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Summary

Studies have shown that ruminants constitute reser-
voirs of Listeria monocytogenes, but little is known
about the epidemiology and genetic diversity of this
pathogen within farms. Here we conducted a large-
scale longitudinal study to monitor Listeria spp. in
19 dairy farms during three consecutive seasons
(N = 3251 samples). L. innocua was the most preva-
lent species, followed by L. monocytogenes. Listeria
monocytogenes was detected in 52.6% of farms and
more frequently in cattle (4.1%) and sheep (4.5%)

than in goat farms (0.2%). Lineage I accounted for
69% of L. monocytogenes isolates. Among animal
samples, the most prevalent sublineages (SL) and
clonal complexes (CC) were SL1/CC1, SL219/CC4,
SL26/CC26 and SL87/CC87, whereas SL666/CC666
was most prevalent in environmental samples. Sixty-
one different L. monocytogenes cgMLST types were
found, 28% common to different animals and/or sur-
faces within the same farm and 21% previously
reported elsewhere in the context of food and human
surveillance. Listeria monocytogenes prevalence was
not affected by farm hygiene but by season: higher
prevalence was observed during winter in cattle, and
during winter and spring in sheep farms. Cows in
their second lactation had a higher probability of L.
monocytogenes faecal shedding. This study high-
lights dairy farms as a reservoir for hypervirulent L.
monocytogenes.

Introduction

The genus Listeria currently includes 26 recognized spe-
cies of ubiquitous small rod-shaped Gram-positive bacteria
(Quereda et al., 2020; Carlin et al., 2021). Only two of
these species, L. monocytogenes and L. ivanovii, are con-

sidered pathogens (V�azquez-Boland et al., 2001). Listeria
monocytogenes is an important foodborne pathogen that
can cause human and animal listeriosis, a severe invasive
infection with high hospitalization and fatality rates in
humans (20%–30%) (Charlier et al., 2017). In immunocom-
promised individuals and the elderly, listeriosis manifests
mostly as septicemia and central nervous system (CNS)
infections. In pregnant women, listeriosis can lead to foetal
or neonatal complications (Swaminathan and Gerner-
Smidt, 2007; Charlier et al., 2017).

Domestic ruminants can become infected by L. mono-
cytogenes through ingestion of contaminated silage

(V�azquez-Boland et al., 2001), which can result in
rhombencephalitis, septicemia and abortion. Animals
may also be asymptomatic carriers and shed the bacte-
rium in their faeces (Skovgaard and Morgen, 1988; Ho
et al., 2007; Esteban et al., 2009; Haley et al., 2015;
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Hurtado et al., 2017; Castro et al., 2018). In dairy rumi-
nants, L. monocytogenes can be transmitted to bulk tank
milk (BTM) from faecal or environmental contamination of
the udder surface (Husu et al., 1990; Sanaa et al., 1993;
Winter et al., 2004; Castro et al., 2018; Addis
et al., 2019), as a consequence of poor hygiene in the
milking parlour or as a consequence of intramammary
infection (Winter et al., 2004; Addis et al., 2019). The
prevalence of L. monocytogenes in BTM of dairy cow
farms can range between 1.2% and 16% (Jayarao
et al., 2006; Vilar et al., 2007; Van Kessel et al., 2011;
Castro et al., 2018) and contaminated milk poses several
risks for producers and consumers, namely: (i) the devel-
opment of listeriosis after consumption of raw milk con-
taminated products; (ii) the development of biofilms in the
milking equipment that contributes to persistent contami-
nation of the BTM and (iii) cross-contamination of dairy
processing plants, pasteurized dairy products or other
food-associated environments (MacDonald et al., 2005;
Oliver et al., 2005; Latorre et al., 2010, 2011; Fox
et al., 2011). Faecal shedding of L. monocytogenes also
poses a risk for inter-animal transmission in dairy farms
and contamination of agricultural environments and raw
vegetables at the pre-harvest stages (Schlech
et al., 1983).
Listeria monocytogenes population is heterogeneous and

can be classified into lineages (Wiedmann et al., 1997),
PCR genoserogroups (Doumith et al., 2004), CCs (clones)
and sequence types (STs) as defined by multilocus
sequence typing (MLST) (Ragon et al., 2008), and sub-
lineages (SLs) and cgMLST types (CTs), as defined by core
genome MLST (cgMLST) (Moura et al., 2016). Listeria
monocytogenes genetic heterogeneity also reflects different
pathogenic potential among L. monocytogenes isolates,
with some clones being more frequently isolated from
humans (e.g. CC1, CC2, CC4 and CC6) (Maury
et al., 2016, 2019) and ruminants (e.g. CC1) (Dreyer
et al., 2016) clinical cases. Despite increasing evidence that
dairy products and ruminants are important reservoirs of L.
monocytogenes (Nightingale et al., 2004; Borucki
et al., 2005; Ho et al., 2007; Esteban et al., 2009;
Dell’Armelina Rocha et al., 2013; Haley et al., 2015; Hurtado
et al., 2017; Castro et al., 2018; Maury et al., 2019; Hafner
et al., 2021), little is still known about the genetic diversity,
transmission dynamics and persistence of pathogenic L.
monocytogenes in farm environments.
The objectives of the present study were: (i) to deter-

mine the prevalence of Listeria spp. in individual dairy
ruminants and the farm environment in Spanish farms by
a longitudinal study design; (ii) to characterize the genetic
diversity and population structure of L. monocytogenes in
dairy farms using whole-genome sequencing; and (iii) to
understand the transmission of L. monocytogenes at the
farm level and the risk factors [season, production

hygiene, lactation number and the days in milk (DIM) of
current lactation] that influence it.

Results

Prevalence of Listeria spp. in dairy farms

A total of 3251 samples were collected from 19 Spanish
dairy farms over three consecutive seasons (Fig. 1;
Table S1): 2081 from animals (2080 faeces and one
brain sample from a CNS infection case) and 1170 from
the surrounding farm environment (195 feed, 390 food
and water troughs, 195 beddings, 195 milk filters and
195 milking station floor). Each farm was sampled one
time per season except farm ‘Sheep B’ which was sub-
jected to eight additional samplings from 2019 to 2020
(n = 400 extra samples: 144 from farm environment
and 256 from animal faeces, see M&M Fig. 1 and
Fig. S1). None of the farms reported listeriosis cases,
except one farm (‘Sheep C’), where a listeriosis outbreak
occurred on the last season sampled (Spring 2020).

Listeria spp. was detected in 94.7% (18/19) of farms
and in all sampling seasons (Fig. 1). Overall, Listeria spp.
prevalence was 11.2% (318/2850), and similar in faeces
samples (10.2%; 186/1824) and farm environment sam-
ples (12.9%; 132/1026) (Fig. 1, Table S2). Prevalence
varied significantly between farms from 0% to 43.3% and
was overall higher in cattle and sheep farms (Table S2).
The most prevalent species were L. innocua (64.7%;
275/425) and L. monocytogenes (30.6%; 130/425)
(Table 1). Co-occurrence of the two Listeria species was
detected in 0.8% (14/1824) of individual animal faeces
and 1.1% (11/1026) environmental samples (Table S3).
Listeria monocytogenes was detected in 52.6% of farms
(10/19), and prevalence in positive farms ranged between
0.7% and 21.3%, frequently higher for cattle farms
(Fig. 1B, Table S2). Listeria monocytogenes prevalence
was similar in faeces samples (3.8%; 70/1824) and farm
environment samples (2.5%; 26/1026), although, in some
farms, L. monocytogenes was most frequently present in
faeces samples compared to environmental samples in a
specific season (Fig. 1B). Listeria innocua was present in
6.7% (123/1824) of faeces samples and in 10.8%
(111/1026) of farm environmental samples (Table S3).

Among environmental samples, L. monocytogenes
was detected in all sampled sites except in the milking
station floor where other Listeria spp. were present (eight
L. innocua and one L. newyorkensis). Listeria mono-
cytogenes occurred on food troughs (5.8%), beddings
(3.5%), feed (2.9%), milk filter socks (MFS) (2.3%) and
the water troughs (0.6%) (Tables S2 and S3). Of note, no
L. monocytogenes was detected in feed, food troughs
and water troughs from four out of nine of the farms
where faecal shedders were detected.
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Fig. 1. (A) Listeria spp. isolated in this study from dairy cattle, sheep and goat farms during three consecutive seasons. Farm ‘Sheep B’ was
sampled 11 times during seven consecutive seasons from autumn 2018 to spring 2020 (see Material and methods). Circle size is proportional to
the number of isolates.
B. Prevalence of L. monocytogenes in faeces samples and the farm environment during three consecutive seasons. For consistency among
farms, only data from three consecutive seasons (autumn 07-Nov-2018, winter 27-Feb-2019 and spring 10-Apr-2019) were considered for preva-
lence calculation on farm ‘Sheep B’.
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Among animals, different seasonal patterns of L.
monocytogenes shedding were observed (Fig. 1B).
While no L. monocytogenes was detected in animals
from farm ‘Cattle B’ during autumn and winter, it
increased sharply in the spring season (28.1%). Farm
‘Cattle G’ was characterized by a high L. mono-
cytogenes prevalence of faecal shedders during autumn
and winter (21.9% in both seasons), but none was
detected in spring. In farm ‘Cattle I’, although no L.
monocytogenes was detected in autumn, it increased
sharply to 31.2% in winter and disappeared in the spring
sampling. Finally, while none of the tested sheep shed L.
monocytogenes during autumn in farm ‘Sheep B’, the
prevalence increased to 34.3% during winter and to 50%
during spring (Fig. 1B).
Interestingly, in farm ‘Sheep C’, where an 8-week liste-

riosis outbreak occurred in the spring of 2020, no L.
monocytogenes was isolated from any of the faeces or
environmental samples collected. The outbreak caused
89 abortions (from a total of 974 pregnant sheep) and
CNS symptoms (inappetence, recumbency, difficulties in
swallowing, drooping eyelid, ear and lip, head-tilt and cir-
cling) in six animals (1.6% total mortality). On samples
taken post-mortem from the bedding surfaces, faeces
and the brainstem of one diseased sheep, L. mono-
cytogenes was isolated from the brainstem and from one
bedding sample but only L. innocua was detected on the
faeces (Table S3).

Population structure and genetic diversity of Listeria
spp. in dairy farms

Altogether, 425 Listeria spp. isolates were obtained from
the farm environment (176/425, 41.4%) and animal sam-
ples (249/425, 58.6%) and further characterized at the
genomic level. Eight different Listeria species were identi-
fied: L. monocytogenes (n = 130, 30.6%), L. innocua
(n = 275, 64.7%), L. valentina (n = 6, 1.4%), L.
newyorkensis (n = 5, 1.2%), L. fleischmannii subsp. col-
oradonensis (n = 4, 0.9%), L. aquatica (n = 3; 0.7%), L.
seeligeri (n = 1, 0.2%) and L. thailandensis (n = 1,
0.2%) (Figs 1 and 2; Table 1).

Listeria monocytogenes belonged to lineages I
(n = 91; 70%; genoserogroups IVb, n = 70 and IIb,
n = 21) and II (n = 39; 30%; genoserogroup IIa) (Figs 2
and 3). Among animal samples, the most prevalent SLs
and CCs were SL1/CC1 (n = 18, 13.8%), SL219/CC4
(n = 14, 10.8%), SL26/CC26 (n = 10, 7.7%) and SL87/
CC87 (n = 12, 9.2%), whereas SL666/CC666 (n = 12,
9.2%) was most prevalent in environmental samples
(Fig. 2A; Table 2).

Sixty-one different CTs were detected: 48 (79%)
unique to this study and 13 (21%) previously reported in
BIGSdb-Listeria, sharing two to seven allelic differences
with existing cgMLST profiles (Table S4). The majority of
CTs detected comprised only one isolate (44/61, 72.1%),
whereas 17 (27.9%) comprised 2–16 isolates sharing 0–
6 allelic differences (Table 2; Fig. 2B).

Up to five and eight different CTs could be isolated from
environmental and faecal materials respectively, on a sin-
gle sampling day (Table S3). Overall, a significantly higher
CT diversity was found in animal faecal samples than envi-
ronmental samples (Shannon indexes 3.4 vs. 2.8;
Hutcheson t-test, P = 0.006). No CTs were common to
multiple farms, except for L1-SL219-ST219-CT5814 which
was detected in farms ‘Sheep B’ and ‘Cattle B’, separated
by 73 km and sampled 7 days apart (Table S3). 16.4%
(10/61) CTs were common to both environmental and ani-
mal samples from the same farm, three of them collected
at different time points (Tables 2 and S3). Persistent L.
monocytogenes strains [i.e. continued presence over time,
at a specific location (Stasiewicz et al., 2015)] were identi-
fied in six dairy farms (Table 2) and in one sheep
(Tables S3 and S5).

Listeria pathogenic islands LIPI-3 and LIPI-4 were pre-
sent in 50% (65/130) and 32.3% (42/130) L. mono-
cytogenes, whereas all isolates carried LIPI-1, which is
part of the L. monocytogenes core genome (Fig. 3).
Acquired resistance traits towards antibiotics, disinfectants
or other stress conditions, were rare (Table 3, Table S3;
Fig. 3). Two isolates (1.5%, CTs L1-SL2-ST2-CT6147 and
L1-SL2-ST2-CT6148) harboured genes conferring resis-
tance to macrolides (ermG, mefA and msrD genes) or to
benzalkonium chloride (bcrABC and Tn6188::ermC; CT

Table 1. Number of isolates obtained in this study (N = 425).

Listeria species Animal Farm env. Feed Total

L. monocytogenes 89 (20.9%) 32 (7.5%) 9 (2.1%) 130 (30.6%)
L. innocua 150 (35.3%) 92 (21.6%) 33 (7.8%) 275 (64.7%)
L. valentina 5 (1.2%) 1 (0.2%) 6 (1.4%)
L. newyorkensis 5 (1.2%) 5 (1.2%)
L. fleischmannii subsp. coloradonensis 1 (0.2%) 2 (0.5%) 1 (0.2%) 4 (0.9%)
L. aquatica 3 (0.7%) 3 (0.7%)
L. seeligeri 1 (0.2%) 1 (0.2%)
L. thailandensis 1 (0.2%) 1 (0.2%)
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Fig. 2. Diversity of L. monocytogenes isolates collected in this study (n = 130) based on cgMLST (1748 loci) analyses.
A. Distribution of sublineages (SLs) in animals, feed and farm environmental sources. Corresponding clonal complexes (CCs), defined on the
basis of seven-locus MLST, are shown in brackets.
Fig. 2. Legend on next page.
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L2-SL313-ST325-CT1188 and L2-SL121-ST121-CT909
respectively). SSI-1 (32/130 isolates, 24.6%, tolerance to
low pH and high salt), SSI-2 (1/130, 0.7%; tolerance to
alkaline and oxidative stress conditions) and LGI-3 (1/130,
0.7%; tolerance to cadmium) genomic regions were also
present (Table S3). Acquired resistance genes were also
present in L. innocua (19/275, 6.9%) and L. aquatica (1/3,
33.3%), with tetM (resistance to tetracyclines) being the
most prevalent resistance trait detected (Table 3 and
Table S3).
The most prevalent L. monocytogenes CTs detected in

this study (L1-SL87-ST1591-CT5545, n = 12; L1-SL66

6-ST666-CT5281, n = 10; L1-SL219-ST219-CT5814,
n = 8; and L2-SL26-ST26-CT2445, n = 16) harboured at
least one of the following genomic regions: LIPI-3, LIPI-4
or SSI-1 (Table 2; Fig. 3).

Impact of farm type, season and farming practices in the
prevalence of L. monocytogenes

L. monocytogenes was detected more frequently in cattle
(7/10 positive farms, prevalence 4.1%) than in sheep (2/5
positive farms, prevalence 4.5%) and goat farms (1/4
positive farms, prevalence 0.2%) (Table S2). Although L.

B. Minimum spanning tree based on the cgMLST profiles L. monocytogenes observed in each farm sampled in this study. Circle sizes are pro-
portional to the number of isolates and are coloured by source type, as in panel A. Dashed lines delimitate SLs and are coloured according to the
phylogenetic lineage (red, lineage I; blue, lineage II). Values shown in connecting lines denote the number of allelic differences between profiles.
Grey zones delimitate isolates within the same CT [cut-off of seven-allelic differences (Moura et al., 2016)] and CTs common to more than one
isolate are labelled.

Table 2. Lm cgMLST types detected comprising two or more isolates (n = 17 types out of 61).

cgMLST type
No.

isolates Farm(s) Season(s)
Source
(s) Sources description Traits

Lineage I
L1-SL87-ST1591-CT5545

(CC87, IIb)
12 Sheep B Spring 2019 (Apr, May) A, E Faeces (11),

bedding (1)
LIPI-1, LIPI-4

L1-SL666-ST666-CT5281
(CC666, IVb)

10 Sheep B Winter 2019 (Feb, Mar),
Spring 2019 (Apr, May),
Summer 2019 (Jun),
Autumn 2019 (Sep)

E Milk filter (10) LIPI-1, LIPI-3

L1-SL219-ST219-CT5814
(CC4, IVb)

8 Sheep B,
Cattle B

Spring 2019 (May) A, E Faeces (7),
feed (1)

LIPI-1, LIPI-3,
LIPI-4

L1-SL1-ST1-CT5280
(CC1, IVb)

6 Sheep B Winter 2019 (Feb), Spring
2019 (Apr)

A Faeces (6) LIPI-1, LIPI-3

L1-SL1-ST1-CT5546
(CC1, IVb)

4 Sheep B Spring 2019 (Apr) A Faeces (4) LIPI-1, LIPI-3

L1-SL219-ST219-CT2246
(CC4, IVb)

4 Cattle G Autumn 2019 (Oct) A, E Faeces (2),
food trough (2)

LIPI-1, LIPI-3,
LIPI-4

L1-SL219-ST219-CT5797
(CC4, IVb)

3 Cattle E Spring 2019 (Apr) A Faeces (3) LIPI-1, LIPI-3,
LIPI-4

L1-SL6-ST6-CT5517
(CC6, IVb)

3 Sheep B Winter 2019 (Mar) A, E Faeces (1), feed (1),
bedding (1)

LIPI-1, LIPI-3

L1-SL1-ST1-CT2060
(CC1, IVb)

2 Cattle G Winter 2020 (Feb) A Faeces (2) LIPI-1, LIPI-3

L1-SL6-ST6-CT5393
(CC6, IVb)

2 Sheep B Winter 2019 (Feb, Mar) A Faeces (2) LIPI-1, LIPI-3

L1-SL392-ST392-CT7234
(CC392, IIb)

2 Sheep B Winter 2020 (Jan) A Faeces (2) LIPI-1

L1-SL387-ST388-CT5390
(CC388, IVb)

2 Sheep B Winter 2019 (Feb) A, E Faeces (1), feed (1) LIPI-1, LIPI-4

L1-SL1-ST1-CT8169
(CC1, IVb)

2 Sheep C Spring 2020 (May) A, E Brain (1),
bedding (1)

LIPI-1, LIPI-3

Lineage II
L2-SL26-ST26-CT2445

(CC26, IIa)
16 Cattle I Winter 2020 (Feb), Spring

2020 (May)
A, E Faeces (10), feed (1),

food trough (3),
bedding (2)

LIPI-1, SSI-1

L2-SL7-ST7-CT5782
(CC7, IIa)

5 Sheep B Spring 2019 (Apr, May) A, E Faeces (4),
milk filter (1)

LIPI-1, SSI-1

L2-SL7-ST7-CT1679
(CC7, IIa)

3 Cattle B Spring 2019 (May) A, E Faeces (2),
bedding (1)

LIPI-1, SSI-1

L2-SL37-ST37-CT1830
(CC37, IIa)

2 Cattle G Winter 2020 (Feb) A, E Faeces (1), food
trough (1)

LIPI-1

Abbreviations: A, animal; E, environment.
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Fig. 3. Genetic diversity of the 130 L. monocytogenes isolates sequenced in this study. cgMLST single linkage dendrogram. Branches are
coloured by phylogenetic lineage (L1, red; L2, blue) and labelled by SLs. Corresponding clonal complexes (CCs), defined on the basis of seven-
locus MLST, are shown in brackets. Isolates’ names, type of sample and CTs are shown in tips. Isolates belonging to the same CT are
highlighted in horizontal grey boxes. Vertical coloured boxes indicate the sampling farm, season and source, coloured according with the key
panel respectively. Colour-filled dark blue boxes indicate the presence of selected genetic traits: Listeria pathogenic islands (LIPI-1, LIPI-3 and
LIPI-4), internalins (inlA, inlB), intrinsic antibiotic resistance (fosX, lin, norB, sul) and acquired resistance loci towards antibiotics (aphA, ermG,
mefA, msrD), benzalkonium chloride (bcrABC, ermC), pH or oxidative stress (SSI-1, SSI-2) and metals (LGI-3). White-filled blue boxes represent
genes with truncations leading to premature stop codons.

Table 3. Acquired antibiotic resistance genes detected in this study.

Listeria species No. isolates Genesa Phenotypic resistanceb Farm(s) Source(s)

L. monocytogenes 2 mefA, msrD, ermG ERY, CLI Cattle G A, E
1 aphA CLI Goat A A

L. innocua 13 tetM CLI, TET Cattle A, E, G, J; Sheep A, E A, E
4 dfrD, lnuA, tetM CLI, TET Sheep E A, E
1 dfrD, lnuA, tetS, tetM CLI, TET, STX Goat D A
1 lnuA, tetM CLI, TET Cattle J E

L. aquatica 1 dfrK ERY, CLI, TET Sheep A A

Abbreviations: A, animal; E, environment.
aGene traits of antibiotic resistance towards: folate inhibitors (dfrD, dfrK); lincosamides (lnuA); macrolides (ermG, mefA, msrD); tetracyclines
(tetM, tetS).
bAntibiotics: erythromycin (ERY), clindamycin (CLI), tetracycline (TET), trimethoprim/sulfamethoxazole (STX).
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monocytogenes was detected more frequently in ‘Cattle
G’ and ‘Sheep B’ farms, no remarkable differences in
management practices were detected compared to other
farms of the same animal species where the prevalence
of Listeria spp. was lower (Table S1). Since only one out
of four goat farms was positive for L. monocytogenes
(Fig. 1C), and the prevalence was extremely low in this
farm (0.7%), goat farms were not included in further sta-
tistical analyses.
L. monocytogenes presence in consecutive seasons

was only detected in farm ‘Cattle G’ (Fig. 1A). In cattle
farms, the overall prevalence was higher in winter than in
autumn (χ² test, P < 0.05) (Figs. 1B and 4A). In sheep
farms, the overall prevalence was higher in winter and
spring than in autumn (χ² test, P < 0.05) (Figs 1B and
4B). Interestingly, cows were more likely to shed L.
monocytogenes on the second lactation than on the first,
fourth or higher lactations (χ² test, P < 0.05) (Fig. 4C), but
DIM did not impact the frequency of L. monocytogenes

faecal shedding (Fig. 4D). In sheep, no significant associ-
ation was found between the lactation number and fre-
quency of L. monocytogenes faecal shedding (Fig. 4E).
Differences in production hygiene were observed
between both cattle and sheep farms, but there was no
significant correlation between hygiene scores and L.
monocytogenes prevalence (Table S6).

Genotypes isolated from faeces samples did not occur
in MFS, indicating that pre-milking teat disinfection used in
these farms was effective to prevent L. monocytogenes
milk contamination, with exception for farm ‘Sheep B’, in
which this procedure was not typically performed (similarly
to all small ruminants’ dairy farms). Accordingly,
L2-SL7-ST7-CT5782 isolated from sheep faeces samples
was identified in MFS in the farm ‘Sheep B’.

Although all farms reported usage of antibiotics for
treatment purposes (Table S1), acquired genetic traits of
antibiotic resistance were rare in L. monocytogenes.
Interestingly, among L. innocua, 19 isolates harboured
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tetM genes and showed resistance towards tetracycline
(Table 3), 13 (68.4%) of which were isolated from farms
using tetracyclines.

Discussion

Understanding L. monocytogenes population dynamics
and its biodiversity is essential for effective disease sur-
veillance and the development of control strategies. To
the best of our knowledge, this is the largest longitudinal
study on the prevalence, ecology and genomic character-
istics of L. monocytogenes in individual dairy ruminants
and the farm environment. Other reports have either
applied a longitudinal study design with a reduced num-
ber of farms (one to three farms) (Ho et al., 2007; Haley
et al., 2015; Castro et al., 2018; Chow et al., 2021) and/or
analysed faeces samples from randomly chosen farm
ruminants, which limits the understanding of global and
individual faecal shedding patterns over time (Haley
et al., 2015; Castro et al., 2018).

In this study, the prevalence of L. monocytogenes
detected in dairy farms (3.8% in faeces samples and
2.5% in farm environment samples) was lower than previ-
ously reported in dairy farms with no clinical listeriosis
cases (faecal sample prevalence of 0%–60% in cattle
and 14.2% in sheep) in farms from USA and Europe
(Skovgaard and Morgen, 1988; Nightingale et al., 2004;
Ho et al., 2007; Esteban et al., 2009; Castro et al., 2018;
Chow et al., 2021). Differences in climate and farm man-
agement (e.g. feed used) between different geographical
regions may account for the low prevalence of L. mono-
cytogenes in our study compared to previous studies
performed in northern countries (Yusuf et al., 2007;
Cavicchioli et al., 2019; Ianevski et al., 2019).

L. monocytogenes was detected more frequently in
cattle farms than in small-ruminant farms, in agreement
with previous studies concerning the epidemiology of lis-
teriosis in ruminants (Nightingale et al., 2004; Esteban
et al., 2009; Hurtado et al., 2017; Hafner et al., 2021).
Interestingly, the pathogenic species, L. ivanovii, often
reported in small ruminants (Ramage et al., 1999; Orsi
and Wiedmann, 2016; Hafner et al., 2021) was not
detected in any of our farms, which could be due to its
relatively low prevalence (Sauders et al., 2012; Orsi and
Wiedmann, 2016) or to possible biases of isolation proto-
cols that have typically been optimized for recovery of L.
monocytogenes (Orsi and Wiedmann, 2016). Our results
are in line with other reports using cultivation-based
approaches showing that the incidence of L. innocua in
ruminant faeces is higher (9.7%–22.7%) than that of L.
monocytogenes (1.8%–9.3%) (Vilar et al., 2007; Zhao
et al., 2021), though it has been shown that L. innocua
can outgrow L. monocytogenes during enrichment proto-
cols masking its detection (Keys et al., 2013).

Although consumption of spoiled silage is thought to
be the principal source of infection for ruminants
(V�azquez-Boland et al., 2001), up to a third of animal lis-
teriosis cases lack an evident link between listeriosis and
silage feeding (Walland et al., 2015). In this study, in
50% of the farms where faecal shedders were detected,
no L. monocytogenes could be detected in feed, food tro-
ughs or water troughs. It has been suggested that wild-
life, farm staff or visitors, acquisition of new animals
and/or farm equipment could also vehiculate L. mono-
cytogenes into farms (Sanaa et al., 1993; Cooper and
Walker, 1998; Murinda et al., 2004; Nightingale
et al., 2004; Haley et al., 2015).

The majority of isolates retrieved here belonged to line-
age I (particularly to SL1/CC1, SL219/CC4 and SL87/
CC87) which is significantly associated with a clinical ori-
gin both in humans and animals (Gray et al., 2004; Maury
et al., 2016; Papi�c et al., 2019). CC1 and CC4 have been
shown to be highly associated with dairy products (Maury
et al., 2019; Painset et al., 2019), being more invasive
(hypervirulent) and colonizing better the intestinal lumen
(Dreyer et al., 2016; Maury et al., 2019; Papi�c
et al., 2019) and a cause of multiple human listeriosis
outbreaks (Linnan et al., 1988; Costard et al., 2017).
CC87 has been previously reported as predominant in
foodborne and clinical isolates in China and related to
two outbreaks in Northern Spain (Pérez-Trallero
et al., 2014; Wang et al., 2018; Zhang et al., 2020).

Interestingly 21% of the CTs here detected were not
unique to this study and included genotypes previously
detected in the context of listeriosis surveillance in Europe
and Oceania (Kwong et al., 2016; Moura et al., 2016,
2017, 2021; Hurley et al., 2019; Painset et al., 2019)
(Table S4). These findings highlight the importance of sur-
veillance programs in farm animals, even in the absence of
disease signs, to prevent pathogen transmission to
humans through the food chain. This would be also of par-
ticular importance in cows on their second lactation and
during winter times, when L. monocytogenes prevalence
was significantly higher. Previous reports also showed that
L. monocytogenes prevalence in cattle farms was higher
during winter (Husu, 1990; Mohammed et al., 2009; Castro
et al., 2018) and that an inadequate transition from the first
to the second lactation could impair immune function
(Roche et al., 2009) and predispose to L. monocytogenes
colonization. Our findings also highlight the importance of
antibiotic stewardship in veterinary medicine, since tetracy-
cline resistance was detected more frequently in L.
innocua isolates from farms using this antibiotic.

Here, the same genotypes were found in multiple ani-
mals and surfaces within the same farms, although the
majority of them (72%) were sporadic. Moreover, with
exception for one sheep, identical genotypes could not
be detected in the same animal along different seasons,
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suggesting that faecal shedding period is shorter than the
time frame between our sampling dates (14–135 days).
Indeed, faecal carriage of L. monocytogenes in healthy
human adults is also reported to be transient (Grif
et al., 2003) and previous experimental studies in sheep
inoculated orally with a high dose of L. monocytogenes
(1010 colony forming units) have shown that faecal shed-
ding lasted for only 10 days (Zundel and Bernard, 2006).
Studies in wild and domestic ruminants suggest that ani-
mals can silently carry L. monocytogenes in tonsils even
without faecal shedding (Zundel and Bernard, 2006;
Palacios-Gorba et al., 2021), which could explain why L.
monocytogenes was not detected in the faeces of sheep
herd where a listeriosis outbreak occurred.
In summary, our data show that (i) L. innocua and L.

monocytogenes were the most prevalent Listeria spp. in
both dairy ruminant faeces and farm-associated environ-
ments; (ii) single ruminants can harbour L. mono-
cytogenes alone or together with L. innocua without
clinical signs of infection; (iii) L. monocytogenes could be
isolated from half of the dairy farms sampled; (iv) CC1
and CC4 hypervirulent L. monocytogenes clones, which
are among the most common L. monocytogenes CCs
responsible for human infection, represented 30% of the
L. monocytogenes isolates retrieved in this study and
were mainly obtained from host-associated samples (fae-
ces); (v) the overall L. monocytogenes prevalence was
higher in winter than in autumn in cattle farms and higher
in winter and spring than autumn in sheep farms; and
(vi) L. monocytogenes faecal shedding was intermittent
and cows were more likely to shed L. monocytogenes on
their second lactation.
Our data are consistent with the hypothesis that dairy

farms may favour the selection of invasive L. mono-
cytogenes clones, which are shed in the faeces more
efficiently than hypovirulent clones (Maury et al., 2019),
and constitute a reservoir for hypervirulent strains that
can colonize dairy products. This study improves the
understanding of Listeria spp. prevalence and ecology in
the dairy ruminant environment and may contribute to the
development of effective disease surveillance and control
strategies to reduce the number of both human and ani-
mal listeriosis cases.

Experimental procedures

Farms

The study population consisted of 19 dairy ruminant
farms (10 cattle, five sheep and four goats) with different
housing systems, management practices and herd sizes
located in the provinces (administrative division in Spain)
of Valencia, Alicante, Castell�on, Murcia and Albacete
(mid-east and south-east of Spain) (Table S1; Fig. S1).

No history of clinical listeriosis had been observed in
any of the farms before and/or during the sampling
period, except for farm ‘Sheep C’ which suffered a listeri-
osis outbreak in the last season sampled (spring 2020).

Sample collection

During the sampling period (winter 2018 to spring 2019
and winter 2019 to spring 2020), each farm was visited
once per season (autumn, winter and spring), for a total
of three visits per farm (Fig. S1). Farm characteristics,
sampling dates and Listeria spp. isolated are indicated in
Tables S1 and S3. Farm ‘Sheep B’ was sampled
11 times during seven consecutive seasons from autumn
2018 to spring 2020 for Listeria genomic diversity analy-
sis due to the discovery of the new species L. valentina
in the 27-Feb-2019 sampling (Quereda et al., 2020). For
consistency with data from other farms, only data from
three consecutive seasons (autumn 07-Nov-2018, winter
27-Feb-2019 and spring 10-Apr-2019) in this farm were
considered for prevalence and statistics calculations.

On each farm visit, 50 samples [32 samples of faeces
from individual animals, three samples of feed, three
samples of bedding, three MFS, and nine surface swabs
(three from milking station floor, three from water troughs,
three from food troughs)] were collected during three con-
secutive seasons (autumn, winter and spring) amounting
to 150 samples per farm. The same 32 animals sampled
during the first farm visit were monitored in the course of
followings evaluations (three seasons total) by veterinar-
ians during the usual handling of the animals, following
the guidelines of European Union Directive 2010/63/EU
for the protection of animals used for scientific purposes
(European Union, 2010). Cows, sheep, or goats that
were sold in the intervals between the sampling periods
were replaced in the study with a new animal. MFS were
selected for sampling since the prevalence of L. mono-
cytogenes is twice that in BTM (Castro et al., 2018).
Each sample was collected into a sterile bag by the use
of clean gloves or sampling utensils. Rectal faecal grab
samples were collected from randomly selected animals
in each farm to have a representation of all lactation num-
bers. Faecal samples were obtained by rectal grab to
avoid cross-contamination among animals. This routine
veterinary practice does not require the approval of the
Animal Ethics and Experimentation Committee. Bedding
samples, food troughs samples, water troughs samples
and milking station floor samples were collected from
diverse locations on each farm. All samples were col-
lected using disposable gloves by aseptic conditions and
stored in clean coolers with ice packs for transit to the
laboratory. Samples were processed within 2–12 h of col-
lection (Fig. S1).
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Animal cleanliness and production hygiene

A numerical scoring system for assessing animal cleanli-
ness of five body areas (tail head, ventral abdomen,
udder, upper rear limb and lower rear limb) was used for
the individual animals as previously described (scale of
1–5, where score 1 = very clean, score 5 = heavily
soiled) (Reneau et al., 2005). Production hygiene was
evaluated based on the cleanliness of the premises (milk
room, milking station, feed troughs, water troughs and
beddings) on farm visits on a scale of 1–3 as previously
described (Castro et al., 2018). A score of ‘1’ cor-
responded to a major deficit in production hygiene, ‘2’ to
a minor deficit in production hygiene and ‘3’ to no nota-
ble deficit in production hygiene.

Listeria spp. isolation and identification

Listeria spp. were isolated as previously described
(Quereda et al., 2020; Palacios-Gorba et al., 2021).
Briefly, 8 g of rectal faecal samples or bedding samples
were diluted 1/10 in Half-Fraser broth (Scharlab, Spain),
homogenized and incubated at 30�C for 24 h for enrich-
ment. Swab samples (feed troughs, water troughs and
milking station floor) were placed in 10 ml Half Fraser
broth, vortexed for 2 min and incubated at 30�C for 24 h
for enrichment. Entire MFS socks or 8 g of feed samples
were used as sample material for primary enrichment in
Half Fraser broth (30�C, 24 h). Samples were homoge-
nized manually for 1 min until the solid matter was
completely suspended in the enrichment solution. One
hundred microliters of the incubated suspension were
transferred to 10 ml Fraser broth (Scharlab) and incu-
bated at 37�C for 24 h. After the second enrichment,
100 μl enriched culture and two 10-fold dilutions were
transferred to RAPID’L.mono plates (BioRad, USA) and
incubated at 37�C for 24 h. Characteristic Listeria spp.
colonies were blue or white, with or without a yellow halo,
round, convex, 1–2 mm [L. monocytogenes (PIPLC
+/xylose-) forms blue colonies, L. ivanovii (PIPLC
+/xylose+) forms blue-green colonies with distinct yellow
halos, other Listeria spp. form white colonies]. When
more than one type of colony was present in RAPID’L.
mono plates, one L. monocytogenes colony (no L.
ivanovii was detected) and one non-pathogenic Listeria
spp. were picked and further confirmed in selective
Oxford agar plates for Listeria (Scharlab) (colonies were
approximately 2 mm in diameter, grey-green with a black
sunken centre and a black halo) and Columbia CNA agar
with 5% sheep blood agar plates (colonies were opaque,
flat, 1–2 mm). Isolates were preserved in glycerol at
�80�C and sent to the World Health Organization Collab-
orating Centre for Listeria (Institut Pasteur, Paris, France)
for characterization. Species identification was performed

by matrix-assisted laser desorption ionization-time of
flight mass spectrometry using the MicroFlex LT system
with the last MBT library DB-7854 (Bruker Daltonics,
Germany), as previously described (Thouvenot
et al., 2018) and by whole genome sequencing as previ-
ously described (Quereda et al., 2020).

Isolates carrying acquired resistance genes (n = 23)
were subjected to antibiotic susceptibility testing using
the disc diffusion method on Mueller Hinton Fastidious
Agar (Becton-Dickinson, Germany) and the following anti-
biotics: ampicillin (10 μg), clindamycin (2 μg), erythromy-
cin (15 μg), gentamycin (10 μg), kanamycin (30 μg),
tetracycline (30 μg) and trimethoprim/sulfamethoxazole
(1.25/23.75 μg). Results were interpreted according to
the European Committee on Antimicrobial Susceptibility
Testing (EUCAST) and Clinical and Laboratory Stan-
dards Institute (CLSI) guidelines (Clinical and Laboratory
Standards Institute (CLSI), 2017; EUCAST, 2020).

Genome sequencing and assembly

DNA extraction was carried out with the NucleoSpin Tis-
sue purification kit (Macherey-Nagel, Germany) from
0.9 ml Brain heart infusion (Difco, USA) cultures grown
overnight at 35�C. DNA libraries were prepared using the
Nextera XT DNA Sample kit (Illumina, USA) and
sequenced in a NextSeq 500 platform (Illumina) using
2 � 150 bp runs, according to the manufacturer’s proto-
col. Raw reads were trimmed with fqCleaner v.3.0 (Alexis
Criscuolo, Institut Pasteur, Paris) as previously described
(Quereda et al., 2020; Palacios-Gorba et al., 2021), and
assembled with SPAdes v.3.12.0 (Prjibelski et al., 2020)
using automatic k-mer selection and the --only-assembler
and --careful options.

Molecular typing and phylogenetic analysis

In silico typing was performed from the assemblies using
the genoserogrouping (Doumith et al., 2004), MLST
[seven loci (Ragon et al., 2008)], cgMLST profiles [1748
loci (Moura et al., 2016)], resistance and virulence
schemes (244 loci) implemented at using BIGSdb-Listeria
v.1.30 [https://bigsdb.pasteur.fr/listeria; (Jolley and
Maiden, 2010; Moura et al., 2016)]. Genes were scanned
using the BLASTN algorithm, with minimum nucleotide
identity and alignment length coverage of 70% and word
size of 10, as previously described (Moura et al., 2016).
MLST profiles were classified into ST and grouped into
CCs as previously described (Ragon et al., 2008).
cgMLST profiles were grouped into CTs and SLs, using
the cut-offs of 7 and 150 allelic mismatches respectively,
as previously described (Moura et al., 2016). Minimum
spanning trees and single linkage dendrograms were
built from cgMLST profiles using Bionumerics 7.6
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software (Applied Maths, Belgium) and annotated with
iTol v.4.2 (Letunic and Bork, 2021). Assemblies were
also screened for antimicrobial resistance genes and the
presence of plasmids using ABRicate v.1.0.1 (https://
github.com/tseemann/abricate) and MOB-suite v.2.0.1
(Robertson and Nash, 2018) respectively.

Statistical analysis

For DIM analysis cows were grouped into different cate-
gories considering the dairy cattle lactation curve and
classified into ‘early lactation’ (0–120 days), ‘mid-lacta-
tion’ (121–240 days), ‘late lactation’ (241–360) and ‘end
of lactation’ (>361 DIM). DIM were not analysed in sheep
farms since all the ewes in the same farm were synchro-
nized using intravaginal sponges and delivered approxi-
mately the same day. Shannon diversity indices and
Hutcheson T-test (Hutcheson, 1970) were calculated
using the web https://www.dataanalytics.org.uk/
comparing-diversity/. The rest of the statistical analyses
were conducted with IBM SPSS Statistics version 25.
The significance level for all statistical tests was
P < 0.05. Chi-square tests were performed to determine
the effect of season, the number of lactation and DIM on
the number of L. monocytogenes faecal shedders. Spe-
arman’s rank-order correlations were done to evaluate
the association between the farm hygiene score and L.
monocytogenes prevalence.
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