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Alcohol is a legal drug present in several drinks commonly used worldwide (chemically

known as ethyl alcohol or ethanol). Alcohol consumption is associated with several

disease conditions, ranging frommental disorders to organic alterations. One of the most

deleterious effects of ethanol metabolism is related to oxidative stress. This promotes

cellular alterations associated with inflammatory processes that eventually lead to cell

death or cell cycle arrest, among others. Alcohol intake leads to bone destruction and

modifies the expression of interleukins, metalloproteinases and other pro-inflammatory

signals involving GSKβ, Rho, and ERK pathways. Orthodontic treatment implicates

mechanical forces on teeth. Interestingly, the extra- and intra-cellular responses of

periodontal cells to mechanical movement show a suggestive similarity with the effects

induced by ethanol metabolism on bone and other cell types. Several clinical traits

such as age, presence of systemic diseases or pharmacological treatments, are taken

into account when planning orthodontic treatments. However, little is known about the

potential role of the oxidative conditions induced by ethanol intake as a possible setback

for orthodontic treatment in adults.

Keywords: ethanol, oxidative stress, orthodontic movement, periodontal ligament, orthodontic treatment

INTRODUCTION

Since prehistoric ages alcohol (chemically known as ethyl alcohol or ethanol; EtOH) has been
consumed by humans. In fact, EtOH is present in beer, wine, spirits and many other drinks.
In fact, these products are usually consumed on a daily basis in several countries worldwide.
EtOH dependence and abuse are the most abundant mental disorders worldwide. In America,
approximately 14% of the population meets chronic alcoholic criteria during some period of their
lives (Elkstrom and Ingelman-Sundberg, 1989; Caro and Cederbaum, 2004). EtOH is involved in
almost 50% of traffic accidents, the majority of homicides, suicides and domestic violence cases
(Graham et al., 1998; Ofori-Adjei et al., 2007). Additionally, EtOH is also implicated in several
organic diseases as well as in diverse forms of cancer, including oral cancer (Nelson et al., 2013).
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Many reports are available on EtOH-related oral health
(Kranzler et al., 1990; Franceschi, 1993; Gelbier andHarris, 1996).
There are some important studies on gingival margin recession
and oral mucosae alterations (Harris et al., 1996, 2004; Khocht
et al., 2003, 2013). Little evidence is reported about the direct
effects of EtOH consumption on dental tissues, aside from cancer.
One important reason to explain this lack of evidence is the
existence of a diversity of factors in connection with alcoholism,
e.g., vitamin/nutrients deficiency, other drugs of abuse, smoking,
deficient oral care, caries, etc. All these elements impair the
identification of concrete factors directly and exclusively related
to EtOH in oral diseases (Gelbier andHarris, 1996;Marques et al.,
2015).

According to the American Association of Orthodontists,
around 4.8 million Americans wear braces. From 1994 to 2010,
the percentage of adults getting braces rose from 680,000 to 1.1
million a year (58%). This fact suggests that a relevant number
of adults getting braces or other tooth-related devices might
consume EtOH along a great part of the orthodontic treatment.

There are several, and sometimes unknown, factors that
determine orthodontic outcome. This review focuses on the
potential role of EtOH consumption during orthodontic
treatment as a plausible factor affecting orthodontic outcome.
Surprisingly, EtOH exposure and orthodontic movement affect
the same cellular and molecular signaling pathways, giving
support to this hypothesis.

GENERAL AND LOCAL EtOH
METABOLISM: OXIDATIVE STRESS AND
EtOH-RELATED DISEASES

Because the liver is the main EtOH-detoxifying organ, EtOH-
induced alterations have been mostly studied in hepatic tissue.
However, nervous tissue, diverse connective-related tissues and
others are also affected. EtOH exerts its deleterious effects
in several tissues via oxidative and non-oxidative metabolic
pathways (Bondy and Guo, 1995) involving free radical
production and lipid peroxidation (Sun et al., 1997; Bosch-
Morell et al., 1998; Ramachandran et al., 2003; Almansa et al.,
2013; Flores-Bellver et al., 2014). One of the most important
factor in this toxic process deals with the properties of EtOH to
promote reactive oxygen species (ROS). These ROS ultimately
react with macromolecules, among them membrane lipids,
producing aldehydes such as 4-Hydroxynonenal (4-HNE) and
Malondialdehyde (MDA). It is well known that aldehydes and
ROS can directly affect both proteins or DNA, leading to
transcription-repression of concrete genes. In fact, the role of
ROS and aldehydes seems to be a key factor for these alterations,
partially confirmed by the fact that administration of antioxidants
prevents these EtOH-induced cellular alterations (Herrera et al.,
2003; Bati et al., 2015; Han et al., 2015).

Cytochrome P450 and alcohol dehydrogenase (ADH) are
the most relevant enzymes involved in EtOH metabolism. Both
enzymes can be found not only in liver but also in other
tissues (detailed below). The cytochrome P450 family proteins
are involved in the oxidative metabolism of both endogenous and

xenobiotic products (Tsutsumi et al., 1993; Miksys and Tyndale,
2002). It is known that CYP2E1 isoform is specifically involved
in EtOH oxidation; furthermore, CYP2E1 has more affinity for
EtOH than alcohol dehydrogenase (ADH) (Albano, 2008). In
fact, CYP2E1 assumes an important role in ethanol metabolism,
being considered as a major component of the microsomal
ethanol-oxidizing system (MEOS) (Lieber and DeCarli, 1970;
Koop et al., 1982). Despite EtOH being mostly catabolized in
the liver by CYP2E1, the presence of CYP2E1 and ADH in
other tissues indicates that EtOH could also be processed by a
non-hepatic route (Martinez-Gil et al., 2015).

CYP2E1 is present in the digestive system, one of the most
threatening environments because it is continuously exposed
to different media containing chemicals, toxins, etc. In fact,
CYP2E1 and ADH are strongly expressed not only in liver and
the digestive tract, but also in other human oral cells as gingival
fibroblasts, pulp, tongue and osteoblasts (Redetzki, 1960; Dong
et al., 1996; Chen et al., 2006; Reichl et al., 2010; Plapp et al., 2015).
Interestingly enough, it is well established that there is a good
relation between CYP2E1 and EtOH in several digestive-related
forms of cancer, e.g., mouth, pharynx, esophagus, colorectum
and liver cancer (reviewed by Seitz and Wang, 2013). The
presence of CYP2E1 and ADH in other cell types could explain
a local and direct EtOH-detoxifying process (Flores-Bellver et al.,
2014). In this sense, ethanol diffuses rapidly into saliva. Thirty
minutes after alcohol intake, EtOH salivary and plasmatic levels
are equilibrated. At the same time the levels of acetaldehyde
in saliva exceed the systemic blood levels. Acetaldehyde and
ethanol from saliva easily reach all the local tissues (Waszkiewicz
et al., 2011, 2012; Zalewska et al., 2011). So it seems reasonable
that EtOH and acetaldehyde can directly affect oral related
structures.

Despite the fact that ADH has lower affinity for EtOH
than CYP2E1, ADH is also relevant for EtOH detoxification.
CYP2E1 and ADH are both present in the liver (Redetzki,
1960; Plapp et al., 2015) and also expressed in human attached
gingiva and tongue (Dong et al., 1996). Surprisingly enough,
whereas ADH is expressed in stromal osteoblasts, CYP2E1
seems to be unexpressed (Chen et al., 2006). Although these
enzymes are not ubiquitously present in all tissues, their presence
in liver and other tissues, clearly indicates the existence of
extra-hepatic EtOH metabolism and that it might be related
with some EtOH-related forms of cancer (Seitz and Wang,
2013).

PERIODONTUM, EXTRACELLULAR
MATRIX, AND BONE DYNAMICS

The periodontum must be briefly presented as a complex
histological area surrounding teeth relevant for root-tooth
stability. This periodontal structure includes fibroblasts
surrounded by the extracellular matrix (ECM) of hyaluronic
acid (HA) and other extracellular proteins as collagen, mostly
produced by periodontal fibroblasts. Themost abundant collagen
form is the type I collagen (Bornstein and Sage, 1980; Zhang
et al., 1993).
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Other important components of the periodontal ligament
(PDL) are the matrix metalloproteinase enzyme family (MMP’s)
that degrade collagen, and its counterpart, tissue inhibitor
metalloproteinases (TIMP) that do inhibit MMP’s, being MMP-
1 enzyme the most abundant in PDL (Birkedal-Hansen et al.,
1993). Obviously, the balance between collagen production and
MMP’s activity determines the PDL quality and consequently
dental stability. MMP’s also degrade collagen under pathological
conditions and therefore MMP-1, MMP-8, MMP-2, MMP-13 are
locally and temporarily expressed during toothmovement phases
(Apajalahti et al., 2003; Ingman et al., 2005; Cantarella et al., 2006;
Leonardi et al., 2006; Huang et al., 2008; Meeran, 2012).

Root and bone resorption are both directly regulated by
a group of tumor necrosis factor (TNF)-related proteins
with paracrine-regulatory properties (Schoppet et al., 2002).
Osteoprotegerin (OPG) is a soluble protein secreted by
osteoblasts that acts as an inhibitor of both osteoclast
differentiation and resorptive activity, promoting osteoclast
apoptosis (Oshiro et al., 2002). Receptor activator of nuclear
factor kappa-b ligand (RANKL) is expressed on the cell surface of
osteoblast precursors (Schoppet et al., 2002), whereas its receptor
(RANK) is expressed by osteoblastic cell lineages and activated
T-cells (Katagiri and Takahashi, 2002). RANKL acts, together
with macrophage colony stimulating-factor (M-CSF), promoting
osteoclast formation, differentiation and activation, enhancing
bone resorption activities (Kong et al., 1999; Liu and Zhang, 2015;
Martin and Sims, 2015).

One important step for osteoclast fusion and activation is the
coupling of RANK to RANKL. This union can be blocked by
OPG, so the balance “resorption vs. reposition” depends on the
prevalence of RANK vs. OPG, respectively.

ORTHODONTIC FORCES AFFECT
PERIODONTAL STRUCTURES MODIFYING
INTRA- AND EXTRA-CELLULAR
PROTEINS

Orthodontic Forces Lead to Extracellular
Modifications
During orthodontic movement, applied forces modulate both
molecular and cellular configurations, e.g., those producing
collagen (Bumann et al., 1997), modifying the periodontal
structure and therefore dental position (Nakagawa et al., 1994;
Krishnan and Davidovitch, 2006). Some evidence indicates
that mechanical forces modulate the expression of integrins,
MMP’s or collagen (Bolcato-Bellemin et al., 2000; Von den
Hoff, 2003; He et al., 2004). On the hypothetical model for
periodontal remodeling summarized by Meikle (2006), tension
and compressive sides present some similarities. In the tensile
strain, periodontal fibroblasts release IL-1 and IL-6; these
interleukins can stimulate MMP’s and inhibit TIMP synthesis,
so bone and matrix lose structure in order to facilitate bone
and PDL regeneration. At the same time, mechanically activated
fibroblasts can induce angiogenesis by vascular endothelial
growth factor (VEGF) release, helping bone renewal. In the
compression side, similarly to the tensile side, IL-1, IL-6, and

MMP’s are released. One of the differences between both
complementary processes seems to be the prevalence of OPG
vs. RANK, leading to bone reconstruction and bone destruction,
respectively (Tyrovola et al., 2008).

This represents an interesting issue for orthodontics or
periodontal management, since both conditions involve these
type of cellular responses, e.g., during tooth movement or
periodontal disease. In this regard, some reports have found
different biological markers in the gingivo-crevicular fluid
(GCF): elevated levels of Prostaglandin E, IL-1β, IL-6, TNF-α and
epidermal growth factor (EGF) have been found in GCF during
tooth movement or periodontal disease (Grieve et al., 1994;
Uematsu et al., 1996). Hyaline material and sterile necrosis in
local pressure zones have been found also after tooth movement
(Kurol and Owman-Moll, 1998). Unfortunately, the significance
of these changes is only partially known.

Extracellular matrix degradation facilitates cell proliferation
and capillary growth leading to the synthesis of new PDL and
bone structures. However, on the compression side, periodontal
cells also release IL-1 and IL-6, up-regulating not only MMP’s,
but also RANKL, leading to osteoclast-mediated bone resorption
(Nakano et al., 2011).

Cathepsins are lysosomal cysteine proteases that play an
important role in bone resorption. Cathepsin B levels can be
increased by orthodontic tooth movement, being involved in
extracellular matrix degradation in response to mechanical stress
(Maeda et al., 2007). Since Cathepsins K, B and L are over-
expressed in the compression side, they may be related to bone
resorption (Domon et al., 1999; Sugiyama et al., 2003).

Orthodontic Forces Lead to Intracellular
Modifications
Mechanical strain generates diverse intracellular responses
in cells during orthodontic movements that could be of
clinical interest. Integrins are transmembrane proteins whose
extracellular side connects to the ECM via fibronectin (Wang
et al., 1993; Clarke and Brugge, 1995), and the intracellular
one connects with actin of the cytoskeleton. In fact, this actin-
cytoskeletal connection is mediated by proteins as paxillin,
talin and vinculin leading to focal adhesions that are crucial
for cell adhesion and migration (Sastry and Burridge, 2000;
Meikle, 2006). Although little is known about the role of integrin
receptors in ECM for cell adhesion, the intracellular side is
associated to cAMP and inositol phosphate activation pathways
both involved in downstream cell signaling (Wang et al., 1993;
DeMali et al., 2003). Well known integrin-mediated extracellular
signals are mitogen-activated protein kinases (MAPKs) and Rho
pathways, both are activated by mechanic stimuli in periodontal
fibroblasts and osteoblasts (Basdra et al., 1995; Peverali et al.,
2001).

MAPKs regulate several cellular responses such as
cell division, metabolic processes, survival-apoptosis and
differentiation, among others. Five distinct groups of MAPKs
have been characterized in mammals: extracellular signal-
regulated kinases (ERKs) 1 and 2 (namely ERK1/2), c-Jun
amino-terminal kinases (JNKs) 1, 2, and 3, p38 isoforms α,

Frontiers in Physiology | www.frontiersin.org 3 January 2017 | Volume 8 | Article 22

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Barcia et al. Ethanol-Induced Oxidative Stress and Orthodontic Treatment

β, γ, and δ, ERKs 3 and 4, and ERK5 (reviewed by Chen
et al., 2001; Kyriakis and Avruch, 2001; Roux and Blenis,
2004). ERK 1 and 2 have been described to, when activated,
phosphorylate membrane proteins (CD120a, Syk, and calnexin),
nuclear substrates and cytoskeletal proteins (neurofilaments
and paxillin) (reviewed by Chen et al., 2001; Roux and Blenis,
2004). Cyclic tensile forces up-regulate bone marrow protein-2
(BMP-2) expression via ERK1/2 and p38 MAP kinase pathways,
with COX and PGE2 implication, in human periodontal
ligament cells (Suzuki et al., 2014) and promote the migration of
periodontal cells via ERK signaling pathway activation (Pan et al.,
2010). Moreover, multiple data indicates that mechanical forces
modulate ERK activities in periodontal fibroblasts increasing
type I collagen, ostepontin and MMP-1 production (Liedert
et al., 2006; Jeon et al., 2009; Kook et al., 2009, 2011).

Also related to extracellular stimuli-mediated signaling, Rho
is a family of serine/threonine kinases (Wennerberg et al., 2005;
Bustelo et al., 2007) involved in cell recruitment-migration,
proliferation and apoptosis (Ridley, 2001; Etienne-Manneville
and Hall, 2002). It has been recently described that Rho
is involved in experimental orthodontic tooth movement by
increasing Rho-kinase (ROCK) activity on the tension side
(Meng et al., 2015). This fits with the finding that ROCK1 acts
as a suppressor of inflammatory cell migration by regulating
PTEN phosphorylation (Vemula et al., 2010). In line with this,
it has been reported that Rho-ROCK enhances the formation
of actin stress fibers and focal adhesion in fibroblasts (Amano
et al., 1997). More concretely, during experimental orthodontic
movement, the tension areas showed increased expression of
actin stress fibers as well as increased number of myofibroblasts
in the periodontal area (Meng et al., 2010, 2007). These facts are
related to focal adhesion phenomena related to dental movement.

Not related to integrin-mediated signaling, Toll-like receptors
(TLRs) are transmembrane proteins playing a critical role in
innate immune system. TLRs are made up of an extracellular
and of a cytoplasmic domain, homologous to the cytoplasmic
domain of the human IL-1 receptor (Medzhitov, 2001). TLRs
can recognize different patterns, known as pathogen-associated
molecular patterns (PAMP). These PAMPs include lipids,
proteins, lipoproteins, nucleic acids, and lipopolysaccarides
(LPS) (Medzhitov and Janeway, 1997; Yang et al., 1998).
TLR4 is particularly interesting in oral tissues because it is
highly expressed by periodontal fibroblasts and specifically
recognizes Porphyromonas gingivalis LPS (Takeuchi and Akira,
2001). The activation of TLR4 promotes pro-inflammatory
signaling processes leading to periodontal alterations, osteoclast
activation-recruitment and cytokine expression (Kikkert et al.,
2007; Gelani et al., 2009; Nussbaum et al., 2009). TLR4 has
been recently associated with mechanical forces on fibroblasts:
its activation increased the expression of MMP-1, 3, and 10,
increased phosphorylation of p38, JNK, and NF-κB, strongly
suggesting that TLR4 may play an important role during
orthodontic treatment (Lisboa et al., 2013). Hyaluronic acid
(HA) is a classic and abundant component of connective tissue
also present in the PDL. HA is an endogenous ligand for
TLR4 that promotes protective responses in skin and lung
injury models (Jiang et al., 2005; Taylor et al., 2007). Although

the anti-inflammatory properties of HA and its mechanisms
are partially unknown, direct interactions with inflammatory
cells and the physical properties of the molecule, seem to be
implicated. It is shown that HA reduces TNF-α and IFN-γ
production and induces NF-κB activation in macrophages
(Noble et al., 1996; Wang et al., 2006). As an example, this
TLR4-HA interaction seems to be related to Cox-2 and PGE2
production to protect the colon mucosa from injury (Chen
et al., 2011). More research is needed to explain the concrete
role and mechanism of the HA-TLR4 interaction that could
make it be of interest for orthodontic and periodontal clinical
care.

A graphic summary of the periodontal area with the
extracellular processes is detailed in Figures 1, 2.

EtOH MODULATES EXTRACELLULAR
PROTEINS AND PROMOTES
INTRACELLULAR CHANGES

EtOH Modifies Extracellular Protein
Activities and Bone Dynamics
It is well documented how EtOH affects osteoclastic/osteoblastic
dynamics producing osteopenia and osteoporosis (Manolagas,
2000; Turner, 2000). Although the mechanisms are not
fully understood, EtOH may promote bone loss inhibiting
osteoblastogenesis (Friday and Howard, 1991) by altering bone
remodeling-related genes (Chakkalakal, 2005; Callaci et al.,
2009). It has also been shown an inverse correlation between
EtOH intake and bone mineral density in both pre- and post-
menopausal women (Turner and Sibonga, 2001). IL-6 seems to be
responsible, at least in part, for this EtOH-induced bone loss (Dai
et al., 2000). Interestingly enough, IL-6 is also increased during
orthodontic movement (Grieve et al., 1994; Uematsu et al.,
1996) and therefore it seems plausible that EtOH consumption
during orthodontic treatment would affect the outcome of the
intervention via IL-6. More research is needed to analyze the IL-6
levels and bone remodeling under these circumstances (EtOH+

orthodontic forces).
Some reports indicate that EtOH exposure preferentially alters

the periodontal area, developing periodontitis by increasing the
loss of attachment through recession of gingival margins (Khocht
et al., 2003) or by altering the oral mucosa (Harris et al., 1996,
2004). Regarding the influence of EtOH and other drugs on tooth
decay, some studies focus the attention on the EtOH-induced oral
micro-flora alterations due to EtOH-acetaldehyde metabolism,
leading to the progression of dental caries (Dasanayake et al.,
2010; Rooban et al., 2011), and little is known about the role of
EtOH on orthodontic movement.

Estrogens can protect from bone resorption (Kousteni et al.,
2001; Chen et al., 2005) and this inhibitory effect seems
to be related to the RANKL-RANK-OPG system (Syed and
Khosla, 2005). In fact, estrogens can suppress RANKL expression
in osteoblasts (Bord et al., 2003). Chen et al. (2006, 2008)
found that the protective effects of estradiol on EtOH-induced
bone loss was related to the inhibition of ROS production in
osteoblasts. Additionally, NADPH oxidase (NOx) and estradiol
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FIGURE 1 | Graphical scheme of the periodontal ligament and alveolar bone under compressive forces. (A) Is the schematic representation of a tooth in the

socket where the arrowhead indicates the sense of the applied force and the encircled area represents the compressive side. (B) Detailed view of the compressive

side: Wrinkled arrows indicate the reduction on the periodontal gap due to compression. This mechanical signal affects cells and extracellular matrix components

promoting extracellular release of matrix degrading enzymes as Metalloproteinases (MMP) and Cathepsins (Cath), macrophage activation (IL1, 6, and PGE2) and

RANK-RANKL osteoclast activation. This results on bone resorption with periodontal destruction-reconstruction in the new dental position.

would play a critical role on EtOH-induced bone loss via the
ERK/STAT3/RANKL pathway.

It has been demonstrated that chronic EtOH consumption
promotes bone loss, increases PGE2 expression and other
inflammatory markers in rats (Dantas et al., 2012; Surkin et al.,
2014). All these markers are related to periodontal disease, so the
hypothesis of EtOH-induced oxidative burden as a modulator
of the extracellular environment during tooth movement is
supported.

Some reports indicate that MMP-1, Cathepsins K, B, and L
are increased in the compression side during tooth movement
(Domon et al., 1999; Sugiyama et al., 2003; Maeda et al.,
2007). EtOH-induced osteoclastogenesis increases RANK and
Cathepsin K activities (Domon et al., 1999). However, it has
been shown that EtOH reduces proteolytic activity in hepatic
Cathepsins B and L (Kharbanda et al., 1995, 1996). EtOH and
tooth movement may act in the same way by increasing bone
resorption and PDL remodeling in the compression side despite
this tissue difference. Future studies should be addressed to
know whether this fact is synergistic or accumulative leading to
excessive bone resorption and eventually to root resorption.

EtOH Promotes Intracellular Responses
EtOH affects intestinal epithelial tight junction integrity via
Ca++-mediated Rho/ROCK activation (Elamin et al., 2014).
It has been described that EtOH exposure disorganizes actin-
cytoskeleton in astrocytes and this process is mediated by
RhoA signaling pathway (Guasch et al., 2003). Although
nothing is known about the effect of EtOH on the cytoskeletal
periodontal fibroblasts and osteoblasts, some evidence
indicates that both EtOH and periodontal movement act
in the same Rho-ROCK pathway. It seems reasonable
that EtOH exposure during orthodontic movement may
alter the cytoskeletal organization affecting orthodontic
outcome.

ROS is a relevant extracellular ERK-triggering stimulus that
up-regulates ERK-dependent genes such as RANKL (Torres,
2003). Supporting this fact, it was found that the administration
of antioxidants such as N-Acetyl cysteine, estradiol or vitamin C,
suppress RANKLmRNA expression and induces PDL progenitor
cell differentiation via ERK activation pathway (Chen et al., 2008;
Yan et al., 2013). In this regard, it is well documented that EtOH
metabolism results in ROS production and subsequently leads to
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FIGURE 2 | Graphical scheme of the periodontal ligament and alveolar bone under tensile forces. (A) Is the schematic representation of a tooth in the

socket where the arrowhead indicate the applied force. The encircled area represents the tensile side. (B) Detailed view of the tensile side: Arrows indicate the

increase on the periodontal gap due to tensile force. Tensile forces are transmitted via collagen-coupled Integrins to different cell types promoting new bone

generation. Bone marrow protein 2 (BMP-2), osteoprotegerin (OPG), vascular endothelial growth factor (VEGF) are necessary for new bone formation.

cell damage and eventually death (Johnsen-Soriano et al., 2007;
Flores-Bellver et al., 2014). Even more, EtOH-induced oxidative
stress seems to be crucial for these negative effects on cells,
since the administration of antioxidants restores the oxidative
misbalance and prevents the negative effects on cells (Herrera
et al., 2003; Koch et al., 2004; Crews et al., 2007). ROS and
EtOH activate MMP- 1,-2, and -9 via protein tyrosine kinase
signaling, leading to basal membrane disruption (Haorah et al.,
2007, 2008).

It is well documented that EtOH promotes inflammatory
responses via TLR4 in different tissues, e.g., brain, lung and liver
(Vaneker et al., 2008; Fernandez-Lizarbe et al., 2013; Zmijewski
et al., 2014; Pascual et al., 2015). So, after considering the
aforementioned data on TLR4, it seems plausible that EtOH
exposure could be closely related to periodontal stability (see
Figure 3) and therefore it becomes an important factor on
clinical practice.

Glycogen synthase kinase 3 β (GSK3β) regulates the
production of cytokines after TLR4 stimulation (Martin et al.,
2005). TLR4-GSK3β route activation has been closely related
to periodontal alterations induced by P. gingivalis and other

pathogens (Wang et al., 2011). In this sense, and fitting with
this, it has been shown how alcoholic fatty liver pathogenesis
implicates GSK3β route activation (Zeng et al., 2014) and
it has been demonstrated that GSK3β inhibition suppresses
bacterial-induced periodontal bone loss (Adamowicz et al.,
2012), supporting the idea that TLR4-GSK3β pathway could
be particularly affected in alcohol-users. It is well documented
that EtOH promotes inflammatory responses via TLR4 in
different tissues, e.g., brain, lung and liver (Vaneker et al.,
2008; Fernandez-Lizarbe et al., 2013; Zmijewski et al., 2014;
Pascual et al., 2015). Considering the aforementioned data
on TLR4, it seems plausible that EtOH exposure could
be closely related to periodontal stability (see Figure 3)
and therefore it becomes an important factor on clinical
practice.

FINAL DISCUSSION

Despite the fact that several studies indicate the potential
deleterious effect of EtOH on periodontum and alveolar
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FIGURE 3 | Graphical scheme of the molecular responses promoted by EtOH exposure and mechanical forces. (A) Represents a fibroblast where EtOH

and EtOH-derived reactive oxygen species (ROS), lipid peroxidation products such as 4-hydroxynonenal (4-HNE) and Malondialdehyde (MDA) interact with Toll like

receptor4 (TLR4). This interaction results in Rho, GSKβ and ERK pathway activation that leads to MMP/Cath, PGE2, RANKL and IL-1 and 6 release. (B)

Representation of a fibroblast where mechanical forces affecting extracellular matrix can interact with integrins. This interaction results in Rho, GSKβ, and ERK

pathway activation that leads to MMP/Cath, PGE2, RANKL and IL-1 and 6 release.

bone, there is only one report on the effects of ethanol
during orthodontic movement. In this work, Araujo and
collaborators describe less bone resorption at the end of
tooth movement suggesting a delay of tooth movement
in a rat model of binge drinking (Araujo et al., 2014).
Obviously, this model simulates a drinking pattern where
high EtOH concentrations are acutely consumed, which
is different from the chronic pattern, where high EtOH
levels are daily maintained for several weeks. According to
the typically long lasting orthodontic treatments, mild and
chronic EtOH exposure could interfere with this chronic
orthodontic treatment by modifying the aforementioned
proteins and genes leading to orthodontic failure or undesired
outcome.

Systemic diseases are of relevance in oral medicine and
dentistry. Diabetes mellitus (DM) is considered a common
systemic disease with oral manifestations and profuse literature
deals with the considerations of orthodontic treatment on
diabetic patients (Burden et al., 2001; Vernillo, 2001; Bensch
et al., 2003; McKenna, 2006). Experimental data widely
show that DM promotes molecular and structural changes
in the periodontal area after orthodontic treatment including
MMP’s or bone alterations (Feng et al., 2007; Abbassy
et al., 2010; Braga et al., 2011; Villarino et al., 2011; Zhang
et al., 2011). There are some similarities between alcohol
exposure and DM in terms of molecular signaling and gene
expression (Barcia et al., 2015). Additionally, experimental
and clinical studies strongly indicate a close relationship
between alcohol intake and risk of diabetes development
(Cullmann et al., 2012; Kim et al., 2013). In consonance
with this issue, orthodontic movement promotes intra and
extracellular alterations, finally affecting periodontum and

alveolar bone. Since the influence of DM in orthodontic
treatment outcome seems clear, it seems appropriate to further
investigate the effects of chronic EtOH exposure on orthodontic
treatment.

As a hypothetical model, EtOH exposure during orthodontic
movement may interfere with osteogenesis at the tension
side, accepting that EtOH produces osteoblastogenesis
inhibition (Friday and Howard, 1991). IL-6/ROS and PGE2
mediated bone loss is induced by EtOH (Dai et al., 2000;
Chen et al., 2006) and it also increases RANKL (Chen
et al., 2008). Additionally, as mentioned above, TLR4
over-activation (EtOH+ tensile strain) may lead to GSKβ

activation, negatively affecting the periodontum (Kikkert et al.,
2007; Gelani et al., 2009; Nussbaum et al., 2009). On the
compression side, where bone destruction and reorganization
takes place, probably bone resorption would be increased
during EtOH metabolism leading to a rapid but unstable teeth
position.

In view of the close similarities found between EtOH-
and mechanical strain-induced responses on periodontal
tissues, the aim of this review is to spark attention on the
potential effect of EtOH consumption during orthodontic or
periodontal treatment as a factor that needs to be considered
in clinical practice. Further research is necessary to fully and
experimentally support the actual indications suggesting that
alcoholic beverages consumption should be discouraged during
orthodontic treatment in adults.
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