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Abstract  21 

 22 

Anatomic adaptations make birds more prone to open fractures with exposed bone parts 23 

losing vascularization. As a result of this exposure, fractures are colonized by different 24 

microorganisms, including different types of bacteria, both aerobic and anaerobic, 25 

causing osteomyelitis in many cases. For this reason, antibiotic treatment is common. 26 

However, carrying out antibiotic treatment without carrying out a previous antibiogram 27 

may contribute to increased resistance against antibiotics, especially in migratory wild 28 

birds. In this paper, bacterial counts regarding fracture type, bacterial identification and 29 

antibiotic resistance have been analyzed in wild birds from wildlife rehabilitation centres 30 

in Spain. The results obtained showed that open fractures had higher bacterial counts 31 

(CFU/mL) than closed ones. Bacteria in family Enterobacteriaceae, identified were 32 

Escherichia spp., Enterobacter spp., Shigella spp., Hafnia alvei, Proteus mirabilis, 33 

Leclercia adecarboxylata and Pantoea agglomerans. Other bacteria present in wild birds’ 34 

fractures were Aeromonas spp., Enterococcus spp. Bacillus wiedmannii and 35 

Staphylococcus sciuri. All species found presented resistance to at least one of the 36 

antibiotics used. Wild birds can be implicated in the introduction, maintenance and global 37 

spreading of antibiotic resistant bacteria and represent an emerging public health concern. 38 

Results obtained in this paper support the idea that it is necessary to take this fact into 39 

account before antibiotic administration to wild animals, since it could increase the 40 

number of bacteria resistant to antibiotics. 41 

 42 

Keywords: Antimicrobial Resistance, Bacterial Counts, Bone Fractures, Fracture 43 

Contamination, Wild Birds. 44 

45 



Introduction 46 

 47 

Adaptations of birds for flying, such as reduction of weigh and bone modifications, 48 

predispose these animals to suffer from fractures in case of traumatic injuries, as 49 

collisions with electric lines, shots, car crashes, among others [1–5]. The anatomical 50 

adaptation makes birds more prone to open fractures with exposed bone parts losing 51 

vascularization. In fact, lack of irrigation through the periosteum, medullary, metatarsal 52 

and epiphyseal blood vessels, which are responsible for nourishing the bone and the 53 

exposure of the fracture to external contaminants, favor the appearance of osteomyelitis 54 

and infections of adjacent tissues, as well as necrosis [6,7]. Osteomyelitis is the infection 55 

of bone by pathogens such as fungi or bacteria, both aerobic and anaerobic, as a result of 56 

trauma or previous infection [6,8]. 57 

 58 

Osteomyelitis in birds does not affect systemically, unlike what occurs in mammals. 59 

However, if osteomyelitis is found in pneumatic bones, such as the humerus or femur, the 60 

infection is in direct contact with the air sacs inside the medullary canal and, therefore, 61 

with the whole respiratory system [9]. As osteomyelitis could have multiple possible 62 

etiologies, treatment with antimicrobial drugs is diverse. Different authors recommend 63 

treatments based on clindamycin, while others use ceftiofur, cefotaxime or enrofoxacin 64 

[6,10–12]. Nonetheless, the massive use of antibiotics is not recommended. According to 65 

World Health Organization, “antibiotic resistance is one the biggest threats to global 66 

health, food security, and development”. In fact, this International Organization 67 

reaffirmed its global action plan on antimicrobial resistance, one of its five strategic 68 

objectives being to optimize the use of microbial agents in 2019 [13].  69 

 70 



Most studies reported antibiotic-resistant bacteria in many parts of the world, even remote 71 

areas [14]. This antibiotic-resistant bacteria have been found in different types of wild 72 

animals, both mammals and birds [15–20]. In that sense, some authors indicate that wild 73 

birds could be an important reservoir of resistance to antibiotics, particularly wild 74 

migratory birds for their ability for long range movements [21–25]. 75 

 76 

The aim of this work is to compare the bacteriological contamination in open and closed 77 

fractures in birds from wildlife rehabilitation centres in Spain. Bacterial species and 78 

antimicrobial resistance were also evaluated. 79 

 80 

Materials and methods 81 

 82 

Sample and data collection  83 

 84 

All animals were handled according to the principles of animal care published by Spanish 85 

Royal Decree 53/2013 [26]. Sampled collection was approved by the Ethics Committee 86 

and Animal Experimentation of UCH-CEU University. Sample collection was carried out 87 

in three different wildlife rehabilitation centres in Spain during the period between 88 

February and Juny 2019. A total of 27 birds were sampled and 36 fractures of these birds 89 

were analysed. Specimens were collected using sterile cotton swab (AMIES sterile 90 

transport swabs, Deltalab Barcelona, Spain) by rotating the swab on the bone surface and 91 

then transported under refrigeration to the microbiological laboratory for bacterial 92 

isolation. 93 

 94 



On the other hand, data from each animal were collected by a questionnaire to determine 95 

the possible risk factors for fracture infection. Data included was taxonomic order, 96 

nocturnal or diurnal life, causes of bone fractures, fractured bone and fracture type (open 97 

or closed). All questionnaires were completed and submitted together with the samples 98 

to the Laboratory of “Group Microbiological Agents Associated with Animal 99 

Reproduction (PROVAGINBIO)”, UCH-CEU University. 100 

 101 

Bacterial isolation 102 

 103 

Swabs were introduced in 10 ml sterile tubes containing 5 ml of phosphate buffered saline 104 

(PBS) and vortexed during 1 minute. Serial dilutions to 10-5were performed using PBS. 105 

Solutions were then plated in two different solid mediums simultaneously, Blood Agar 106 

(BD Columbia Agar with 5% Sheep Blood, BD, Madrid, Spain) as a general bacterial 107 

growth medium and MacConkey agar medium (BD MacConkey II Agar, BD, Madrid, 108 

Spain) for selective growth and enumeration of Enterobacteriaceae. All plates were 109 

incubated under aerobic conditions for 24-48h at 37ºC. After the incubation, bacterial 110 

count was assessed by quantifying the number of colony forming units per milliliter 111 

(CFU/ml). Moreover, morphologically different colonies obtained were freeze at -80ºC 112 

and stored in BHI broth medium with 50% glycerol until their used. 113 

 114 

Determination of antibiotic susceptibility 115 

 116 

Antibiotic susceptibility profile of bacterial isolates was conducted using the agar disk 117 

diffusion method according the European Committee on Antimicrobial Susceptibility 118 

Testing (EUCAST) guidelines [27]. Antibiotics employed in our study were selected 119 



according the common antibiotics used to treat birds’ fractures in the wildlife recovery 120 

centers where the animals came from. The source for zone diameters used for 121 

interpretation of the test was http://www.eucast.org/clinical_breakpoints/. Zone 122 

diameters were interpreted and categorized as susceptible, intermediate or resistant 123 

according to the EUCAST clinical breakpoint tables and manufacturer’s standards for 124 

each antimicrobial agent. Antimicrobial agents used and their concentrations were 125 

cefazoline (30 mcg), cefotaxime (30 mcg) and clindamycin (2 mcg) (BD BBL Sensi-Disc 126 

antimicrobial susceptibility test discs, BD, CA; USA), ceftiofur (30 µg), and enrofloxacin 127 

(5 µg) (Antimicrobial Susceptibility Disks, TermoFisher, Oxoid, Valencia, Spain). The 128 

measured diameters by the disk diffusion method were interpreted for correlation with 129 

the MIC values by agar dilution and compared in database from tables M100S from CLSI.  130 

 131 

Identification of bacterial isolates 132 

 133 

Genomic DNA extraction of bacterial isolates were isolated using an DNeasy UltraClean 134 

Microbial Kit (Qiagen, Valencia, CA, USA) following manufacturer’s instructions. 135 

Identification of bacterial isolated were performed by PCR amplification and sequencing 136 

of 16S rRNA gene using bacterial universal primers (27F 5′- 137 

AGAGTTTGATCCTGGCTCAG and 1492R 5′-GGTT ACCTTGTTACGACTT) 138 

(Kumar et al., 2017). The PCR was performed in 25 µl reaction volumes containing 2X 139 

Taq Master Mix, 0.25 mM forward primer, 0.25 mM reverse primer and 0.4 ng of 140 

genomic DNA and nuclease-free water to make volume 25 µl. Temperature cycling 141 

conditions for PCR were as follows: an initial heating of 95ºC for 3 min, followed by 40 142 

cycles of denaturation at 95ºC for 30 sec, annealing at 55ºC for 30 sec and extension at 143 

72ºC for 90 sec, and termination step was realized with a 5 min of 72ºC. The PCR 144 



products were examined with electrophoresis on a 1.5% w/v agarose gel, stained by Safe 145 

Lab nucleic acid stain. The PCR products were purified using QIAamp DNA Mini Kit 146 

(Qiagen, Valencia, CA, USA) following manufacturer’s instructions.  147 

 148 

Purified PCR products were sequenced using the ABI 3730 XL Analyzer, with BigDye 149 

Terminator Cycle Sequencing Kit (Applied Biosystems, CA, USA). Sequences of 150 

approximately 1000 bases were obtained. The bacterial identification was obtained by 151 

comparison with 16S rRNA gene sequences of GenBank database from National Center 152 

of Biotechnology Information (www.ncbi.nlmnih.gov) through the basic local alignment 153 

search tool (BLAST) (https://blast.ncbi.nlm.nih.gov/Blast.cgi), using database 16S 154 

ribosomal RNA sequences (Bacteria and Archae), and using Megablast (optimize for 155 

highly similar sequence) with general parameters. Sequence with more than 4 ambiguous 156 

characters or shorter that 500 bases were discarded, and it was considered at least 94% 157 

similarity. 158 

 159 

Statistical methods 160 

 161 

Statistical analysis was performed with statistical package R Commander and 162 

RcmdrPlugin. The 95% confidence intervals for prevalence estimates were calculated 163 

using the Wilson score interval method. Variables were compared with Pearson’s Chi-164 

squared test and Fisher exact tests. Colony-forming units per ml (CFU/ml) were analysed 165 

with a non-parametric test (Krustal-Wallis test) to test the difference between groups. 166 

Shapiro-Wilk test for normality and Levene’s test for homoscedasticity were used to 167 

detect significant difference among group variances. All results were expressed as mean 168 

± SD and the statistical significance was accepted at p-value ˂0.01. 169 

http://www.ncbi.nlmnih.gov/
https://blast.ncbi.nlm.nih.gov/Blast.cgi


 170 

Results 171 

 172 

Data collected in the questionnaire about taxonomic order showed that a total of 27 birds 173 

were analysed and showed in table 1. The causes of 36 fractures found in a total of 27 174 

birds were varied, with the majority being fractures caused by trauma (n=26) and nest fall 175 

(n=3). Other causes were falconry (n=2), collision with power line (n=2), shooting (n=1), 176 

electrocution (n=1) and crash against fencing (n=1). In most individuals, the fractured 177 

bone was the humerus (n=16) and ulna bone (n=11) with or without radius and 178 

metacarpus bones. Other fractures were metacarpus (n=5) and tarsus (n=4). Finally, open 179 

fractures were much higher than closed ones (24 versus 12). 180 

 181 

As it is shown in table 1, when these variables were correlated with bacterial counts 182 

(CFU/mL) in Blood Agar and MacConkey agar, only type of fracture influences the 183 

bacterial growth in both culture media and CFU/mL, being higher in open fractures than 184 

in closed ones (p<0.01) (Table 2). Bacterial species detected in fractures are shown in 185 

table 3..  186 

 187 

Regarding antimicrobial resistance, 85.42% of the isolates presented resistance to 188 

clindamycin, whereas 47.92% were resistant to cefazoline. Low levels of resistance were 189 

observed towards ceftiofur (only 24.49%) and cefotaxime (20.83%). Table 4 shows the 190 

bacteria found, as well as the species of wild birds where they have been isolated and the 191 

antibiotic resistance they presented. 192 

 193 

Discussion 194 



 195 

Results obtained in our study showed that most of the fractures observed in birds from 196 

the wildlife rehabilitation centres in Spain were caused by trauma and most of them were 197 

open fractures. This is in accordance with another retrospective study made in Spain, were 198 

they also found that the main causes of morbidity in wild raptor populations admitted at 199 

a wildlife rehabilitation centre were trauma [28]. Bacterial presence and bacterial counts 200 

(CFU/mL) were significantly higher in open fractures compared to closed ones. 201 

Vergneau-Crosset et al. (2020) [29] showed a worse prognosis in open fractures of wild 202 

birds, probably due to a higher incidence of bacterial infections.  203 

 204 

It is known, that wild birds have been considered to be reservoirs of resistant pathogens 205 

and they can disseminate zoonotic resistant bacteria to the environment during migration 206 

[16]. In our work, we identified different bacteria from birds’ fractures and we studied 207 

antimicrobial susceptibility of all isolates to the antibiotics usually used in the wildlife 208 

recovery centres. 209 

 210 

Bacterial identification revealed the presence of species in family Enterobacteriaceae, as 211 

Escherichia spp., Enterobacter spp., Shigella spp., Hafnia alvei, Proteus mirabilis, 212 

Leclercia adecarboxylata and Pantoea agglomerans. Some of the bacteria in family 213 

Enterboacteriaceae found in our study has been previously identified in European wild 214 

bird species admitted in wildlife rescue centres [16]. 215 

 216 

E. fergusonii plays an important role in human and animal infections [30]. This bacterium 217 

causes different pathologies in animals, such as fibrino-necrotic typhlitis in ostriches, or 218 

gastrointestinal problems in goat and horses [31–33]. The presence of E. fergusonii in 219 



wild birds has been previously reported [34]. In our results, two strains of E. fergusonii 220 

presented resistance to cefazoline whereas all strains presented resistance to clindamycin. 221 

It is known that this bacterium possesses an extended spectrum of resistance to antibiotics 222 

[35,36]. Specifically, antimicrobial resistance of E. fergusonii isolated from broiler 223 

chickens has also been reported [37,38]. Specifically, beta-lactamase gene that confer 224 

resistance to ampicillin and cephalosporins has been found in plasmids of E. fergusonii 225 

isolated in farm animal [39]. Regarding the other Escherichia specie found in our study, 226 

E. marmotae, it has been previously reported as a potential invader pathogen in wild 227 

animals as rodents [40]. In our work, this bacterium was resistant to clindamycin. 228 

 229 

Leclercia adecarboxylata, previously recognized as Escherichia adecarboxylata, causes 230 

infections in immunocompromised individuals. It has been related with the production of 231 

post-operative orthopedic infection in humans and it is susceptible to most of the common 232 

antibiotics [41,42]. In animals, clinical importance is uncertain, although respiratory 233 

distress in cows and isolates of L. adecarboxylata in manatees with clinical signs as 234 

abscesses, debilitation and anorexia has been reported [43,44]. It has been considered as 235 

emerging pathogen [45–47]. To our knowledge, our data have shown for the first time the 236 

resistance of this pathogen to clindamycin, suggesting that more studies should be carried 237 

out. 238 

 239 

Regarding Shigella spp., they have been previously reported in reptiles, aquatic animals 240 

and birds [48,49] and resistance to antibiotics has been also described [50,51]. 241 

Mechanism of antimicrobial resistance in Shigella spp. has been studied and has been 242 

related to plasmid-mediated quinolone and azithromycin resistance genes [52]. In our 243 

study, Shigella spp. were resistant only to clindamycin. Infectious disease caused by 244 



pathogenic Shigella species, includes the ones isolated in our study, Shigella flexneri, 245 

Shigella sonnei, and Shigella boydii which can be related with Shigellosis [53]. Although 246 

these bacteria seem not produce clinical signs in animals, they can be reservoirs of 247 

antimicrobial resistant Shigella spp. [54]. 248 

 249 

We have found E. cloacae cluster, formed by E. cloacae, E. kobei, E. ludwigii and E. 250 

faecalis in birds’ fractures. Species of the E. cloacae complex are widely distributed and 251 

they can act as pathogens in most mammals, such as dogs, cat or humans, producing 252 

infections in the urinary and respiratory tracts, skin, ear or soft tissues [55,56]. Moreover, 253 

Abou-Zahr et al. (2018) [57] found that the most commonly cultured bacteria from 254 

superficial chronic ulcerative dermatitis in Psittacine birds were E. cloacae . Our results 255 

showed E. cloacae cluster presented different antimicrobial resistance patterns. A review 256 

from 2019 showed these bacteria has been isolated in different animals species, including 257 

humans, and were resistant to several antibiotics as cefoxitin, ampicillin, amoxicillin-258 

clavulanic acid and cephalothin [58]. Moreover, previous studies have demonstrated 259 

different features of E. cloacae conferring antibiotic resistance, as beta-lactamases 260 

production by repression of a chromosomal gene or by the acquisition of a transferable 261 

ampC gene by mobile elements, acetyltransferase capacity or efflux-pump [55]. 262 

 263 

Infection by H. alvei is associated with the poultry industry and produce anorexia, 264 

depression, ruffled feathers and diarrhoea [59]. Moreover, H. alvei has been previously 265 

detected in European wild bird species in a wildlife rescue center [16]. Its resistance to 266 

antimicrobials such as penicillin, oxacillin, amoxicillin plus clavulanic acid and 267 

ceftazidime is well known and it has been relate to multidrug resistance clusters genes, 268 

multidrug resistance efflux pumps, lysozyme inhibitors and beta-lactam resistance 269 



AmpC-type gene [60,61]. In our study, H. alvei presented resistance to clindamycin and 270 

cefazoline. 271 

 272 

P. mirabilis is the most common pathogen of Proteus spp. and its related with urinary 273 

infections, mainly in companion animals and humans [62,63]. In agreement with our 274 

results, previous studies have isolated Proteus mirabilis in wild birds and demonstrated 275 

their resistance to different antibiotics [16,64]. Multidrug resistance of P. mirabilis could 276 

be explained by the ability of this bacterium to form biofilms  [65].  277 

 278 

Five samples of this study were colonized by Pantoea agglomerans a bacterium isolated 279 

in poultry farms [66] and related to infections in animals and humans, which causes 280 

endophthalmitis, periostitis, endocarditis and osteomyelitis [67]. Resistance to 281 

carbapenems, ciprofloxacin, piperacillin and clavulanic acid have been demonstrated 282 

[68,69]. Antimicrobial resistance to P. agglomerans seems to be encoded by multiple 283 

genes [70]. Our work showed resistance to clindamycin.  284 

 285 

Aeromonas spp. are pathogenic bacteria that can cause digestive, respiratory and 286 

urogenital tract infections, as well as wound, soft tissue infections and osteomyelitis 287 

[60,71]. Within this genus, the species found in our work were A. salmonicida, A. 288 

enteropelogenes and A. media. A.salmoncida was found previously in wild birds [72] 289 

whereas A. enteropelogens has been found in wild animals of aquatic environments. 290 

Additionally, to our knowledge this is the first time that the presence of A. media in non-291 

marine animals, as molluscs, has been observed [73,74]. Dias et al. (2018) [72] 292 

emphasized the resistance of Aeromonas spp. to multiple drugs for their ability to form 293 



biofilms. In this work, Aeromonas spp. presented resistance to clindamycin and 294 

cefazoline. 295 

 296 

Enterococci have emerged as opportunistic pathogen in the intestinal microbiota of many 297 

humans and birds and they can cause fatal infections of the urinary tract and endocarditis 298 

in humans and it has also been related with postoperative trauma surgical infections in 299 

humans and poultry symptoms are joint disease, sepsis, and falls in the first week of life 300 

[75,76]. Regarding species found in this genus we identified E. faecalis, E. faecium and 301 

E. mundtil, which have already been described in wild birds [77]. These bacteria have 302 

been related with a great capacity to acquire antibiotic resistance genes through plasmids 303 

or transposons [76,78,79]. Our results showed their resistance to clindamycin, cefazoline, 304 

ceftiofur and cefotaxime. 305 

 306 

Bacillus wiedmannii is a novel haemolytic specie of Bacillus cereus group, isolated in 307 

Alvinocaris longirostris (shrimp) and from a silo raw milk sample collected from a dairy 308 

powder processing plant in the north-eastern USA [80,81]. This haemolytic capacity 309 

found in the prior studies and the resistance found in our study to cefazolin, ceftiofur and 310 

cefotaxime could be indicators of danger for this recently discovered species. Genes 311 

encoding resistance to tetracycline, streptomycin and beta-lactam antibiotics have been 312 

found recently in strains of B. wiedmannii isolates [82]. 313 

 314 

Finally, we have demonstrated the presence of Staphylococcus sciuri in wild birds and 315 

their resistance to clindamycin. S. sciuri is a bacterial pathogen associated with infections 316 

in animals and humans [83]. Different authors have detected S. sciuri in wild birds [84] 317 

and it has also been isolated from a skin wound infection of a patient with infective 318 



endocarditis [85]. Furthermore, a strain methicillin-resistant was recently isolated in fecal 319 

samples of wild birds, specifically in passerine birds and rooks from urban areas, 320 

indicating the presence of these bacteria in the environmental food sources and the spread 321 

of these resistant strains [86]. It has been demonstrated that Gene mecA is present in 322 

methicillin-resistant strains of S. aureus and is a native gene in S. sciuri [87]. 323 

 324 

Antibiotic resistance among wild animals represent an emerging public health concern 325 

[84]. Specially, wild birds can be implicated in the introduction, maintenance and global 326 

spreading of antibiotic resistant bacteria [88]. Presence and levels of antimicrobial 327 

resistant bacteria in wild birds have been related to human and farm activities and waste 328 

products [89]. In fact, it has been reported that wild birds could be infected in urban areas 329 

and transport theses resistant bacteria thousands of kilometers to other urban or rural areas 330 

in other countries, contaminating food, water or animal farms. This strongly reinforce the 331 

necessity of global strategies to control anitmicorgial resistance spread in wild animal 332 

interface. Our study strongly indicates that bacteria isolated from wild birds’ fractures in 333 

wildlife rehabilitation centres in Spain could act as a potential source of resistance and 334 

further studies are needed to reduce antimicrobial resistance.  335 

 336 

Conclusions 337 

 338 

Wild birds can be carriers of antibiotic-resistant bacteria and has been suggested as 339 

transmitters of microorganisms. Since many of them are migratory birds, this 340 

transmission can occur over very long distances. Our work indicates that wild birds 341 

present in their fractures a large number of pathogenic and opportunistic pathogenic 342 



bacteria, resistant to different antibiotics, so it is increasingly necessary to carry out 343 

studies to reduce this resistance. 344 
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Table 1. Colonies in Blood agar and MacConkey agar and variables included in the study (*p value < 0.01 was considered significant). 677 

 678 

  Presence Colonies Blood Agar Presence Colonies MacConkey agar 

Variable categories  No. positive   % positive  Χ2 (p-value) No. positive   % positive  Χ2 (p-value) 

Order (number of 

animals) 

Accipitriformes (10) 9 36.1  

8.84 (0.29) 

4 36.1 

15.76 (0.02) 

Falconiformes (3)         1 11.1 0 11.1 

Charadriiformes (1) 0 2.8 0 2.8 

Strigiformes (5) 4 19.4 2 19.4 

Ciconiiformes (4) 4 13.9 4 13.9 

Pelecaniformes (2) 4 11.1 4 11.1 

Apodiformes (1) 1 2.8 1 2.8 

Passeriformes (1) 1 0 1 2.8 

Type of life 
Diurnal 20 80.6 

0.35 (0.55) 
14 80.6 

0.89 (0.35) 
Nocturnal 4 19.4 2 19.4 

Fracture type 
Open 22 68.6 

18.9 (˂ 0.01)* 
15 68.6 

8.67 (˂ 0.01)* 
Closed 2 31.4 1 31.4 

Overall  24   16   

 679 

 680 



 681 

Table 2. Number of colonies (CFU/ml) in Blood agar and MacConkey agar (mean ± SD) and variables included in the study (*p value < 0.01 was 682 

considered significant). 683 

 684 

 685 

Variable categories  CFU/mL Blood Agar  

(mean ± SD) 

Krustal-Wallis 

chi-squared 

 (p-value) 

CFU/mL MacConkey Agar 

(mean ± SD) 

Krustal-Wallis 

chi-squared 

(p-value) 

Order 

Accipitriformes 3.2*106 ± 5.6*106 

10.56 (0.15) 

3.4*106 ± 10.1*106 

13.09 (0.07) 

Falconiformes 37.5 ± 75 0 

Charadriiformes 0 0 

Strigiformes 4.4*106 ± 5.3*106 2.6*106 ± 5.9*106 

Ciconiiformes 6.5*106 ± 7.9*106 5*106 ± 7.4*106 

Pelecaniformes 12.3*106 ± 16.3*106 4.2*106 ± 4.2*106 

Apodiformes 4*105 ± NA 4.4*106 ± NA 

Passeriformes 8.6*106 ± NA 3.6*106 ± NA 

Type of life 
Diurnal 4.7*106 ± 8.1*106 0.01 (0.91) 3.2*106 ± 7.5*106 

0.49 (0.48) 
Nocturnal 4.3*106 ± 5.3*106 2.6*106 ± 5.9*106 

Fracture type 
Open 6.9*106 ± 8.5*106 

16.549 (˂0.01)* 
4.6*106 ± 8.3*106 

8.45 (˂0.01)* 
Closed 120031.8 ± 398050.8 5.8*104 ± 1.9*104 
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Table 3. Bacterial species identified from the nucleotide sequence of PCR amplified product 687 

and number of fractures where these bacterial species are present, accession number of NCBI 688 

database and percentage of identification. 689 

Bacterial species (number of 

fractures) 

NCBI Accession 

number 

Perc. 

Identification 

Aeromonas enteropelogenes (1) NR_116026.1 95.93 

Aeromonas media (3) NR_036911.2 98.16 

Aeromonas salmonicida (1) NR_118945.1 97.19 

Aeromonas veronii (1) NR_112838.1 98.25 

Bacillus wiedmannii (2) NR_152692.1 97.93 

Enterobacter cloacae (1) NR_118568.1 97.13 

Enterobacter kobei (1) NR_028993.1 98.05 

Enterobacter ludwigii (1) NR_042349.1 97.31 

Enterobacter faecalis (4) NR_113901.1 98.16 

Enterococcus faecium (1) NR_113904.1 97.34 

Enterococcus mundtil (1) NR_113906.1 98.17 

Escherichia fergusonii (9) NR_074902.1 98.48 

Escherichia marmotae (1) NR_136472.1 97.68 

Hafnia alvei (2) NR_112985.1 96.86 

Leclercia adecarboxylata (1) NR_114154.1 98.94 

Pantoea aggloemerans (5) NR_041978.1 98.41 

Proteus mirabilis (1) NR_114419.1 96.78 

Shigella boydii (1) NR_104901.1 96.79 

Shigella flexneri (5) NR_026331.1 98.33 

Shigella sonnei (1) NR_104826.1 94.31 

Staphylococcus sciuri (2) NR_025520.1 97.25 
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Table 4. Species of wild birds analysed, bacteria isolated to bone fracture and resistance to antibiotic found (CL: clindamycin, CZ: cefazoline, 700 

CF: ceftiofur, EN: enrofoxacin, CX: cefotaxime). 701 

Order Wild bird species 

Bacterial species isolated 

(n=number of strains for specie) 

Antibiotic resistance 

Resistant Intermediate Susceptible 

Accippitriformes Accipiter gentilis Enterococcus faecalis CL, CZ, CF, CX  EN 

Circus aeroginosus Bacillus wiedmannii (2) CZ, CF, CX CL (1 strain) EN 

Pantoea agglomerans (1)  CL CZ, EN, CF, CX 

Staphylococcus sciuri (1)  CL CZ, EN, CF, CX 

Gyps fulvus Proteus mirabilis (1) CL CZ EN, CF, CX 

Shigella flexneri (1) CL  CZ, EN, CF, CX 

Staphylococcus sciuri (1) CL CX CZ, EN, CF 

Milvus migrans Pantoea agglomerans (1) CL  CZ, EN, CF, CX 

Shigella boydii (1) CL  CZ, EN, CF, CX 

Leclercia adecarboxylata (1) CL  CZ, EN, CF, CX 

Ciconiiformes Ciconia Ciconia Aeromonas media (1) CL, CZ  EN, CF, CX 

Enterobacter kobei (1) CL  CZ, EN, CF, CX 



Enterococcus faecalis (1) CL, CZ, CF, CX EN  

Enterococcus mundtil (1) CL, CZ, CF, CX  EN 

Escherichia fergusonii (5) CL, CZ (1 strain) CX (1 strain) EN, CF 

Escherichia marmotae (1) CL  CZ, EN, CF, CX 

Pantoea agglomerans (1) CL  CZ, EN, CF, CX 

Shigella flexneri (1) CL  CZ, EN, CF, CX 

Falconiformes Falco tinnunculus Hafnia alvei (1) CL, CZ  EN, CF, CX 

Pelecaniformes Bulbucus ibis Aeromonas media (2) CL, CZ  EN, CF, CX 

Enterobacter cloacae (1) CL, CZ  EN, CF, CX 

Enterobacter ludwigii (1) CL, CZ  EN, CF, CX 

Escherichia fergusonii (2) CL, CZ CZ (1 strain) EN, CF, CX 

Pantoea agglomerans (1) CL  CZ, EN, CF, CX 

Plegadis falcinellus Aeromonas enteropeogenes (1) CL, CZ CF EN, CX 

Aeromonas salmonicida (1) CL, CZ  EN, CF, CX 

Aeromonas veronii (1) CL, CZ  EN, CF, CX 

Shigella flexneri (2) CL  CZ, EN, CF, CX 



Strigiformes Bubo bubo Escherichia fergusonii (2) CL CZ EN, CF, CX 

Enterococcus faecalis (2) CZ, CF, CX CL, EN  

Enterococcus faecium (1) CL, CZ, CF, CX EN  

Escherichia fergusonii (2) CL, CZ EN, CF, CX 

Hafnia alvei (1) CL, CZ CX EN, CF 

Shigella flexneri (1) CL CZ EN, CF, CX 

Shigella sonnei (1) CL CZ EN, CF, CX 
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