anti-MRSA activity, offering new
insights in the search for new compounds with this specific activity as opposed to classical
structure–activity relationships.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22115823/s1, Table S1: Active group used in the discriminant functions: Paper name/code,
IUPAC name & structure and bibliographic references about activity for each compound, Table S2:
Inactive group used in the discriminant functions: Paper name/code, IUPAC name & structure and
bibliographic references about activity for each compound, Table S3: Symbols and Definitions of
Topological Indices used with DESMOL13 and MOLCONN-Z programs.
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