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ABSTRACT

In the last decades have emerged new technological platforms that allow evaluation of 
genes, transcripts, proteins, or metabolites of a living being, so-called omics sciences. 
More importantly, new technics for their integration have provided access to a complete 
set of information of the current conditions and features of a specific biological sample in 
a precise moment. Thus, omic sciences are now considered an essential tool for patient 
stratification in base to their severity, to understand disease progression and to identify 
new biomarkers. Severe patients, that are out of control, provide an excellent model to 
understand disease evolution and to identify new intervention and biomarkers strategies. 
Here we discuss the use of metabolomics to understand severity in allergic diseases in a 
strategy that opens new insights as well as identify new biological systems relevant for allergy 
progression. Metabolomics strategies are based in parallel evaluation of different allergy 
severity models by mean of untargeted analysis that allows the identification of potential 
biomarkers. Overlapping of different biomarkers in multiple models, provides information 
of general as well as specific biological systems involved in each model. Later a selected panel 
of biomarkers will be used in a target method to explore the diagnosis potential to stratify 
allergic patients.
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INTRODUCTION

A recent consensus document [1] recognized the need to advance in precision medicine in 
allergic diseases as well as to “improve the process of drug development, biomarkers and companion 
diagnostics for allergic diseases and asthma.”

Looking for adequate biomarkers to stratify allergic patients has been a subject of active 
research in the last decades [2], but finding these biomarkers is not easy. Potential candidate 
biomarkers should be supported by a body of evidence, meaning that they should have a 
biological explanation. At the same time, they should be quantifiable in a biological matrix 
in an efficient, cost-effective and reproducible analytical technique. Ideally, the biological 
matrix should be obtained in an easy, quick and efficient way, such as serum or plasma.
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Historically, allergy biomarker research has been focused on antigen-specific biomarkers, 
such as specific serological or cellular biomarkers. In the last years this approach has been 
progressively enriched with new biomarkers connected to inflammatory status. Some of 
these new biomarkers have already been incorporated in clinical practice (i.e., periostin or 
fraction of exhaled nitric oxide).

In parallel to this, in the last years there has been an active development of increasingly 
effective new pharmaceuticals for the control of symptoms in mild allergic patients, as well 
as a continuous development of new biological drugs tailored to control severe allergic 
phenotypes. The elevated cost of these therapies has fuelled the search of accurate definitions 
of disease endo-phenotypes. Etiological allergy management and associated allergen-specific 
immunotherapy (AIT) is positioned between the 2 above-mentioned pharmacological 
intervention strategies being the only pharmacological approach with demonstrated evidence 
of disease-modifying effect [3, 4]. The problem to prove the value of etiological management 
is connected to the absence of adequate biomarkers to predict and monitor effect on a 
patient-by-patient basis and to the lack of common biomarkers that would allow head-to-
head comparison of different pharmacological approaches. These types of biomarkers would 
facilitate the monitoring of residual effect after therapy cessation, where AIT intervention 
should have the highest therapeutic value. In this context, omics methods in general—
and specifically metabolomics—provide new tools to develop a rational approach to the 
development of new biomarker strategies.

OMICS SCIENCES IN ALLERGY

Omics sciences have significantly contributed to the definition of new biomarkers. These 
sciences are based on the use of high amounts of data and bioinformatic high-throughput 
techniques. Moreover, in the last decades the field of omics sciences has experimented huge 
technological advances by improving detection limits and developing software tools for the 
analysis and visualization of data.

Omics sciences include genomics, transcriptomics, proteomics and metabolomics among 
others (Fig. 1). Genomics is focused on the structure, function, evolutionary mapping 
and editing of genomes, and defines the potential genetic features of a person which are 
associated with a disease. As an example, several polymorphisms have been studied in 
different allergic diseases. That is the case for a glutathione transferase polymorphism 
that has been associated with asthma risk [5-7]. Transcriptomics, on the other hand, is 
the science that studies the sum of all RNA transcripts in any of their forms, including 
messenger RNA, ribosomal RNA, transfer RNA, microRNA and other noncoding RNAs. In 
fact, microRNA analysis has been extensively used in the search of new biomarkers in asthma 
[8]. Moreover, an important feature of transcriptomes is that they are different among cell 
populations and vary with environmental conditions, providing a broad information of 
which cellular processes might be occurring in a specific condition or disease. Proteomics 
is the characterization of structure, function, interaction or modification of proteins at 
any stage. As occurs in transcriptomics, the proteome also fluctuates depending on the 
moment, cell type and surrounding environment, and reflects the mediators responsible 
for a specific mechanism involved in a disease onset and/or progression. This methodology 
has been extensively used in the identification and characterization of novel allergens [9] 
and in the elucidation of novel biomarkers associated to allergic diseases, as is the case of 
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allergic dermatitis [10]. Finally, metabolomics is the science that studies the metabolome, 
which is constituted by the intermediate and final molecules of the metabolism. Therefore, 
metabolomics reflects the exact processes that are taking place associated to disease 
progression. Our group has applied this technique in the search of novel biomarkers 
associated with severe allergic and asthmatic profiles [11, 12].

All the above-mentioned omics sciences are relevant in the identification of novel 
biomarkers in allergic diseases and asthma. Omics data are generated by high-throughput 
biotechnological platforms delivering hundreds of thousands of raw (nonelaborated) 
variables that have revolutionized medical research. Most of the studies published currently 
are using a single omic science to characterize biological features. However, the potency 
of omics analyses will significantly increase if we are able to integrate several of them to 
generate a “complete picture” of what is happening in a specific subject. Moreover, another 
dimension of data integration is between omics and nonomics data, which will bring the 
omics results closer to the daily clinical practice. This integration provides the opportunity 
to get insights into biological systems of health and disease, in order to conduct translational 
and personalized medicine.

METABOLOMICS

Although metabolomics was the latest omic science to be consolidated, it is indeed the 
oldest of the omics. It was in the time of ancient Greece where “urine charts” were used as a 
diagnostic tool. These charts contained different aspects of urine such as color, smell and/
or taste, which used to be linked with the diagnosis of various medical conditions [13]. At 
the present, the diagnosis of many diseases is performed based on specific compounds from 
the metabolism. The molecules that cover the entire metabolome are called metabolites. The 
classical example of a metabolite that currently acts as a biomarker in a disease is glucose for 
the diagnosis of diabetes.

The metabolome from a living organism is not only composed of its own metabolites, 
but also of the metabolites coming from the microbiome—especially from the gut—[14], 
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the metabolites from xenobiotics—for example those coming from medicines—, and the 
metabolites from the diet [15]. The levels of metabolites in the organism are conditioned by 
different factors such as the level of exercise, age, gender, living-stress and the environment 
[16, 17].

The introduction of high-throughput analytical techniques for metabolomics has allowed the 
development of many different strategies to explore the metabolome in a disease. There are 2 
main complementary approaches for working in metabolomics. These are called nontargeted 
and targeted analyses (Fig. 2) [18, 19].

Regarding nontargeted analysis, this approach aims to measure as many metabolites as 
possible in a single run. These metabolites measured together from a single sample are 
considered as the metabolic fingerprint of the patient. Therefore, it is estimated that in a 
disease status there is a set of metabolites that will change due to the progression of the 
pathology and will characterize the disease. Thus, once the metabolic fingerprints are 
obtained, the aim of metabolomics is to study the significant differences in the metabolite 
relative abundances between groups. Consequently, this type of approach does not need 
previous knowledge or a specific hypothesis other than that the groups in the study are 
distinct. Therefore, through this strategy new potential biomarkers of a clinical condition 
or phenotype can be obtained. This interesting approach is strengthened if multiple high-
throughput analytical techniques are applied to the same sample, since each of them gives 
complementary information about the metabolome.

On the other hand, targeted analysis focuses on an accurate quantitation of a limited set of 
metabolites. This type of approach is closer to classical biochemistry, where metabolites 
are measured and quantified following previous knowledge that they may be dysregulated. 
The innovation in respect to classical biochemistry relies on the introduction of new 
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instrumentation which allows the determination of this set of compounds in a single run 
with very high sensitivity.

Both types of approaches can be used independently; however, in new topics such as 
finding biomarkers in severe allergic phenotypes where the metabolic characterization has 
not yet been performed, the first step would be a nontarget analysis. Therefore, a broad 
scheme of the metabolomics workflow to consolidate a trustworthy panel of biomarkers is 
first the “generation of a hypothesis” as a starting point to set up what is happening in the 
metabolism of the severe allergic group, then the “analytical validation” of the potential 
biomarkers and finally the “clinical validation.” In the “generation of the hypothesis” phase 
a nontargeted analysis is carried out. This is usually done with a small population but with 
a strict and homogeneous clinical phenotype [20, 21]. The small number is usually used 
because the samples must be analyzed at the same time, and the analytical techniques used 
may struggle to provide reliable and reproducible data if the number of samples is too high. 
Together with the high cost of analysis and the massive amount of data obtained per sample, 
small numbers of patients are chosen, such as twenty per group. However, it is not always 
possible to select a limited number of subject with a perfect clinical stratification, and thus 
tremendous work has been put in order to succeed in the analysis of large-scale cohorts with 
lower classification accuracy [22]. Later on, for “analytical validation” stage, targeted analysis 
is generally used. In this step, the quantitation of a set of potential biomarkers is done in 
bigger cohorts, around hundreds of samples. In this case, where the analysis is accurate, 
the clinical phenotyping does not need to be strictly homogenous. Finally, in the “clinical 
validation” stage, thousands of samples are analyzed before establishing a set of biomarkers 
for a disease.

NONTARGETED ANALYSIS IN METABOLOMICS

As the nontarget analysis is the hypothesis-generating step, it is important to understand the 
steps that take place in order to find potential biomarkers accurately. The nontarget analysis 
workflow can be divided in the following stages: sample collection, metabolite extraction and 
sample analysis, data processing, statistical analysis and biological interpretation.

Every stage of the nontarget workflow is crucial to obtain reliable findings. In the case of 
sample collection, it is essential—in the case of blood—to take the sample from the patients 
in fasting conditions, usually 8 hours minimum [23]. Moreover, serum and plasma must 
not be mixed, so it is important to establish which type of blood sample will be used in the 
project from the beginning. Besides, apart from other differences, serum is the result of a 
coagulation process whereas plasma is the raw matrix from the system with only the cells 
removed. Apart from blood, other biological samples that can be analyzed by metabolomics 
include urine, faeces, exhaled breath, sputum, and so on. However, each of them (including 
blood) gives different and complementary information; for example, in urine, only the 
ending compounds of the metabolism are found, although it is widely used due to the ease of 
the collection process [24, 25].

The metabolite extraction is carried out depending on the analytical technique that will 
later be used. There are some standards protocols to treat the samples for metabolomics. 
However, common to all, the interferences—mainly DNA, RNA and proteins—are removed 
before the analysis. This is usually done by mixing the sample with organic solvents 
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such as methanol or acetonitrile. In addition, it is possible to choose a specific group 
of metabolites—for example lipids—where the metabolite extraction should be done 
with highly non-polar solvents such as chloroform or ether. Moreover, specific analytical 
techniques require a chemical modification of the metabolites in order to be measured.

Regarding the high-throughput analytical techniques in metabolomics, these are mostly 
based on 2 techniques: nuclear magnetic resonance (NMR) spectroscopy and mass 
spectrometry (MS)-based techniques [26]. This fact is because essentially both give structural 
information of the metabolites. Therefore, once the significant metabolites are selected, 
they can be identified and thus shed some light about the disrupted metabolic processes. In 
addition, there are other types of devices which are used specifically in respiratory diseases, 
which is the case of the electronic nose. These devices use sensor arrays which produce an 
electronic signal when they get in contact with metabolites from the exhaled breath of a 
patient. Their use in some pathologies such as asthma or allergy has shown promising results 
[27, 28]. However, it is important to take into account that these devices do not provide 
structural information of the metabolites; thus, they are being used for diagnosis but not as a 
tool to understand the mechanisms involved in the disease.

In the case of NMR and MS-based techniques, each analytical technique has strengths and 
drawbacks, and provides unique and complementary information of the metabolome. 
Regarding NMR spectroscopy, this technique detects the signals from metabolites 
possessing a specific type of atoms, such as hydrogen, and therefore it is abbreviated as 
1H NMR. Thus, this technique allows the determination of all metabolites which contain 
hydrogen and are in high concentration. This technique has gained great attention because it 
is nondestructive, robust and reproducible. Moreover, NMR has the advantage of obtaining 
an accurate structural elucidation through the application of 2-dimensional spectra analysis. 
However, its major drawbacks are its low sensitivity and the difficulty of treating and 
interpreting the complex data profiles obtained [29].

On the other hand, MS-based techniques have gained great popularity due to their high 
sensitivity. They are based on measuring the molecular mass of the metabolites, specifically 
their mass-to-charge ratios, which are symbolized as m/z. This is possible only if the 
metabolites are ionized or charged before entering the mass spectrometer. One of the most 
used ionization sources is the electrospray ionization, by which metabolites gain a charge 
without being fragmented. The ions pass to the mass analyzer, which detects the mass of the 
metabolites with high mass accuracy. A common example of mass analyzer is the time of flight 
(TOF)-MS, which provides a mass resolution of up to a thousandth of an atomic unit (or Da). 
Furthermore, MS-based techniques have the great advantage that they are usually coupled 
to a separation technique such as liquid or gas chromatography (LC or GC, respectively), 
or capillary electrophoresis. By this coupling, the metabolites in complex samples—such 
as blood or urine—are first separated, and then analyzed with high mass accuracy. The 
separation adds value to the later identification of significant metabolites as the retention time 
gives information of the physicochemical properties of the metabolites. As an example, it is 
not expected to observe a triglyceride at the beginning of a chromatogram obtained from a 
reverse phase chromatography, as the compounds in this zone should be very polar.

In the case of LC-MS, this is maybe the most widely used technique for metabolomics. This 
technique combines the suitability to analyze a wide range of metabolite classes— including 
lipids, metabolites with intermediate polarity and polar compounds—with a high sensitivity 
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and with the possibility of doing compound fragmentation [30]. The fragmentation of a 
compound is almost compulsory to obtain a reliable identification of a metabolite. The only 
requirement to use LC-MS is to have the sample in liquid form before analysis. Among the 
drawbacks of the technique is the low stability during large-scale analyses, although great 
improvements have been done in the protocols in the last years [22].

On the other hand, GC-MS is a technique that allows the measurement of volatile 
compounds, and thus, it is suitable for the analysis of breath. However, the most common 
matrices analyzed by this technique [31] are blood and urine, as there are well-established 
protocols for them [32]. This is possible due to a chemical process called derivatization, 
which provides volatility and stability to metabolites contained in complex biological 
samples. Among the types of metabolites that can be measured with this technique are: 
amino acids, sugars (pentose and hexose sugars), disaccharides, metabolites from the 
Krebs cycle, organic acids, fatty acids and cholesterol. The main drawback of GC-MS is the 
extensive sample preparation needed for nonvolatile metabolites. One of its best advantages 
is that the identification is done based on specific GC-MS spectral libraries before the 
statistical analysis.

Regarding CE-MS, this is an excellent technique to analysze polar metabolites from aqueous 
samples such as urine. However, as in GC-MS, well-established protocols have been developed 
to analyze other biofluids, such as blood or tissue [33]. Among its strengths, the main one is 
the small amount of sample (few nanolitres) and reagents needed. On the other hand, its main 
drawback is the lower sensitivity compared to LC-MS due to the low volume of sample.

In the case of all MS-based techniques, it is compulsory to measure a quality control (QC) 
sample in order to assess the reproducibility and stability of the technique. This QC is 
usually done by pooling a small aliquot of each sample in the study. In this way, the QC is a 
representative sample of the study and it has to be injected at regular intervals (usually every 
5 samples) throughout the sequence to ensure the stability of the technique. It is important 
to highlight that the use of more than one analytical platform in a study provides a higher 
coverage of metabolites and therefore a better “picture” of the metabolic status of the patient.

Once the sample analysis is finished, the data from the metabolic profile are extracted, which 
usually results in huge amounts of variables (or metabolites) per patient. This aspect entails 
that the statistical analysis of the data must rely not only in univariate but also commonly in 
multivariate analysis. The univariate analysis applies the traditional statistical tests—such 
as t test—to each variable to test their significance. Along with the test, a correction of the p 
value is performed to control the false discovery rate. On the other hand, in the multivariate 
statistical analysis, all variables are used to model the differences between groups. There are 2 
types of statistical models, unsupervised models such as the “Principal Component Analysis” 
(PCA) and the supervised model called “partial least square – discriminant analysis” (PLS-
DA). In the PCA, the software does not count with any information of the samples and using 
the Nipals algorithm displays a graphic with the location of each sample according to their 
similarity with each other. The PCA model is important for looking at sample trends and 
patterns, and therefore it is usually used to detect strong outliers. In the case of the PLS-DA, 
the model looks for the variables that can discriminate between the groups of the study. 
Therefore, this model is used for sample classification and for prediction of a new sample. 
To sum up the statistical analysis part, usually the selection of the significant metabolites 
between the groups of study is done based on univariate and multivariate analyses [34, 35].
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Furthermore, once the metabolites that discriminate between 2 or more groups are 
selected, these have to be fully identified. As was said before, this process varies depending 
on the analytical technique used. Once a list of differentially regulated metabolites is 
obtained, it is important to explain their molecular mechanism. This is usually done 
based on the analysis of the metabolic pathways, which are ranked according to their 
enrichment and impact parameters. The enrichment of a pathway means the number 
of metabolites found in a specific pathway while the impact refers to if the metabolites 
are specific for a metabolic pathway or are shared with other pathways. Of course, the 
metabolic pathways are not completely known and because of that it is important to 
consult all possible scientific literature about these metabolites in order to get the best 
interpretation. Furthermore, the metabolites discovered and their possible explanation can 
be corroborated on new biological models such as mice or cell models. On the other hand, 
these potential biomarkers can be moved to the next step of the “analytical validation” and 
be tested in hundreds of new samples. This step would use the target analysis approach of 
metabolomics and would be based on receiver operating characteristic (ROC) curves where 
the best metabolite predictors will be selected. However, usually the research projects stop 
once the nontarget analysis finishes because of the amount of time that takes this step 
(around 2–3 years) and the complexity for collecting new samples and developing analytical 
methods in target.

The work in metabolomics is often challenging and implies the collaboration of 
multidisciplinary specialists (medical doctors, chemists, biologists, statisticians, 
bioinformaticians, etc.); however, the result of finding new biomarkers in severe allergic 
phenotypes will definitely improve their diagnosis and their medical treatment.

TARGETED ANALYSIS – ANALYTICAL VALIDATION

The “analytical validation” stage using targeted analysis starts with a list of potential 
biomarkers obtained from a nontargeted analysis. The limitation of the targeted analysis 
starts with the fact that not all the significant metabolites have a commercial standard. This 
fact reduces the number of compounds to be later tested in the targeted analysis.

Furthermore, for this type of approaches the analytical technique of choice is LC-MS, 
but in this case with a mass analyzer called triple quadrupole (QqQ). A quadrupole, as its 
name suggests, consists of 4 parallel metal rods arranged in a square. The purpose of the 
quadrupole is to separate the charged metabolites—or any kind of ions—according to 
their m/z values by applying a range of specific radiofrequency electric fields and voltages. 
This means that a specific mass can be selected if specific values of radiofrequency and 
voltage are set. In contrast to TOF mass analyzers, the quadrupole has low mass accuracy, 
usually up to the first decimal of an atomic unit (or Da). However, in order to compensate 
its low resolution, 3 quadrupoles are used and arranged one after each other. This type of 
configuration is called QqQ. Each quadrupole has a distinct function: the first quadrupole 
selects a mass (no matter the low mass resolution), the second quadrupole acts as a collision 
cell where the charged mass (and compounds with close masses) are fragmented, and the 
third quadrupole isolates a mass from a fragment. The selection of an initial mass which 
gives a specific fragment is called transition and is considered unique of the compound or 
metabolite. Moreover, thanks to this method of analysis, the QqQ-MS instrument possesses 
one of the highest sensitivity and selectivity capacities [36].
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Therefore, in order to apply a targeted analysis, an analytical method development 
should be carried out. As any other analytical method, this must be validated at least 
in linearity, precision, accuracy and limit of detection and quantitation. Moreover, this 
type of analysis usually needs labelled standards. These are molecules with the same 
formula as the metabolites where a hydrogen or a carbon atom is replaced by deuterium 
or carbon thirteen, respectively. These types of compounds are usually used with the aim 
of controlling the stability of the instrument and the analysis. Moreover, there are specific 
metabolites that will be charged only with one of the 2 modes of ionization. However, 
working with QqQ-MS, the change from one ionization to another during the analysis of 
one sample is possible.

One of the advantages of targeted analysis is that the samples can be measured at different 
time points and later the results can be joined and compared between batches. In order to 
establish the most robust metabolites from the list of potential biomarkers, a set of different 
statistical analyses should be done. Among these, the ROC curve using a combination of 
potential biomarkers provides a straightforward option [37]. The goal is to establish the 
combination of biomarkers that shows the highest specificity and sensitivity for detecting 
patients with a severe allergic phenotype.

SEVERE PHENOTYPES IN ALLERGY TO UNDERSTAND 
DISEASE PROGRESSION
Severe phenotypes in allergy disease constitute a small fraction of overall disease burden. 
However, with the development of new biological drugs, this small fraction of patients 
is attracting an increasing number of pharmaceutical developments due to their high 
pharmaco-economic potential. Usually, these types of patients are randomly distributed 
within the overall population of allergic patients and are difficult to identify.

When applying metabolomics strategies to discover new biomarkers, it is essential to include 
patients with different stages of disease progression in a homogeneous way. However, there 
is no easy way of doing this. First, allergic patients are progressively treated with different 
drugs aiming towards disease control. This control will possibly alter systemic signatures 
associated to progression of the disease and will hide the underlying endo-phenotype.

Uncontrolled severe patients, meaning patients that are not well controlled with any 
combination of existing pharmaceutical products, represent a unique group that will be 
pivotal to understand disease evolution and to identify systemic molecular signatures 
associated to disease evolution.

Disease progression is linked to different potential factors. It is generally accepted that 
genetic factors and exposome [38] will determine the probability to develop a severe allergic 
phenotype. However, it is difficult to evaluate the genetic influence in allergy due to the 
inadequate design of many published studies and the complexity of multifactorial effects 
of affected polymorphisms [39]. Regarding exposome, it has been described that patients 
exposed to high allergen levels are more prone to develop a more severe allergy disease. 
In an epidemiological survey based on molecular allergy, it was described that patients 
overexposed to grass pollen are frequently sensitized to profilin. In the same study, those 
patients overexposed to olive pollen presented a significant increase in the sensitization 
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prevalence to minor allergens such as Ole e 7 [40, 41]. Interestingly, it was observed 
that a significant fraction of patients resident in overexposed areas that presented these 
sensitization profiles develop a more severe phenotype [42, 43]. Likewise, in an area of high 
mite allergen exposure, as is the subtropical climate region of Canary Islands in Spain, there 
are patients that develop anaphylaxis reactions when eating mite-contaminated foods in the 
absence of food allergy [44].

These 3 groups of patients present several clinical features connected to severity (asthma, 
severe anaphylactic reactions…) and do not respond to AIT. We thus decided to investigate 
using omics and nonomics approaches if there are common features that could explain the 
underlying causes for severity evolution.

NOVEL MECHANISMS ASSOCIATED WITH SEVERE 
ALLERGIC PHENOTYPES
We started by studying the profilin/grass pollen allergy model. We discovered that in 
the progression of grass pollen/food allergy into a more severe phenotype, oral mucosa 
plays a pivotal role [45]. By using an oral provocation clinical model with pure profilin on 
severe food/grass pollen allergic patients, we demonstrated that oral mucosa is damaged 
in severe allergic patients. Our results showed a significant reduction of tight junction 
proteins such as claudin-1 and occludin and e-cadherin, protein member of the adherens 
junctions. Moreover, epithelial damage in severe patients was also reflected by a significant 
downregulation of interleukin-33 and Periostin in the oral mucosa. In this model, oral 
mucosa disruption is accompanied by infiltration of a significant number of inflammatory 
cells (CD11+ and CD3+ cells), suggesting also a local inflammatory response in the oral 
mucosa [45]. Interestingly, no eosinophils or neutrophils were detected. These results were 
the first demonstration of the role of oral mucosa in the onset of systemic reactions, but they 
also opened up a question. Was the observed remodeling a consequence of the food allergy 
phenotype, or was it produced earlier connected to respiratory allergy and later evolved to a 
food hypersensitivity?

To answer these questions, we studied severe allergic patients sensitized to olive pollen and 
mites, as previously described. The results showed that in the oral mucosa of these patients, 
which were exposed to high levels of olive pollen of house dust mites (HDM) allergens 
and presented no food allergies, oral mucosa integrity was also disrupted. However, these 
patients do not present inflammatory infiltrates in the oral mucosa, probably due to the 
lack of oral antigen exposure. Altogether, these data suggested that in severe respiratory 
allergic phenotypes, there is a systemic exacerbated inflammatory response underlying the 
disruption of the oral mucosa integrity [46].

From these results, we can infer that severe allergic patients might present a specific 
modulation of biological pathways associated to the underlying inflammatory response. 
In fact, those specific pathways and associated molecules can be identified as potential 
biomarkers of severe allergic phenotypes by using omics technologies.

To better understand the severe-phenotype-associated mechanisms using the same model of 
profilin severe food-associated respiratory allergy, transcriptomic and metabolomic analyses 
were performed in peripheral blood mononuclear cells and plasma, respectively [12].
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Transcriptomic analysis revealed a significant downregulation of platelet-associated genes in 
the severe phenotype. Gene expression and gene pathway analysis revealed downregulation 
of platelet activation, secretion, adhesion and aggregation [12]. These data, although 
surprising at first, agreed with previous results found in literature, where platelets appear to 
have an important role in allergic diseases and asthma [47].

Moreover, the metabolomic analysis also revealed significant differences in the severe 
group regarding several metabolic pathways. The energetic metabolism was modified, as 
severe allergic patients presented high levels of lactic acid and low levels of pyruvic acid, 
which correspond with a metabolic phenomenon called Warburg effect, common in cancer 
progression. This metabolic feature could be associated with a higher activation of T cells 
during a systemic inflammatory response [48].

Another important metabolic modification found in this severe allergic phenotype was 
the increase of lysophospholipids (Fig. 3). The metabolites called LPC 16:0 and LPC 18:0, 
which were increased in the severe allergic group, are the products of the Phospholipase 
A 2 enzyme. These metabolites are precursors of ether-linked phospholipids, which are 
intermediates in the synthesis of the platelet activation factor, PAF [49]. In addition, they 
are a source for the synthesis of eicosanoids such as arachidonic acid and derivatives [50]. 
Finally, LPC 16:0 is a source of palmitic acid, which can be in turn used for the synthesis of 
sphingosine, a precursor of sphingosine-1-phosphate [51]. Moreover, serum increased levels 
of lysophospholipids have been previously described in asthmatic patients [50]. Interestingly, 
patients sensitized to profilin in areas of higher grass pollen exposure showed an enhanced 
T-cell proliferative response to profilin, higher than in patients sensitized to profilin in areas 
of relatively lower grass pollen exposure, supporting the role of T-cell proliferation in the 
onset of severe respiratory phenotypes [52].

In addition, we detected sphingolipid metabolism stress in severe allergic patients [12]. More 
specifically, a continuous increase in sphingosine 1 phosphate (S1P) was accompanied by 
signals of the exhaustion of metabolic precursors [53].

S1P has been described as an essential player in the immune response [54] (Fig. 4). It is 
involved in the activation and degranulation of mast cells and associated induction of 
angiogenesis and fibrosis triggered by endothelial and epithelial cells [55]. This metabolite 
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also plays an important role in T-cell biology by increasing T-cell lifespan and the recruitment 
of T cells to the site of injury [56], as has been reported in lung diseases models [57]. 
Altogether, the data suggest that a global system connected to inflammation is pushed to 
the limit in severe patients. In this system, sphingosine metabolism, T-cell proliferation and 
platelet functionality are involved.

We have used a similar approach in an HDM-allergic asthma model aiming to identify 
novel biomarkers or validate previous biomarkers associated with other severe allergic 
models. Initial unpublished generated data using nontargeted metabolomic analysis of 
serum samples demonstrates that, once more, uncontrolled asthmatic patients display a 
specific metabolic fingerprint, completely different from controlled asthmatic patients. 
Most of metabolomic signatures are shared with our previous severe allergy models, further 
supporting that severe allergy patients share underlying mechanisms. Therefore, the use 
of metabolomics can be considered a useful and potent tool in the identification of novel 
biomarkers of severity in allergic diseases and asthma.

FUTURE DIRECTIONS

Understanding underlying biological processes in allergy evolution is pivotal for a correct 
interpretation of new biomarkers arising from ongoing studies.

Allergy is a complex disease and severe phenotypes often develop in association with 
different comorbidities.
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Data arising from these metabolomic studies depict an image with multiple interconnected 
systems. Barrier impairment, innate immune system activation and progressive inflammation 
are central to understand allergy. There are new players in the game. Platelets seem to 
potentially play a relevant role in the maintenance of an inflammation/repair balance. In 
this balance, sphingolipid metabolism also seems to play an important role. Almost half 
of detected metabolic signatures are connected to phospholipid consumption associated 
to main inflammatory routes. Moreover, altered energy metabolism connected to T-cell 
proliferation points to the need of focusing on T regulation as the main target in allergy 
clinical management, a target that currently is unique for AIT intervention.

Metabolomics is providing increasing value for understanding underlying causes associated 
to severity in allergy; however, there is still a long way to go. We need more severity models 
and to compare the different information provided by each one.

Existing data support that an initial panel of around fifty metabolites is a potential candidate 
to stratify clinically allergic patients. Target method development for these metabolites is 
underway, and exploratory projects with thousands of patients to analyze the value of such a 
panel are being initiated.
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