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Resumen a modo de presentación

La modelización en ingeniería constituye un aspecto clave para entender el
comportamiento de cualquier realidad. El ingeniero, habitualmente, emplea
la lógica científica para la obtención de un modelo que permita predecir
modos de funcionamiento en el sistema sujeto a estudio. Para los propósi-
tos de la presente tesis, se referirán sistemas dentro de los ámbitos de la
ingeniería biomédica y aeroespacial.

La ingeniería tiene como base epistemológica el acceso a las ciencias
puras. En la presente tesis, se desarrollan modelos que otorgan peso a un
ejercicio detallado de las matemáticas que los soportan. La descripción de
un fenómeno físico en ingeniería es habitualmente complejo. Para el propó-
sito de la tesis, se considera la complejidad en relación con el ser humano
[1] como parte principal en la cadena procesual del ejercicio de modelado.
Al fin y al cabo, el término complejidad es relativo al sujeto que define, ca-
taloga y clasifica un problema. Sin olvidar esta perspectiva, los procesos
de modelado en ingeniería han de clasificarse como, naturalmente, com-
plejos al involucrar una gran cantidad de variables, de las que en muchos
casos, se desconoce el comportamiento preciso de su dinámica. Aquí, se
introduce el alcance y el contexto de la tesis presentada, entendidos como
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el empleo de las ciencias matemáticas para la mejora del conocimiento de
fenómenos de complejidad para el ingeniero.

Durante la tesis se ha observado una parcela del mundo exterior de in-
terés, se ha construido un mapa mental del fenómeno observado, se han
formado un conjunto de ecuaciones y se han resuelto los modelos en su
forma conceptual para, posteriormente, llevar a cabo un ejercicio de cali-
bración con la realidad observada. Además. se han explorado relaciones
entre el mundo real y el mundo de las ideas y abstracciones. Al hacerlo, las
matemáticas han proporcionado una visión simple, unitaria e intuitiva de la
parcela a estudiar. Cualquier modelo matemático, cuyo objetivo sea servir
de descripción de un fenómeno, debe ser probado en situaciones y actua-
ciones propias de su ámbito de aplicación. En la presente tesis se lleva
a cabo un análisis de aplicación de las soluciones obtenidas matemática-
mente a la realidad a estudiar (Anexo II), permitiendo así, cerrar el bucle de
verificación de toda actividad científica aplicada a ingeniería.

Se presentan y analizan dos problemas de diferente naturaleza obteni-
dos mediante la observación de fenómenos de transporte de masa en los
campos de la ingeniería biomédica y aeroespacial. Los modelos presenta-
dos están embebidos dentro de la teoría matemática de ecuaciones dife-
renciales en derivadas parciales con términos de difusión no lineales y de
reacción no lipschitzianos. Dichos modelos tienen como objetivos arrojar luz
en procesos de depredador - presa (especie invasora - especie invadida) en
sistemas biológicos, el comportamiento de la dinámica de gases para pro-
ducir atmósferas inertes en tanques de combustible de aeronaves y en la
descripción de los fenómenos dinámicos de transporte en la descarga de
agentes extintores para la supresión de fuegos en entornos aeroespaciales.

Una vez que se obtienen y justifican los modelos y sus ecuaciones recto-
ras, el objetivo se centra en resolver y discutir aspectos relevantes sobre las
soluciones, a saber: existencia, unicidad, comportamiento asintótico, carac-
terísticas propias y soluciones aproximadas o exactas. Además, para cada
uno de los dos modelos planteados, se ha llevado a cabo una colabora-
ción con el grupo Airbus para su aplicación en los sistemas de aeronaves
citados.

Durante la elaboración del presente documento, se ha realizado un es-
tudio exhautivo del estado del arte en modelos de difusión y transporte
de masa. Los detalles de tal estudio se mencionan a lo largo de la tesis

2



Non-linear reaction and diffusion.

con el objetivo de demostrar las mejoras en el conocimiento que supone el
ejercicio llevado a cabo. Las ecuaciones que se tratan en cada uno de los
apartados correspondientes presentan novedades en el marco de la teoría
de ecuaciones en derivadas parciales no lineales. Dichas novedades han
surgido de la aplicación de las ciencias formales a la realidad a modelar,
es decir, se plantean ecuaciones con un sentido intrínseco de aplicación.
Además, se encuentran aproximaciones nuevas en la forma de tratar y mo-
delar los fenómenos de transporte en sistemas de inertización de tanques
de combustible y de supresión de fuego en aviones, con el objetivo de so-
portar procesos más eficientes en las fases de concepción, dimensionado
y diseño de aeronaves.
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Introduction

During the last century, the Partial Differential Equation theory has been
used to model biological systems where reaction and diffusion are relevant
[2]. The introduction of the diffusion in the biological models permits de-
scribing the random transfer of mass (usually expressed as a mass density
or concentration of species per unit of volume) in the domain of interest.
Furthermore, the introduction of the reaction term permits to describe the
rate of production or vanishing of the involved species (for a definition of a
diffusive process see Section 4).

The interaction between diffusion and reaction appears in areas such
as chemistry kinetics, fluids engineering or biological population dynam-
ics, where reaction-diffusion models have been used to understand the be-
haviour of tumor growth, leukemia or atherosclerosis [2]. It is to be high-
lighted that the work developed in this memory is according to the state
of the art and in line with the recent discoveries and researching areas in
biomathematics [2]. The main novelty relies on the non-linearities consid-
ered, that introduce non-regularity (understood as a lack of the Lipschitz
condition or as a generalization of the diffusion through a Porous Medium
Equation). This fact can be interpreted as a way to model complex inter-
actions in biology and engineering. The problems review compiled in [2]
reflects equations where the Lipschitz condition in the reaction term is met
or where the diffusion follows the classical second order Fick law. It is shown
that the regularity of the solutions is met under the classical parabolic scope.

In the 1930s, Fisher [6], proposed the first reaction-diffusion model to
understand the interaction process of genes. In parallel, Kolmogorov, Petro-
vskii and Piskunov [7] proposed the same equation in combustion theory.
Such proposed equation, referred in the literature as KPP-Fisher, is of the
form:

∂u

∂t
=
∂2u

∂x2
+ u(1− u), (0.1)

where u represents the genes concentration in the Fisher models and the
fuel concentration in the Kolmogorov, Pretrovskii and Pisknov combustion
theory. The non-linearity is given in the reaction term u(1 − u), while the
diffusion (∂2u/∂x2) is linear. The duple (x, t) represents the classical spa-
tial and temporal independent variables.
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Figure 0.1: Travelling wave (TW) solution description (courtesy of MR Evans
[9])

The kind of solutions studied by the cited authors are called Travelling
Waves (represented as well by the siglum TW. See Section 4 for a definition
of a TW profile solution) and are of the form:

u(x, t) = f(ξ), ξ = x− at, (0.2)

where a represents the travelling wave speed. This kind of solutions are
formed by a front and a tip (Figure 0.1). The front carries the information
transition in the media from one state to other. In the case of biological inva-
sion problems, the front shifts the concentration of the populations affected
in the media. In addition, the tip constitutes the adaptation of the front so-
lution to the equilibrium state (in Figure 0.1 the equilibrium is given by the
solution u = 0).

After the paramount formulation by Fisher and Kolmogorov, et al, other
researchers studied the KPP-Fisher model with applications in biology, chem-
istry and medicine. As an example we can refer to the study of random
movements of biological populations by Skellam [8] . This thesis is heiress
of the Fisher theory and the Skellam studies for life sciences, in the sense
that we aim to apply partial differential equation techniques to understand
the dynamic of biological populations in a given media.

The models provided in this thesis can be applied to other fields of en-
gineering or science. It suffices to consider the searched solutions as con-
centration of any substance subjected to study: This is the case of the fire
prevention and extinguishing systems where gases concentrations are an-
alyzed to avoid the formation and propagation of a fire or the combustion
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theory to study the kinetics of the involved substances. In the aerospace
sector, the fire prevention and extinguishing technology requires accurate
models to ensure the safety of the involved designs.

Practically, the aim of this thesis is to define and obtain results about the
solvability of different models to understand, characterize and predict the dy-
namic of concentration species (either biological agents or gas substances)
in a global medium where convection and diffusion or diffusion alone are of
importance.

To illustrate the relevancy of our study within the aerospace perimeter,
we highlight that there are plenty of general, and relatively simple models in
the engineering world dealing with diffusion. Ghadirian et al. [10] establish
the state-of-the-art for simulating a diffusion process of the fuel vapors in the
airspace of a fuel tank, such diffusion is governed by the classical parabolic
homogeneous equation:

∂Cf
∂t

= D
∂2Cf

∂z2
, (0.3)

where Cf is the fuel concentration in the air, and z is the vertical coordi-
nate. We remark that this problem considers only the diffusion, disregarding
the natural convection terms and reaction or absorption phenomena. The
diffusion models, given in this thesis, represent an advance; as convection
and non-linear (non-Lipschitz) reaction and absorption are considered.

As mentioned, this memory presents several equations, for which, a
search of solutions is envisaged under the umbrella of the partial differential
equations techniques for parabolic and porous media operators. In addition
and for completeness, this thesis does not forget the applications to biology
and engineering, which is the main motivation for each fit-for-purpose model
derivation. Such derivation is based on the physic principles, the experience
and the engineering judgement. In any of the cases, we do not compromise
the generality and rigour of the mathematics involved and the ending results;
on the contrary, we try to show a synergy between applications and mathe-
matics towards the resolution of complex models of interest for biology and
aerospace engineering. The resolutions pay attention to those results of
relevancy for the engineers and scientist who are mainly interested in ex-
plicit solutions given either in analytical or graphical forms. The scope of
this memory is mainly, but not limited, mathematical; in the sense that the

6



Non-linear reaction and diffusion.

results shall be read considering the potential applications. In each of the
problems involved, we will provide evidences and examples (for each of the
models in the summary chapter) about the potentialities to serve as a ref-
erence for engineers and scientists searching for mathematical results for
reaction-diffusion problems in their area of expertise.

We would like to remark the importance of following the approach and
the results of this thesis with a real scenario extracted from the aerospace
industry: the fire prevention and extinguishing processes are evident for the
safety of any aircraft operation. The fire, in an aeroplane, may lead to catas-
trophic consequences involving human fatalities. One of the most studied
accidents happened on July-1996 on a Boeing 747 operating between New
York and Paris [11]. After take-off, the aircraft exploded. The American
Federal Aviation Administration, through the National Transportation Safety
Board, was in charge of the investigations to clarify the origin of such explo-
sion. Four years after, it was concluded that the most probable root cause
was related to the explosion of the aircraft centre fuel tank due to the prox-
imity of the heat generated by the air conditioning packs [11].

The results of this investigation changed the mentality of the aerospace
designers that, since then and currently, must take into account an aircraft
design providing means towards explosion prevention, fire avoidance and
fire extinguishing [12]. In addition, it has been promoted the possibility of
removing the oxygen from a fuel tank to avoid any hydrocarbon combustion
[12]. One of the solutions raised for this purpose, of relatively new imple-
mentation in the aerospace sector, is the inerting system that is thought to
fall within the category of fire prevention [13]. As a short description, the
inerting system consists of a filter that is capable of separating the nitrogen
and oxygen present at the air. The nitrogen is introduced into the fuel tank
while the oxygen goes outboard. The nitrogen is suitable to produce a inert
atmosphere, since it does not support the hydrocarbon combustion reac-
tion, is non-reactive with the materials used in the fuel tanks components
and is not toxic neither for maintenance personnel nor passengers. The in-
erted atmosphere prevents the possibility of nucleating a fire as, in case of
an electrical spark in any in-tank equipment, there is not sufficient oxygen
concentration to produce and sustain a combustion process. The model to
predict the behaviour of the interaction process between the nitrogen and
oxygen is dealt in Chapter 1.
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Additionally, the aerospace sector has the need of using high power tur-
bomachinery (engines and auxiliary power units) that, in case of a failure,
may produce a fire. To avoid any risk to the occupants, any fire shall be ex-
tinguished by automatic or manually activated fire suppressors. The areas
of fire extinguisher discharge are, typically, very complex with plenty of me-
chanical equipment, pipes, computers and sensors installed; this is the case
of, for instance, the engine nacelles. Currently, the models used in the fire
suppressor discharge process employ linear diffusion [14], nonetheless, we
try to fit our models to a more realistic approximation through a non-linear
diffusion in the form of a Porous Medium Equation. This is the purpose of
Chapter 2.

We stress the fact that the model we have developed in Chapter 2, in-
volving a Porous Medium Equation, has been implemented in the aerospace
industry (Annex II). The analysis performed based on the PME equation, re-
flects accurate results in the proximity of complex geometries where the ex-
tinguishing agent dynamic is modelled with a non-linear diffusion compared
to the frequently used linear diffusion.

Eventually, It is highlighted that this thesis consists of mathematics and
the results are oriented to engineering and biological applications. We
never loss the mathematical rigour and the application of modern techniques
raised to work with non-linear parabolic differential equations.
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1 Coupled System of reaction and absorption

with convection and diffusion equations

1.1 Description and objectives

Our main objective in this chapter is to derive the set of equations, for which
we think about the application to an industrial problem related to the fire
prevention technologies and, afterwards, to a biological interaction.

As presented, the fire prevention technology is known as inerting system.
This technology consists on removing the oxygen from the fuel tanks and
replacing it by nitrogen; this gas is well-known to be non-ignitable.

Let us think on a fuel tank with a certain quantity of fuel and air space.
We introduce nitrogen that will evolve in the air space replacing the oxygen
and making any combustion process impossible. The nitrogen enters the
tank through small nozzles (of the order of 2 cm in diameter) and provokes
the oxygen to exit via the fuel tank vents outboard.

We can think, as well, on a invasive-invaded biological system. Let con-
sider a domain in which a specie is living in perfect equilibrium. This means
that the rate of life and death and the carrying media capacity are balanced
to keep the population constant. At some moment, we introduce a new
specie that feeds on the already existing one. In addition, and with a filter or
similar device, we remove from the media the death species while we con-
tinue introducing the new specie at a given rate, motivating the presence of
convection. There are other sources of convection in biological media such
us the effect of the gravity or the super-population of cells that may push
one cell into the other leading to pressure differences.

Another area of application where the set of equations, derived in this
chapter, is applicable is related to the biological invasion problem. According
to the Convention of Biological Diversity, the biological invasion is defined
as:

"Those alien species which threaten ecosystems, habitats or species."
(page 1, Chapter 1 of [5])

It is particularly relevant, in the biomedical field, to study the cancer in-
vasion or metastasis; both understood as the penetration of the cancer cells
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into close organs (invasion) and the propagation of the cells through the cir-
culatory or lymphatic systems (metastasis). Under the cancer study perime-
ter, we can consider our reaction-diffusion with convection model as a way
to understand the physical interaction between healthy and cancer cells.

This kind of described problems with several inputs and several outputs
are governed by the so-called mass conservation principle. In our case, the
variables involved are the nitrogen quantity and the oxygen quantity (for the
fire prevention application) and the new specie, as input, and the old specie,
as output, in the biological application. We consider that the involved media,
in both cases, has a fixed volume, therefore our searched solutions will be:

• For the industrial application: the nitrogen concentration per unit vol-
ume (called u) and the oxygen concentration per unit volume (called
v).

• For the biological application: the invasive, new specie or cancerous
cells concentration per unit volume (called u) and the invaded existing
specie of healthy cells concentration per unit volume (called v).

It is important to consider the following simple dynamic process based
on the observation, experience and judgement:

The quantity of nitrogen or invasive specie always increases. At the be-
ginning of the process, the nitrogen or invasive time increasing rate is quali-
tatively and relatively high, nonetheless, as the time evolves, the saturation
of the media, due to the decreasing quantity of oxygen or invaded specie
and the increasing quantity of nitrogen or invasive specie, makes the time
rate of the nitrogen or invasive concentration to decrease, but still positive.
This can be modelled by considering the following rate of change:

ut = hvn, (1.1)

where n ∈ (0, 1) is a parameter, that shall be tailored for each particular
application, and h is a proportionality constant that will be considered as
h = 1.

Additionally, the oxygen or invaded concentration reduces with the time
evolution. This decreasing rate is relatively high at the beginning of the pro-
cess, nonetheless, when the nitrogen or invasive concentration increases,
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the oxygen rate reduces due to the reduction of the nitrogen or invasive rate.
Thus, we read:

vt = −jum, (1.2)

where m ∈ (0, 1) is an adjustable parameter depending on the application
and j is a proportionality constant that will be considered as j = 1.

This, a priory, simple dynamic-interaction between species shall be used
during our model derivation process in the form of reaction (vn) and ad-
sorption (−um). We can positively say that our species to characterize
are two functions u(x, t) and v(x, t) where t ∈ (0,∞) and x ∈ RN
(N = 1, 2, 3).

To derive the equations of our model, we employ the conservation law
assuming a virtual sub-domain Ω ∈ RN , where we can say that the rate
of change of any of the both concentrations, (u, v), is equal to the flux
across the borders of the postulated virtual sub-domain Ω plus or minus the
reaction and absorption independent forcing terms.

Let us consider that the vectors Φu ∈ RN and Φv ∈ RN represent
the local concentration flux per unit time and per unit area through the bor-
ders (∂Ω) of the sub-domain Ω. Let the vector Π ∈ RN to be the local
normal vector to the same boundaries ∂Ω and let consider that the term
Su(u, v, x, t) represents the reaction of nitrogen gas or invasive specie per
unit volume and per unit time and Sv(u, v, x, t) the absorption function to
characterize the oxygen or invaded specie per unit volume and per unit time.

The engineering and biological applications of this problem accompanied
with the observations, make us to consider that the functions Φu, Φv, Su
and Sv are continuous in the spatio-temporal variables and with continuous
derivatives as well. Note that we require the solutions u(x, t) and v(x, t)
to be distributed homogeneously in the domain so that any evolution, under
the regular parabolic operator is continuous (see Theorems 2.1 and 2.2 in
Chapter 7 of [26] for the regularity of the parabolic operator). Thus, we have:

d

dt

∫
Ω∈RN

u dx = −
∫
∂Ω∈RN−1

Φu·Π ds+

∫
Ω∈RN

Su(u, v, x, t) dx,

(1.3)
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d

dt

∫
Ω∈RN

v dx = −
∫
∂Ω∈RN−1

Φv ·Π ds+

∫
Ω∈RN

Sv(u, v, x, t) dx.

(1.4)
Now, we need to relate the vector fluxes with the concentrations u and v.
For this purpose, we make use of the Fick law that establishes the functional
relation:

Φu = −δ∇u− cu, Φv = −ε∇v − cv, (1.5)

where δ = ε, as they represent the diffusion effect of the interacting species
in each other and

c ∈ RN, (1.6)

represents the forced flow given in the medium.

Therefore, we have:

d

dt

∫
Ω
u dx = −

∫
∂Ω

(−δ∇u−cu) ·Π ds+

∫
Ω
Su(u, v, x, t) dx, (1.7)

d

dt

∫
Ω
v dx = −

∫
∂Ω

(−ε∇v− cv) ·Π ds+

∫
Ω
Sv(u, v, x, t) dx. (1.8)

And making use of the divergence theorem, we have:∫
∂Ω

(−δ∇u− cu) · nds =

∫
Ω
∇ · (−δ∇u− cu)dx

=

∫
Ω

(−δ∇ · (∇u)− c · ∇u)dx,
(1.9)

∫
∂Ω

(−ε∇v − cv) · nds =

∫
Ω
∇ · (−ε∇v − cv)dx

=

∫
Ω

(−ε∇ · (∇v)− c · ∇v)dx.
(1.10)

Then, we have:

d

dt

∫
Ω
u dx = −

∫
Ω

(−δ∆u−c·∇u) dx+

∫
Ω
Su(u, v, x, t) dx, (1.11)
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d

dt

∫
Ω
v dx = −

∫
Ω

(−ε∆v−c ·∇v) dx+

∫
Ω
Sv(u, v, x, t) dx. (1.12)

Without loss of generality, and for simplification in the problem formulation,
we make:

ε = δ = 1. (1.13)

Note that, we will recover, later, the diffusion coefficient ε and δ at the mo-
ment of formally enunciating and naming the problem.

As the integrals in the left hand side are performed considering the spa-
tial domain, we can introduce the d/dt into the integral. In addition, we
have shown, in equations (1.1) and (1.2), that Su(u, v, x, t) = vn and
Sv = (u, v, x, t) = −um with n,m ∈ (0, 1); therefore, we arrive to:

ut = ∆u+ c · ∇u+ vn,

vt = ∆v + c · ∇v − um,

n,m ∈ (0, 1).

(1.14)

It is to be stressed, now, an analysis on the initial conditions. Normally, in
the engineering and biological applications in which we want to make use of
our model, the initial conditions are positive and given by a constant quantity
homogeneously distributed in the domain. We can say:

u0(x) = u0 > 0, v0(x) = v0 > 0, (1.15)

which can be generalized by stating:

u0(x), v0(x) ∈ L1
loc(R

N ) ∩ L∞(RN ). (1.16)

Given the regularity of the involved parabolic operator (Theorems 2.1 and
2.2 in Chapter 7 of [26]), we proceed considering that the solutions follow
a monotone behaviour, increasing or decreasing, in our domain. Nonethe-
less, the solutions monotone properties, in particular the non-decreasing
behaviour of u, are controlled and governed by the sub-linear reaction term
Su(u, v, x, t) = vn, n ∈ (0, 1). For both reaction terms, the most general
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condition that we can require to the solutions is:

u(x, t), v(x, t) ∈ L1
loc(R

N ). (1.17)

Nonetheless, we will show in Chapter 1.3 that solutions can be expressed
as continuous functions.

Another important discussion to hold is related to the boundary set of
conditions. It may look as lack of rigour to work in the domain RN , even
when we know that any media (for instance a fuel tank, in the aerospace
application) is a finite volume in the space. Nonetheless, we can argue as
follows: the kinematic boundary condition related to the non-slip phenom-
ena and slip phenomena suggests that the velocity variations are concen-
trated in the proximity of the borders, while if we are far from that border,
the domain behaves free with minor influence of the boundary conditions.
In addition, the kinematic of the species is not of great relevance for us be-
cause we admit to know the influence and behaviour of convective effect
(thanks to the vector c), and more particularly, the effect of such convec-
tion into the concentrations (u, v) constituting our searched solutions. We
admit, then, that the concentration of any of the species is supposed to be
non-influenced by the tank boundaries. Thus, we can summarize by stating
that we are interested in understanding the dynamic associated to the so-
lutions at the core of the domain (sufficiently large as to consider RN ) not
affected by the domain borders.

It is remarkable to highlight that the specific geometry of the media and
boundaries affects the convective term. Indeed, it is possible to estimate
simply the magnitude of the convection by considering the area of a cross-
section of the media (see Figure 1.1) and applying the mass continuity equa-
tion to have:

c =
dm/dt

ρAT
, (1.18)

where dm/dt, ρ and AT are the mass flow, the density and the media
cross-section. The three parameters are known data for any given problem.
For the case of an inerting process for a fuel tank, the mass flow is provided
by the nitrogen flow entering into the tank, the dimensions are known and
the density, ρ, corresponds to the density of each of the gases constituting
the gas mixture. In case of air, the predominant components are the nitrogen
and the oxygen.
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Figure 1.1: Media, where the process occurs, schematic representation

Additionally, we formulate a different, but related model to deal with solu-
tions mainly affected by the evolution or propagation of a profile connecting
two stationary solutions (this is the case of the travelling waves [2]). In this
sense, we will obtain a tendency of our species to stationary solutions. It
is remarkable to say that the solutions shall satisfy the following monotone
conditions:

ut ≥ 0; vt ≤ 0. (1.19)

Therefore and considering the propagation towards stationary solutions, the
following system will be analyzed:

ut = ∆u+ c · ∇u− vn(u− d),

vt = ∆v + c · ∇v − umv,

n,m ∈ (0, 1),

u0(x), v0(x) ∈ L1
loc(R

N) ∩ L∞(RN),

(1.20)

where d ≥ max
x∈RN {u0(x)} or d ≥ u0 in case of a constant initial

data.

One can see that two stationary solutions are:

u = d; v = 0. (1.21)

Then, starting from a initial condition, the solution u will evolve towards the
stationary solution

u = d, (1.22)
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from below, and then, the forcing term

−vn(u− d), (1.23)

is positive, while the solution v will decrease towards the stationary solution

v = 0, (1.24)

as the forcing term given by
−umv, (1.25)

is negative.

In the biological application, the stationary solutions represent a situation
in which the invasive (u) wins over the invaded (v) ending in the stationary
solutions u = d and v = 0. The travelling waves are the connection of the
initial conditions to the stationary solutions u = d and v = 0. One potential
application of this model is related to the cancer evolution in a human organ.
If we consider that the function u represents the cancerous cells and v the
healthy cells; the evolution starts from a certain quantity of cancerous cells
in the organ and ends in a situation in which the concentration of cancerous
cells leads to the organ death. This killer concentration can be considered
as the stationary solution u = d.

In the industrial fuel tank application, the stationary solutions u = d and
v = 0 are the natural evolution of the problem, since it is known that the
quantity of nitrogen cannot increase without any limit as the tank volume
is finite and the tank pressure cannot exceed its structural limit by simply
adding quantity of nitrogen. Our aim is, then, to study the propagation profile
of the travelling waves. The propagation is studied once the system is free
to evolve from the initial conditions up or down to the equilibrium solutions.

As already said, this thesis provides the mathematical approach and re-
sults that can be used by any engineer or scientist with a mathematical
background. In addition and, as an example, we present here the scope of
what it can be considered as an engineering problem to be solved with the
results of this thesis:

It is known by the aerospace industry (table 5 in [17]) that a level of 93%
of Nitrogen (or 7% of oxygen) in a fuel tank is enough to avoid having a
risk of fire in case of any spark or extreme heat generated by surrounding
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machinery are given. In the military applications, it is allowed up to a level of
9% of oxygen and 91% of nitrogen [18]. We remind that the initial air pre-
sented in the fuel tank is a mix mainly form of a 80% of nitrogen and 20% of
oxygen. Thus, the problematic to solve is related to the required time to pass
from the initial concentration of 80% of nitrogen up to the 93%. The current
technology is based on filtering and separating the oxygen from nitrogen in-
troducing the nitrogen in the fuel tank and exiting the oxygen outboard. This
technology permits reaching an estimated value of 96% of nitrogen (Fig-
ure 5 in [19]). It is not possible to get a value corresponding to the 100%
of nitrogen in the fuel tanks with the filtering techniques in use nowadays.
Therefore, we can consider, as stationary solutions, the concentrations cor-
responding to a level of 96% of nitrogen and 4% of oxygen. The question
is, then, formulated as:

How much time is required to reach 93% of nitrogen and 7% of oxygen
when starting from a initial air mix of 80% of nitrogen and 20% of oxygen?

The answer to this question can be obtained by application of a propagation
kind of solution. This is the case of the travelling waves that will be treated in
Section 1.10. The travelling waves permit studying the profile evolution from
a given initial data up to the stationary conditions. Let consider the intersec-
tion of the growing front with a value of 93% of nitrogen when evolving to
the stationary condition (see Figures 1.2 and 1.5). Note that the travelling
wave independent variable is given by

ξ = x · nd − at, (1.26)

where nd is a unitary vector in RN that defines the travelling wave propa-
gation direction, and a is the travelling wave speed. For convenience, we
consider that

nd = (1, 0, .., 0), (1.27)

then
x · nd = x ∈ R. (1.28)

Operating in the travelling wave variable, we determine the value ξ = ξ1
corresponding to the 93% level of nitrogen evolution. Then, for a travelling
wave speed a to be determined (Section 1.10), we have a relation of the
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form:

ξ1 = x− at→ t =
x− ξ1
a

. (1.29)

Therefore, for each tank location given by the variable x ∈ R, it is possible
to obtain a time t value to ensure the preventive protection against a fire
given by the 93% level of nitrogen concentration.

Additionally, we can consider conservatively the largest tank dimension
given by the diagonal D of such tank to obtain a simple time estimation:

t =
D − ξ1
a

. (1.30)

This simple example is only to illustrate the mentality that has motivated this
thesis. The results are obtained thinking in future applications and it is, in
fact, a final objective to implement the results obtained from this memory
into engineering problems raised in the industry (Annex II), in biomedical
engineering or bio-physics.

Before proceeding further in this work, we summarize the problems that
will be studied in this thesis. Note that we recover, the diffusion coefficients
ε and δ:

Problem P :

ut = δ∆u+ c · ∇u+ vn,

vt = ε∆v + c · ∇v − um,

n,m ∈ (0, 1),

u0(x), v0(x) ∈ L1
loc(R

N) ∩ L∞(RN).

(1.31)
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Problem PT :

ut = δ∆u+ c · ∇u− vn(u− d),

vt = ε∆v + c · ∇v − umv,

n,m ∈ (0, 1),

u0(x), v0(x) ∈ L1
loc(R

N) ∩ L∞(RN).

(1.32)
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1.2 Summary

First of all, we focus our attention on the problem P . We start by studying
the associated Cauchy problem, i.e; the existence and uniqueness of solu-
tions as a way to ensure that our equations are capable of producing repre-
sentative solutions. For this purpose, we define and show the existence of
two pairs of solutions, that will be referred as supersolutions or upper solu-
tions (û, v̂) and subsolutions or lower solution (ũ, ṽ). We require the basic
regularity condition for each of the functions, such that

û, v̂, ũ, ṽ ∈ C2+γ, 1+γ/2(RN × (0, T )), (1.33)

where C2+γ, 1+γ/2 refers to the (2 + γ) Hölder norm of u, ux and uxx
and the (1 + γ/2) Hölder norm of u and ut (ídem for v).

We show that the upper solutions and the lower solutions define a band
with smooth boundaries such that any solution is located in.

Afterwards, we define and proof the existence of ordered monotone se-
quences of upper and lower solutions (û(k), v̂(k)) and (ũ(k), ṽ(k)), so that
in the limit with k → ∞, they converge to a solution for P , in virtue of to
the dominated converge theorem (Theorem 1.4.49 in [15]). This analysis is
provided in Section 1.3.

Additionally, we show the existence of global solutions to the problem
P in Section 1.4 . This proof is relevant to determine the non-existence of
blow-up in finite time due to the accumulated effect of the non-linear reaction
terms.

Afterwards, we make use of the Duhamel‘s principle for representing the
problem P and the fixed point theorem to proof local existence of a unique
point in the operator Ψ(U) defined in accordance with Duhamel. This anal-
ysis permits to show the existence of a unique solution to the problem P
permitting, then, to conclude the correct mathematical formulation of the set
of equations in P . This analysis is shown in Section 1.5.

Another interesting aspect is the existence of a comparison principle lo-
cally for single spatial and time variables. The comparison principle permits
to ensure that if one solution is higher than the other, it will keep the order
during the evolution locally. This analysis is performed in Section 1.6.

We provide evidences about the properties of global and local solutions
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in Section 1.7. Firstly, we provide a compatibility condition between the
initial data and the convection effects presented in the set of equations for
the problem P . Our concern is focused on obtaining solutions that preserve
the searched monotony properties with time (ut ≥ 0; vt ≤ 0) for different
levels of convection. It is to be stressed that a strong convection can lead
to minimize the effect of the absorption and reactions terms acting over the
given initial data, leading to jeopardize the monotony properties.

Afterwards, and in the same Section 1.7, we make use of the self-similar
kind of solutions to determine local spatial distributions of the solutions for
each given time t > 0. For this purpose, we define a subsolution for the
concentration u and a supersolution for the concentration v. In addition, we
provide a bound for the solution u, locally, for t ≤ τ and |x| ≤ R. These
results are particularly useful for our objectives. The population u repre-
sents the concentration of nitrogen, which is required at a certain level to
reach a non-ignitable atmosphere in the fuel tank. Indeed, having a subso-
lution for u implies to have an under-estimation of the quantity of nitrogen.
This is overly conservative; we only need to keep the time evolving until
the concentration of nitrogen reaches the required values for a non-ignitable
condition. Additionally and in the same section, we obtain a maximal bound
for u which gives us an indication of the maximum value of nitrogen ac-
cepted in our spatial domain. In the same way, we provide a sub-evolution
for the concentration of oxygen v.

In Section 1.8, we provide a precise evolution of the solutions, for dif-
ferent approximations to the lower solution for the concentration v. The
estimation of the precise evolution is strongly coupled and it is required to
postulate a sub-evolution for the concentration v to obtain the searched evo-
lution profiles.

After the study of the problem P , we move on to study the problem PT
in Section 1.9. For the problem PT , we show the existence of solutions. Af-
terwards, we study a particular sort of solutions referred as travelling waves
(TW), where we show the existence of TW-speeds motivating the propagat-
ing wave to be positive and to converge to the stationary solutions u = d
and v = 0.
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1.3 Existence

The existence of solutions may seem to be of mathematical interest only.
Nowadays, the numerical analysis permits to solve a wide variety of equa-
tions, leading to think that the only representative solution is that derived
from the numerical results without questioning if solutions do exist. Indeed
and in some cases, solutions may not exist and, hence, numerical analy-
sis does not provide clear results (several examples are provided in [3]). In
order to avoid such described situations, we study, firstly, if our proposed
model has existence of solutions making use of novel Partial Differential
Equations techniques. Conclusively, a consistent and appropriate analysis
of any equation and model shall start with an approach to the existence of
solutions.

Firstly and before proceeding with the existence related lemmas and the-
orems, we show the norm in which we are going to operate. Given two
functions u and v ∈ L1(RN ), we define the norm as:

‖(u, v)T‖ = ‖u‖+ ‖v‖. (1.34)

Let define U1 and U2 as:

Ui = (u, v)T i = 1, 2. (1.35)

We show that the triangular property is met for the defined norm:

‖U1 + U2‖ = ‖(u1, v1)T + (u2, v2)T‖ = ‖(u1 + u2, v1 + v2)T‖
= ‖u1 + u2‖+ ‖v1 + v2‖ ≤ ‖u1‖+ ‖u2‖+ ‖v1‖+ ‖v2‖
= ‖U1‖+ ‖U2‖.

(1.36)

Note that we have requested, for each of the component functions ui, vi,
to be in the space L1(RN ) although the triangular demonstration remains
applicable for any norm in Lr(RN ), r ≥ 1. It is, as well, applicable for
any function locally, i.e. in Lrloc(R

N ), r ≥ 1. The coming existence lem-
mas can be shown, without loss of generality, considering the component
functions ui, vi ∈ L1(RN ).

In this section, we develop the Cauchy problem for the system P with
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the initial values satisfying the condition: u0(x); v0(x) ∈ L1
loc(R

N) ∩
L∞(RN). This is, for example, the case of constant values initial data.

During the evolution of the solutions, in the frame of the Cauchy problem,
we consider the functions u, v : RN×(0, T )→ R and we denote by u(t)
and v(t), the functions evaluated for any given constant x represented by
u(·, t) and v(·, t).

Making use of the Duhamel‘s principle, the problem P can be expressed
as:

Φ1(u)(t) = Gδ∗u0+

∫ t

0
c·∇Gδ(t−s)∗u(s)ds+

∫ t

0
Gδ(t−s)∗vn(s)ds,

(1.37)

Φ2(v)(t) = Gε∗v0+

∫ t

0
c·∇Gε(t−s)∗v(s)ds−

∫ t

0
Gε(t−s)∗um(s)ds,

(1.38)
where Gδ and Gε represent the heat kernel for each of the equations com-
posing the problem P and defined as:

Gδ =
1

(4πδt)N/2
e
− x

2

4δt , (1.39)

Gε =
1

(4πεt)N/2
e−

x2
4εt . (1.40)

The equations (1.37) and (1.38) can be re-written using a matrix symbolic
representation as:(
u
v

)
=

(
Gδ 0
0 Gε

)
∗
(
u0

v0

)
+

∫ t

0

(
c · ∇Gδ 0

0 c · ∇Gε

)
∗
(
u
v

)
ds

+
∫ t

0

(
0 Gδ
−Gε 0

)
∗
(
un

vm

)
ds.︸ ︷︷ ︸

Ψ(u,v)T=Ψ(U)

(1.41)

The last expression can be seen as an operator Ψ(U) that, after transfor-
mation, provides the required solutions (u, v)T . It is necessary to show that
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such operator is bounded and stable; so that, it does not introduce oscilla-
tions or solutions going to infinity at any time (phenomena known as finite
time blow-up). This is the purpose of the following lemma:

Lemma 1.1. The operator Ψ(U) is bounded for a given time t > 0 in the
norm defined by the expression (1.34):

Proof. Let start by evaluating the magnitude of the expression

‖
(
Gδ 0
0 Gε

)
∗
(
u0

v0

)
‖, (1.42)

so that:

‖(Gδ ∗ u0, Gε ∗ v0)T‖ = ‖Gδ ∗ u0‖+ ‖Gε ∗ v0‖
≤ ‖G‖∞ (‖u0‖+ ‖v0‖) ,

(1.43)

where G = max{Gδ, Gε}.
It is to be noted that the heat kernel is a bounded function in the domain

for any local t > 0. Therefore, we can define:

‖G‖∞ = R1 =
1

(4πdt)
N
2

, (1.44)

Where d = min[δ, ε].

Then, the term to assess results in:

‖(Gδ ∗ u0, Gε ∗ v0)T‖ ≤ R1 (‖u0‖+ ‖v0‖) . (1.45)

We continue by evaluating the expression:

‖
∫ t

0

(
c · ∇Gδ 0

0 c · ∇Gε

)
∗
(
u
v

)
ds‖. (1.46)

For this purpose, we know that:

c · ∇Gδ =
N∑
i=1

ci(∇Gδ)i =
N∑
i=1

− ci

(4πtδ)
N
2

2xi
4δt

e
− x

2

4δt , (1.47)
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which is bounded function in RN . Therefore, we can say ‖c · ∇Gδ‖∞ =
R2. Analogously, we can say ‖c · ∇Gε‖∞ = R3. The introduced param-
eters R2 and R3 are determined some lines forward.

We have, then:

‖
∫ t

0

(
c · ∇Gδ 0

0 c · ∇Gε

)
∗
(
u
v

)
ds‖

≤
∫ t

0
‖(c · ∇Gδ ∗ u, c · ∇Gε ∗ v)T‖ds

=

∫ t

0
(‖c · ∇Gδ ∗ u‖+ ‖c · ∇Gε ∗ v‖) ds

≤
∫ t

0
(‖c · ∇Gδ‖∞‖u‖+ ‖c · ∇Gε‖∞‖v‖) ds

≤
∫ t

0
(R2‖u‖+R3‖v‖) ds.

(1.48)

It is to be noted that R2 and R3 are functions of time, indeed:

R2(t) = ‖c · ∇Gδ‖∞ = ‖
N∑
i=1

ci(∇Gδ)i‖∞

= ‖
N∑
i=1

− ci

(4πtδ)
N
2

2xi
4δt

e
− x

2

4δt‖∞ ≤
N∑
i=1

ci

(4πtδ)
N
2

‖2xi
4δt

e
− x

2

4δt‖∞

= NcM
1

(4πtδ)
N
2

1

4δt
2
√

2δte−
1
2 .

(1.49)

Where cM = max{ci}. The assessment ‖2xi
4δte

− x
2

4δt‖∞ leads to a rela-
tion between xi and t of the form

xi =
√

2δt. (1.50)

Operating analogously, we can determine the value for R3:

R3(t) = NcM
1

(4πtε)
N
2

1

4εt
2
√

2εte−
1
2 . (1.51)
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Our next objective is to evaluate the term:

‖
∫ t

0

(
0 Gδ
−Gε 0

)
∗
(
un

vm

)
ds‖. (1.52)

For this purpose, we remind that the initial conditions satisfy u0(x); v0(x) ∈
L1
loc(R

N )∩L∞(RN ). Thus, let assume that ‖u0‖∞ ≤ R4 and ‖v0‖∞ ≤
R4 where:

R4 = max{ max
x∈RN

u0(x), max
x∈RN

v0(x)}. (1.53)

The regularity conditions of the heat evolution establishes that any solution
to the heat equation with bounded initial data will be kept locally bounded,
at least, locally in time and for any x ∈ RN (see Theorem 5, Chapter 7 in
[23]). Note that we assume implicitly that solutions will be global in case of
existence. Even, when admitting global solutions seems to be artificial, the
true existence of such solutions is proved in section 1.4. We can, therefore,
say that ‖u‖ ≤ KR4 and ‖v‖ ≤ KR4 for a local time t > 0. We read:

‖
∫ t

0

(
0 Gδ
−Gε 0

)
∗
(
un

vm

)
ds‖ ≤

∫ t

0
‖(Gδ ∗ vm,−Gε ∗ un)T‖ds

=

∫ t

0
(‖Gδ ∗ vm‖+ ‖−Gε ∗ un‖) ds

≤
∫ t

0
(‖Gδ‖∞‖vm‖+ ‖Gε‖∞‖un‖) ds

≤
∫ t

0
(R1‖un‖+R1‖vm‖) ds

≤
∫ t

0
(R1K

nRn4 +R1K
mRm4 ) ds.

(1.54)

We consider the inequality ‖un‖ ≤ ‖u‖n and ‖vm‖ ≤ ‖v‖m.

After having assessed each term in the expression (1.41), we can com-
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pile as:

‖Ψ(U)‖ ≤ R1 (R4 +R4) +

∫ t

0
(R2KR4 +R3KR4) ds

+

∫ t

0
(R1K

nRn4 +R1K
mRm4 ) ds.

(1.55)

And operating the associated integrals, taking into account the time depen-
dency of the involved parameters, we arrive to:

‖Ψ(U)‖ ≤ 1

(4πd)
N
2

t−N/2 (R4 +R4)

+NcM
1

(4πδ)
N
2

1

4δ
2
√

2δe
−1
2

t−N/2+1/2

−N/2 + 1/2
KR4

+NcM
1

(4πε)
N
2

1

4ε
2
√

2εe
−1
2

t−N/2+1/2

−N/2 + 1/2
KR4

+ t−N/2+1 (KnRn4 +KmRm4 )
1

(4πd)N/2
.

(1.56)

It is to be noted that R4 is the bound of the initial data, therefore for any
value of R4 and for any t > 0 the operator Ψ(U) is bounded.

We have shown the bound of the solutions, through the bound properties
of the involved operator, to the problem P locally in time (0 < t < T ) when
involving bound initial data. In addition, the own regularity of the parabolic
operator permits to keep the solutions into the space L1(RN ) (based on
results from [30]):

u, v, ∇u, ∇v ∈ L1(RN × (0, T )), (1.57)

where T > 0 is any finite time.

Additionally and under the regularity conditions for the absorption and
reaction terms given by the Hölder definition of continuity (see the definition
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1), we can make use of the regularity results contemplated in [27], so that:

u, v ∈ L1( (0, T );W2,1(RN ) ) ∩W1,1( (0, T );L1(RN ) ), (1.58)

where W2,1(RN ) refers to functions with the first and the second spatial
derivatives in L1(RN ) and W1,1 refers to the first time derivative, that is
as well in L1 in time within the interval (0, T ) and space (RN ).

Our next objective is to show the existence of solutions u, v that satisfy
the equations and the conditions of the problem P . First of all, we define
hereafter, the scope of regularity in the reaction and absorption terms given
by the Hölder condition for a continuous function:

Definition 1. Given a scalar function f(y), we say that such function is
Hölder continuous if there exists non-negative constants K and γ, so that:

|f(y1)− f(y2)| ≤ K‖y1 − y2‖γ, (1.59)

for any y1 and y2 ∈ R.

Note that if γ = 1, the function f(y) satisfies the Lipschitz condition.

In addition, we require our solutions to have spatial derivatives up to the
second order and time derivatives up to the first order. To characterize the
involved functions behaviour, we introduce the Hölder norm, which permits
to ensure, at least, a weak continuity in the postulated solutions:

|u|Cγ = sup
u1,u2∈R

|f(u1)− f(u2)|
‖u1 − u2‖γ

. (1.60)

We will refer asC2+γ-norm of any function u to theCγ-norm of u, ux, uxx.
And C1+γ/2-norm to any function with the derivative ut in Cγ/2-norm.
To summarize, we work with functions u ∈ C2+γ, 1+γ/2(RN × (0, T ));
where C2+γ, 1+γ/2(RN × (0, T )) refers to the Hölder norms of u, ux,
uxx and ut.

Additionally, we can show that the reaction and adsorption terms meet
the Hölder condition inRN × (0, T ). Indeed:

|um1 − u
m
2 | ≤ K‖u1 − u2‖γ. (1.61)

We know that the function um (m ∈ (0, 1)) is a differentiable function as
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we have requested u > 0. Let consider γ = m:

|um1 − u
m
2 | ≤

m

u1−m ‖u1 − u2‖ ≤ Ku‖u1 − u2‖m, (1.62)

where
Ku =

m

minu∈R+|u1−m|
. (1.63)

Note that the last inequality on the right hand side of (1.62) is met provided
that u1 and u2 are sufficiently close:

‖u1 − u2‖ < 1. (1.64)

The same argument can be applied to the population v > 0 to show its
Hölder continuity:

|vn1 − v
n
2 | ≤

n

v1−n ‖v1 − v2‖ ≤ Kv‖v1 − v2‖n, (1.65)

where
Kv =

m

minv∈R+|v1−n|
. (1.66)

The inequality (1.65) holds provided:

‖v1 − v2‖ < 1. (1.67)

For a single criteria, we can select the following value of K :

K = max(Ku, Kv), (1.68)

so that, the expressions in (1.62) and (1.65) are written simply as:

|um1 − u
m
2 | ≤ K‖u1 − u2‖m, (1.69)

and
|vn1 − v

n
2 | ≤ K‖v1 − v2‖n. (1.70)

With the intention of having a single value of γ > 0, we can consider any
value of m and n with the same coming conclusions. Thus, we keep the
value of:

γ = m. (1.71)
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The fact of showing the Hölder continuity of the reaction and absorption
terms in our problem is a important aspect to show, afterwards, the exis-
tence of solutions. Previously and for this purpose, we use the monotone
method to obtain upper and lower solutions for the problem P . To this aim,
we remark:

vn is a monotone increasing function.

−um is a monotone decreasing function.

We refer this property as mixed-monotone and is of relevancy for the
definition of upper and lower solutions.

For simplification purposes, during the elaboration of this analysis, we
define the following linear operator:

Definition 2. Given a function f ∈ C2+γ, 1+γ/2(RN × (0, T )), the fol-
lowing linear operator is defined:

Lf = ft −∆f − c · ∇f (1.72)

We continue by the definition of upper and lower solutions:

Definition 3. Given the pairs of solutions (û, v̂) and (ũ, ṽ)∈ C2+γ, 1+γ/2(RN×
(0, T )).

We say that the pair (û, v̂) is formed of upper solutions if:

Lû ≥ v̂n,

Lv̂ ≥ −ũm.
(1.73)

We say that the pair (ũ, ṽ) is formed of lower solutions if:

Lũ ≤ ṽn,

Lṽ ≤ −ûm.
(1.74)
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Note that the following inequality holds for the initial conditions:

ũ(x, 0) ≤ u(x, 0) ≤ û(x, 0),

ṽ(x, 0) ≤ v(x, 0) ≤ v̂(x, 0),
(1.75)

where:

ũ(x, 0), û(x, 0), ṽ(x, 0), v̂(x, 0) ∈ L1
loc(R

N ) ∩ L∞(RN ). (1.76)

The compliance with the inequalities in the initial conditions can be met
by considering:

ν ∈ R+, (1.77)

so that:
0 < ν < min

x∈RN
(u(x, 0), v(x, 0)). (1.78)

Note that the superior bound of ν is defined to avoid that the lower solutions
may reach zero or negative values. Then, we have:

û(x, 0) = u(x, 0) + ν,

v̂(x, 0) = v(x, 0) + ν,

ũ(x, 0) = u(x, 0)− ν,

ṽ(x, 0) = v(x, 0)− ν.

(1.79)

According to the above definitions and, as a direct consequence, we enun-
ciate the following lemma:

Lemma 1.2. Given the pair of upper solutions (û, v̂) and the pair of lower
solutions (ũ, ṽ), where û, v̂, ũ, ṽ ∈ C2+γ, 1+γ/2(RN × (0, T )), the fol-
lowing order is met:

û ≥ ũ,

v̂ ≥ ṽ.
(1.80)
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Proof. First of all, we remind the strong positivity of the parabolic operatorL
(for a complete discussion on the maximum principle and stong positivity of
the parabolic operator, we can refer to Section 7 in [23]). As a consequence,
if the initial conditions are positive, any evolution resulting as the application
of the operator L is positive.

This lemma is shown based on the definitions provided for upper and
lower solutions. Indeed:

Lû ≥ v̂n,

Lũ ≤ ṽn.
(1.81)

And making the substraction, we read:

L(û− ũ) ≥ v̂n − ṽn. (1.82)

If we proceed analogously for the population v, we have:

Lv̂ ≥ −ũm,

Lṽ ≤ −ûm.
(1.83)

And making the subs-traction, we read:

L(v̂ − ṽ) ≥ −ũm + ûm. (1.84)

If we make the assumption that

v̂n ≥ ṽn, (1.85)

we have:
L(û− ũ) ≥ 0→ û ≥ ũ. (1.86)

And,
L(v̂ − ṽ) ≥ −ũm + ûm ≥ 0→ v̂ ≥ ṽ. (1.87)

This result is in line with the initial assumption in (1.85), showing, then, the
correctness of both the initial assumption and the theorem results.

It is clear, then, that any solution (u, v) for the problem P is located
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within the band defined for the upper and lower solutions; this means that:

(ũ, ṽ) ≤ (u, v) ≤ (û, v̂). (1.88)

Where the inequality shall be understood in each component wise.

The lower and upper solutions define a band with smooth bound in
C2+γ, 1+γ/2(RN × (0, T )) in which any solution is located in.

Note that we have assumed the existence of such upper and lower so-
lutions. Indeed, those solutions do exist; for this purpose, it is sufficient to
highlight the Lipschitz condition of the reaction and absorption terms when
dealing with positive solutions:

|ûm − ũm| ≤ K‖û− ũ‖,

|v̂n − ṽn| ≤ K‖v̂ − ṽ‖,
(1.89)

where K is as per (1.68).

These Lipschitz conditions ensure the existence of the upper and lower
solutions satisfying the results given by the expression (1.58) under the reg-
ular parabolic operator L (see Theorems 2.1 and 2.2 in Chapter 7 of [26]).

The existence of the lower and upper solutions is relevant towards the
definition of the monotone sequences associated to the problem P and that
will be used to show lately the existence of solutions.

Now, it is our aim to define the monotone sequences referred as

(u(k), v(k))k=0,1,2,... (1.90)

Such sequences start from an initial data (u(0), v(0)) with an iteration pro-
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cess given by:

u
(k)
t = ∆u(k) + c · ∇u(k) + (v(k−1))n,

v
(k)
t = ∆v(k) + c · ∇v(k) − (u(k−1))m,

u(k)(x, 0) = u0(x),

v(k)(x, 0) = v0(x),

k = 1, 2, 3...

(1.91)

For simplification purpose during the writing, by notation, we will consider:

(v(k−1))
n

= v(k−1) n, (u(k−1))
m

= u(k−1) m,

k = 1, 2, 3...

(1.92)

And, it shall be understood as the k − 1 component of the sequence up to
n or m for v and u respectively.

Note that the system is now uncoupled with Lipschitz reaction and ab-
sorption; therefore, we can ensure the existence of solutions (u(k), v(k))
for each k = 1, 2, 3, .. based on the regularity of the parabolic operator L
(see Theorems 2.1 and 2.2 in Chapter 7 of [26]).

In the following lemma, we establish the monotone properties of the se-
quence (u(k), v(k)) defined as:

Lemma 1.3. Given the mixed monotone forcing terms (vn,−um), the se-
quences defined for the upper solutions (û(k), v̂(k))k=0,1,2,... and for the

lower solutions (ũ(k), ṽ(k))k=0,1,2,... possess monotone behaviour.

Proof. Let assume that the first elements of the upper sequence (û(0), v̂(0))
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departs from the highest upper solution given by:

ût = ∆û+ c · ∇û+ v̂n,

v̂t = ∆v̂ + c · ∇v̂ − ũm,

û(x, 0) = u0(x) + ν,

v̂(x, 0) = v0(x) + ν,

k = 1, 2, 3...

(1.93)

And that the first elements of the lower sequence (ũ(0), ṽ(0)) departs for
the lowerest solution given by:

ũt = ∆ũ+ c · ∇ũ+ ṽn,

ṽt = ∆ṽ + c · ∇ṽ − ûm,

ũ(x, 0) = u0(x)− ν,

ṽ(x, 0) = v0(x)− ν,

k = 1, 2, 3...

(1.94)

This means that û(0) = û , v̂(0) = v̂ and ũ(0) = ũ , ṽ(0) = ṽ. To proof
monotony, we start with:

L(û) ≥ v̂n,

L(û(1)) ≥ v̂n.

(1.95)

And after substraction:

L(û− û(1)) ≥ 0→ û ≥ û(1). (1.96)
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Analogously for v:
L(v̂) ≥ −ũm,

L(v̂(1)) ≥ −ũm.
(1.97)

L(v̂ − v̂(1)) ≥ 0→ v̂ ≥ v̂(1). (1.98)

Operating in the same way for the lower solutions, we have:

L(ũ) ≤ ṽn,

L(ũ(1)) ≤ ṽn.

(1.99)

And after substraction:

L(ũ− ũ(1)) ≤ 0→ ũ ≤ ũ(1). (1.100)

Analogously for v:
L(ṽ) ≤ −ûm,

L(ṽ(1)) ≤ −ûm.
(1.101)

And the difference provides:

L(ṽ − ṽ(1)) ≤ 0→ ṽ ≤ ṽ(1). (1.102)

In each step, the upper solutions are above the lower solutions, this can be
shown as follows:

L(û(1)) ≥ v̂n,

L(ũ(1)) ≤ ṽn.

(1.103)

And after substraction:

L(û(1) − ũ(1)) ≥ v̂n − ṽn. (1.104)

Analogously for v:
L(v̂(1)) ≥ −ũm,

L(ṽ(1)) ≤ −ûm.
(1.105)
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And after substraction:

L(v̂(1) − ṽ(1)) ≥ ûm − ũm. (1.106)

Assume now that v̂ ≥ ṽ, then we read:

L(û(1) − ũ(1)) ≥ 0→ û(1) ≥ ũ(1),

L(v̂(1) − ṽ(1)) ≥ 0→ v̂(1) − ṽ(1).

(1.107)

Definitely, we have shown that:

ũ ≤ ũ(1) ≤ û(1) ≤ ũ,

ṽ ≤ ṽ(1) ≤ v̂(1) ≤ ṽ.

(1.108)

By induction, we assume that the last inequalities hold for a generic k:

ũ ≤ ũ(k) ≤ û(k) ≤ ũ,

ṽ ≤ ṽ(k) ≤ v̂(k) ≤ ṽ.

(1.109)

Now, we show that the same inequalities hold for the next step k + 1:

L(û(k)) ≥ v̂(k−1) n,

L(û(k+1)) ≥ v̂(k) n.

(1.110)

And after subs-traction:

L(û(k)−û(k+1)) ≥ v̂(k−1) n−v̂(k) n ≥ 0→ û(k) ≥ û(k+1). (1.111)

We have assumed in the previous step that v̂(k−1) n ≥ v̂(k) n, which is a
correct assumption in view of the coming results.

Analogously for v:

L(v̂(k)) ≥ −ũ(k−1) m,

L(v̂(k+1)) ≥ −ũ(k) m.

(1.112)
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And after subs-traction:

L(v̂(k) − v̂(k+1)) ≥ −ũ(k−1) m + ũ(k) m ≥ 0→ v̂(k) ≥ v̂(k+1).
(1.113)

Operating in the same way for the lower solutions, we have:

L(ũ(k)) ≤ ṽ(k−1) n,

L(ũ(k+1)) ≤ ṽ(k) n.

(1.114)

And after subs-traction:

L(ũ(k)−ũ(k+1)) ≤ ṽ(k−1) n−ṽ(k) n ≤ 0→ ũ(k) ≤ ũ(k+1). (1.115)

From the previous step, we assume that ṽ(k−1) n ≤ ṽ(k) n.

Analogously for v:

L(ṽ(k)) ≤ −û(k−1) m,

L(ṽ(k+1)) ≤ −û(k) m.

(1.116)

And after substraction:

L(ṽ(k) − ṽ(k+1)) ≤ û(k) m − û(k−1) m ≤ 0→ ṽ(k) ≤ ṽ(k+1).
(1.117)

From the previous step, we assume that û(k) m ≤ û(k−1) m.

Finally, we show that in the step k + 1, the upper solutions are above
the lower solutions:

L(û(k+1)) ≥ v̂(k) n,

L(ũ(k+1)) ≤ ṽ(k) n.

(1.118)

And after subs-traction:

L(û(k+1) − u(k+1)) ≥ v̂(k) n − ṽ(k) n ≥ 0→ û(k+1) ≥ ũ(k+1).
(1.119)

Where it is assumed that in the previous step k: v̂(k) n ≥ ṽ(k) n.
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For the population v:

L(v̂(k+1)) ≥ −ũ(k) m,

L(ṽ(k+1)) ≤ −û(k) m.

(1.120)

And after subs-traction:

L(v̂(k+1) − ṽ(k+1)) ≥ û(k) m − ũ(k) m ≥ 0→ v̂(k+1) ≥ ṽ(k+1).
(1.121)

Where it is assumed that in the previous step k: û(k) n ≥ ũ(k) n.

Finally, we have shown that based on the monotone properties of the
reaction and absorption terms, it is possible to write that:

ũ ≤ ũ(k+1) ≤ û(k+1) ≤ û,

ṽ ≤ ṽ(k+1) ≤ v̂(k+1) ≤ v̂,

(1.122)

for k = 0, 1, 2...

Once the monotone properties of the defined upper and lower solutions
sequences have been shown, it is our next intention to determine if the
sequences are ordered. For this purpose, we proceed to enunciate the
following lemma:

Lemma 1.4. Given the ordered pairs of solutions (û, v̂) and (ũ, ṽ), then the
iterations resulting upon them, (û(k), v̂(k)) and (ũ(k), ṽ(k)) are ordered:

Proof.

L(û(k)) = v̂(k−1) n = v̂(k−1) n − v̂(k) n + v̂(k) n ≥ v̂(k) n. (1.123)

We have used the shown fact v̂(k−1) n ≥ v̂(k) n, thus:

L(û(k)) ≥ v̂(k) n. (1.124)

Analogously for v, we have:

L(v̂(k)) ≥ −ũ(k) m. (1.125)
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Operating for the lower solutions, we read:

L(ũ(k)) = ṽ(k−1) n = ṽ(k−1) n − ṽ(k) n + ṽ(k) n ≤ ṽ(k) n. (1.126)

As we know that ṽ(k−1) n ≤ ṽ(k) n; we, therefore, have:

L(ũ(k)) ≤ ṽ(k) n. (1.127)

Analogously for v, we have:

L(ṽ(k)) ≤ −û(k) m. (1.128)

Based on the monotony and ordered properties shown, we are in a po-
sition to enunciate a existence theorem:

Theorem 1.3.1. Let (û(k), v̂(k)) and (ũ(k), ṽ(k)) be ordered upper and
lower solutions to the problem P , then there exist a solution (u, v) obtained
as the limit of the given sequences:

û(x, t) = limk→∞ û(k)(x, t); v̂(x, t) = limk→∞ v̂(k)(x, t),

ũ(x, t) = limk→∞ ũ(k)(x, t); ṽ(x, t) = limk→∞ ṽ(k)(x, t).
(1.129)

In addition:
û(x, t) = ũ(x, t) = u(x, t),

v̂(x, t) = ṽ(x, t) = v(x, t).
(1.130)

Proof. As (û(k), v̂(k)) and (ũ(k), ṽ(k)) are solutions of the problem P ,
they satisfy the integral representation in virtue of the Duhamel principle:

û(k)(t) = Gδ ∗ (u0 + ν(k)) +

∫ t

0
c · ∇Gδ(t− s) ∗ û(k)(s)ds

+

∫ t

0
Gδ(t− s) ∗ v̂(k) n(s)ds,

(1.131)
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ũ(k)(t) = Gδ ∗ (u0 − ν(k)) +

∫ t

0
c · ∇Gδ(t− s) ∗ ũ(k)(s)ds

+

∫ t

0
Gδ(t− s) ∗ ṽ(k) n(s)ds,

(1.132)

Where limk→∞ ν = 0.

Considering the limit approximation and in virtue of the dominated-convergence
theorem (enunciated in Theorem 1.4.49 of [15]) , we have:

lim
k→∞

û(k)(t) = Gδ ∗ (u0 + lim
k→∞

ν(k))

+

∫ t

0
c · ∇Gδ(t− s) ∗ lim

k→∞
û(k)(s)ds

+

∫ t

0
Gδ(t− s) ∗ lim

k→∞
v̂(k) n(s)ds,

(1.133)

lim
k→∞

ũ(k)(t) = Gδ ∗ (u0 − lim
k→∞

ν(k))

+

∫ t

0
c · ∇Gδ(t− s) ∗ lim

k→∞
ũ(k)(s)ds

+

∫ t

0
Gδ(t− s) ∗ lim

k→∞
ṽ(k) n(s)ds.

(1.134)

We know that:

û(x, t) = limk→∞ û(k)(x, t); ũ(x, t) = limk→∞ ũ(k)(x, t),

v̂(x, t) = limk→∞ v̂(k)(x, t); ṽ(x, t) = limk→∞ ṽ(k)(x, t).
(1.135)

Therefore and after substraction:

û(t)− ũ(t) =

∫ t

0
c · ∇Gδ(t− s) ∗ (û− ũ)(s)ds

+

∫ t

0
Gδ(t− s) ∗ (v̂n − ṽn)(s)ds.

(1.136)
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In the assumption that v̂ = ṽ, the last equality holds provided that û = ũ =
u.

The same steps can be repeated for the population v:

v̂(t)− ṽ(t) =

∫ t

0
c · ∇Gδ(t− s) ∗ (v̂ − ṽ)(s)ds

+

∫ t

0
Gδ(t− s) ∗ (−ûm + ũm)(s)ds.

(1.137)

Under the assumption that v̂ = ṽ, we obtained that û = ũ = u. Indeed,
the last inequality holds if v̂ = ṽ, proving the correctness of the assumption.

Finally, we have proved the existence of solutions to our problem P :

û(x, t) = ũ(x, t) = u(x, t) ∈ C2+γ, 1+γ/2(RN × (0, T )),

v̂(x, t) = ṽ(x, t) = v(x, t) ∈ C2+γ, 1+γ/2(RN × (0, T )).

(1.138)

Additionally, both solutions satisfy the conditions stated in the expression
(1.58) by the embedding:

C2+γ, 1+γ/2(RN × (0, T ))

⊂ L1( (0, T );W2,1(RN ) ) ∩W1,1( (0, T );L1(RN ) )

(1.139)
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1.4 Global solutions

The existence analysis is completed with the analysis of the existence of
global solutions. Aguirre and Escobedo [28] showed the existence of global
solutions for a reaction term involving an exponent of the form up, with 0 <
p < 1. Additionally, Escobedo and Herrero [29] showed the existence of
global solutions for a system of the form:

ut = ∆u+ vp, p > 0,

vt = ∆v + uq, q > 0.
(1.140)

Our objective is to extend the existence results, analyzed by the cited au-
thors, to show the existence of global solutions for the problem P . Nonethe-
less and previously, we need to consider the convective term. Namely, we
aim to show that the fact of introducing a convective term does not impact
the existence of global solutions so that the results contemplated in [29] ap-
ply. For this purpose, we perform the following change of variables in the
problem P :

u(x, t) = U(ξ(x, t), t),

v(x, t) = V (ξ(x, t), t),

ξ = x+ ct.

(1.141)

The derivatives are:

ut = ∇ξUξt + Ut,

∇u = ∇ξUξx,

∆u = ∆ξUξ
2
x +∇ξUξxx.

(1.142)

And upon substitution into the equation for u in problem P , we have:

∇ξU · c+ Ut = ∆ξU + c · ∇ξU + V n,

Ut = ∆ξU + V n.
(1.143)
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1.4 Global solutions Non-linear reaction and diffusion.

The same operations can be developed for the population v, so that the
system P adopts the following structure in the independent variables (ξ, t):

Ut = ∆ξU + V n,

Vt = ∆ξV − Um.
(1.144)

Any global solution to the coupled problem study by Escobedo and Her-
rero in [29], is a supersolution to our problem P , Indeed, the problem P is
scoped by the problem of Escobedo and Herrero pointed out in the expres-
sion (1.140) :

Ut = ∆ξU + V n,

Vt = ∆ξV − Um ≤ ∆ξV + Um.
(1.145)

We denote by P+ to the following problem formed of upper solutions to the
problem P :

Ût = ∆ξÛ + V̂ n,

V̂t = ∆ξV̂ + Ûm.

(1.146)

As discussed, the existence of global solutions to the problem P+ has been
already performed by Escobedo and Herrero in [29], and, as it bounds the
problem P , we show, then, the existence of global supersolutions to the
problem P .

At this point, we have shown existence of solutions (see Section 1.3)
based on an approximation from above, with upper solutions, and from be-
low, with lower solutions existing in (0, T ). In addition, and due to the results
presented in this section, we can conclude that solutions exist globally and,
as a direct consequence, there not exist blow up phenomena for the problem
P .

Furthermore, we can make use of the global supersolutions obtained in
[29] to postulate exact global bounds for our problem P , given by:

Û(t) = C1t
n+1

1−nm , C1−nm
1 =

(1−nm)n+1

(1+n)(1+m)n
,

V̂ (t) = C2t
m+1

1−nm , C2 =
Cm1 (1−nm)

m+1 .

(1.147)
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We can make use of the translation constants t0,1 and t0,2 to have:

u(x, t) ≤ C1(t+ t0,1)
n+1

1−nm , t0,1 = (C−1
1 ‖u0‖)

1−nm
1+n ,

v(x, t) ≤ C2(t+ t0,2)
m+1

1−nm , t0,2 = (C−1
2 ‖v0‖)

1−nm
1+m .

(1.148)
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1.5 Uniqueness

Once we have set the evidences related to existence of solutions and the
bound of the solving operator Ψ, we are going to show the uniqueness of
the solutions to P making use of the fixed point theorem. For this purpose,
we enunciate the following theorem:

Theorem 1.5.1. Under the conditions u0(x) > 0, v0(x) > 0 with

u0(x), v0(x) ∈ L1
loc(R

N ) ∩ L∞(RN ), (1.149)

there is a unique solution to the problem P.

Proof. let consider two different functions

U1 = (u1, v1)T ,

U2 = (u2, v2)T ,

(1.150)

constituting solutions to the problem P and with the same initial data

u0(x); v0(x) ∈ L1
loc(R

N ) ∩ L∞(RN ). (1.151)

The uniqueness is shown based on the functional representation as per
(1.41). We show that the norm of the difference

Ψ(U1)−Ψ(U2), (1.152)

is bounded for a given constant time T , so that the fixed point theorem can
be applied upon:

‖Ψ(U1)−Ψ(U2)‖ ≤ ‖
∫ t

0

(
c · ∇Gδ 0

0 c · ∇Gε

)
∗
(
u1 − u2

v1 − v2

)
ds‖

+ ‖
∫ t

0

(
0 Gδ
Gε 0

)
∗
(
−um1 + um2
vn1 − v

n
2

)
ds‖,

(1.153)
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‖Ψ(U1)−Ψ(U2)‖ ≤
∫ t

0
‖
(

(c · ∇Gδ) ∗ (u1 − u2)
(c · ∇Gε) ∗ (v1 − v2)

)
‖ds

+

∫ t

0
‖
(

Gδ ∗ (vn1 − v
n
2 )

Gε ∗ (−um1 + um2 )

)
‖ds.

(1.154)

We assess the integrals involved on the right hand side of the last inequality
in view of the defined norm (1.34):∫ t

0
‖
(

(c · ∇Gδ) ∗ (u1 − u2)
(c · ∇Gε) ∗ (v1 − v2)

)
‖ds

=

∫ t

0
(‖c · ∇Gδ ∗ (u1 − u2)‖+ ‖c · ∇Gε ∗ (v1 − v2)‖) ds

≤
∫ t

0
(‖c · ∇Gδ‖∞‖u1 − u2‖+ ‖c · ∇Gε‖∞‖v1 − v2‖) ds

≤
∫ t

0
(R2‖u1 − u2‖+R3‖v1 − v2‖) ds

≤ sup
0<t<T

‖u1 − u2‖
∫ t=T

0
R2ds+ sup

0<t<T
‖v1 − v2‖

∫ t=T

0
R3ds

= sup
0<t<T

‖u1 − u2‖
∫ t=T

0
NcM

1

(4πsδ)
N
2

1

4δs
2
√

2δse
−1
2 ds

+ sup
0<t<T

‖v1 − v2‖
∫ t=T

0
NcM

1

(4πsε)
N
2

1

4εs
2
√

2εse
−1
2 ds

= sup
0<t<T

‖u1 − u2‖
2

1−N
T

1−N
2 NcM

1

(4πδ)
N
2

1

4δ
2
√

2δe
−1
2

+ sup
0<t<T

‖v1 − v2‖
2

1−N
T

1−N
2 NcM

1

(4πε)
N
2

1

4ε
2
√

2εe
−1
2 .

(1.155)
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For the second integral, we have:∫ t

0
‖
(

Gδ ∗ (vn1 − v
n
2 )

Gε ∗ (−um1 + um2 )

)
‖ds

=

∫ t

0
(‖Gδ ∗ (vn1 − v

n
2 )‖+ ‖Gε ∗ (um2 − u

m
1 )‖) ds

≤
∫ t

0
(‖Gδ‖∞‖vn1 − v

n
2‖+ ‖Gε‖∞‖um2 − u

m
1 ‖) ds

≤
∫ t

0
(R1‖vn1 − v

n
2‖+R1‖um2 − u

m
1 ‖) ds

≤
∫ t

0

(
R1‖

n

v1−n‖‖v1 − v2‖+R1‖
m

u1−m‖‖u2 − u1‖
)
ds

≤ n

a
sup

0<t<T
‖v1 − v2‖

∫ t=T

0
R1ds+

m

a
sup

0<t<T
‖u2 − u1‖

∫ t=T

0
R1ds

=
n

a
sup

0<t<T
‖v1 − v2‖

2

(4πd)N/2(N − 2)
T

2−N
2

+
m

a
sup

0<t<T
‖u2 − u1‖

2

(4πd)N/2(N − 2)
T

2−N
2 ,

(1.156)

where
a = min{v, u}+ β, (1.157)

and N = 3 to consider the space dimensions.

Note that β is a suitable constant to ensure that a > 0 and is considered
to be β → 0.

The application of the Lipschitz condition to bound the terms ‖um2 −u
m
1 ‖

and ‖vn1 −v
n
2‖ is consistent in the sense that each of the involved functions

um2 , um1 , vn1 and vn2 comply the embedding relation:

un2 , u
n
1 , v

m
1 , v

m
2 ∈ C

2+γ, 1+γ/2(RN × (0, T ))

⊂ L1( (0, T );W2,1(RN ) ) ∩W1,1( (0, T );L1(RN ) ),
(1.158)

that has been shown for the solutions in Theorem 1.3.1. Indeed the Lipschitz
case corresponds to γ = 1 in the last relation of inclusion.
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After compilation of both assessments, we have:

‖Ψ(U1)−Ψ(U2)‖

≤ sup
0<t<T

‖u1 − u2‖
2

1−N
T

1−N
2 NcM

1

(4πδ)
N
2

1

4δ
2
√

2δe
−1
2

+ sup
0<t<T

‖v1 − v2‖
2

1−N
T

1−N
2 NcM

1

(4πε)
N
2

1

4ε
2
√

2εe
−1
2

+
n

a
sup

0<t<T
‖v1 − v2‖

2

(4πd)N/2(N − 2)
T

2−N
2

+
m

a
sup

0<t<T
‖u2 − u1‖

2

(4πd)N/2(N − 2)
T

2−N
2 .

(1.159)

For a given T > 0 in the space (N = 3), the term

‖Ψ(U1)−Ψ(U2)‖, (1.160)

is a contraction (understood in the sense of each component wise) on

C2+γ, 1+γ/2(RN × (0, T ))

⊂ L1( (0, T );W2,1(RN ) ) ∩W1,1( (0, T );L1(RN ) ).

(1.161)

Indeed, it is enough to make

u1 → u2,
v1 → v2,

(1.162)

to ensure that the operator Ψ has a fixed point U , which is a unique solution
to the problem P

53



1.6 Comparison of solutions Non-linear reaction and diffusion.

1.6 Comparison of solutions

The comparison of solutions is mainly governed by the reaction and ab-
sorption for the equation in u and v respectively. Indeed, given a solution
u2 > u1, the absorption term in the equation in v would lead to have
v2 < v1 that, in turn, will feed the reaction term in the equation for u with a
lower magnitude. In the next step, u would be lower, providing a lower ab-
sorption in the equation for v, that will result in a higher value for v. Again,
this higher value for v feeds the reaction in the u equation, providing a higher
value for u. This oscillatory dynamic is quite specific of our problem, given
the coupling effect of the reaction and absorption, and introduces difficulties
when arising a comparison principle that can be, only, formulated locally.

In order to deal with the dynamic described, and aiming the proof of
a comparison principle, we need to control the effect of both reaction and
absorption terms. For this purpose; we introduce, in our original problem P ,
a controlling parameter, κ, that will allow us to establish certain conditions
in which comparison holds. Let us define the following problem referred as
Pκ:

ut = δ∆u+ c · ∇u+ κvn,

vt = ε∆v + c · ∇v − κum.
(1.163)

We postulate the following theorem:

Theorem 1.6.1. Given two pairs of solutions such that

(u1, v1), (u2, v2) ∈ C2+γ, 1+γ/2(RN × (0, T )), (1.164)

understood in each component wise for the problem Pκ and that

u0,1 ≥ u0,2 > 0 ∈ L1
loc(R

N ) ∩ L∞(RN ),

v0,1 ≥ v0,2 > 0 ∈ L1
loc(R

N ) ∩ L∞(RN ),

(1.165)

then:
u1 ≥ u2; v1 ≥ v2, (1.166)
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locally, for all (x, t) ∈ β(x0, t)× (0, T ), where:

β(x0, t) =
[
x ∈ (x0 −B(t), x0 +B(t)); x0 ∈ RN

]
. (1.167)

And T is sufficiently small (i.e. T → 0) .

Proof. First of all, we define a region γ(x0, t) in the vicinity of x0 and con-
tained within the set β(x0, t), so that the solutions order is the opposite
compared to the results we aim to proof:

γ(x0, t) =
[
x ∈ (x0 − σ(t), x0 + σ(t)); x0 ∈ RN ;u2 > u1, v2 > v1

]
,

(1.168)
with

γ(x0, t) ⊂ β(x0, t). (1.169)

The transition between the region γ(x0, t) and the region β(x0, t) is lo-
cated in the border of γ, i. e. ∂γ(x0, t), where the change of order in the
solutions between γ and β, requires:

u1 = u2; v1 = v2 in ∂γ(x0, t). (1.170)

After the definition of the regions, we substitute the solutions into the prob-
lem Pκ:

u1t = δ∆u1 + c · ∇u1 + κvn1 ,

v1t = ε∆v1 + c · ∇v1 − κum1 .

u2t = δ∆u2 + c · ∇u2 + κvn2 ,

v2t = ε∆v2 + c · ∇v2 − κum2 .

(1.171)

Making the substraction, arranging the terms in vectorial form, integrating
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over γ(x0, t) and making δ = ε = 1 for the shake of simplicity, we have:

d

dt

∫
γ(t)

(
u2 − u1

v2 − v1

)
dx =

∫
γ(t)

(
∆(u2 − u1)
∆(v2 − v1)

)
dx

+

∫
γ(t)

(
c · ∇(u2 − u1)
c · ∇(v2 − v1)

)
dx+

∫
γ(t)

κ

(
vn2 − v

n
1

−um2 + um1

)
dx.

(1.172)

Making use of the divergence theorem, we have:∫
γ(t)

(
c · ∇(u2 − u1)
c · ∇(v2 − v1)

)
dx

=

∫
γ(t)

(
∇ · (c(u2 − u1))− (∇ · c)(u2 − u1)
∇ · (c(v2 − v1))− (∇ · c)(v2 − v1)

)
dx

=

∫
∂γ(t)

(
Π · c(u2 − u1)
Π · c(v2 − v1)

)
dx(s),

(1.173)

where Π is the outer normal unit vector to ∂γ(t) that is considered to be
sufficiently smooth for our purposes and dx(s) represents the integration
over a spatial domain ∂γ(t) variable with time s.

Note we have required that

u1 = u2,

v1 = v2,
(1.174)

in ∂γ(t).

Therefore, the last integral is zero:∫
∂γ(t)

(
Π · c(u2 − u1)
Π · c(v2 − v1)

)
dx(s) =

(
0
0

)
. (1.175)

We proceed, now, by employing the Green‘s formula to evaluate the term
corresponding to the diffusion:∫

γ(t)

(
∆(u2 − u1)
∆(v2 − v1)

)
dx =

∫
∂γ(t)

(
∇(u2 − u1) · Π
∇(v2 − v1) · Π

)
dx(s).

(1.176)
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Note that when we make the approach to the ∂γ(t), the difference (u2−u1)
and (v2 − v1) approaches to zero. We can consider that this approach is
sufficiently smooth in the proximity of ∂γ(t) so that in the vicinity of such
border, we have

∇(u2 − u1) ≤ 0,

∇(v2 − v1) ≤ 0.
(1.177)

Therefore, we read:∫
∂γ(t)

(
∇(u2 − u1) · Π
∇(v2 − v1) · Π

)
≤
(

0
0

)
. (1.178)

After the evaluation of the convective and diffusion terms, we arrive to the
following expression:

d

dt

∫
γ(t)

(
u2 − u1

v2 − v1

)
dx ≤

∫
γ(t)

κ

(
vn2 − v

n
1

−um2 + um1

)
dx

≤
∫
γ(t)

κ

 n

v1−n
1

|v2 − v1|
m

u1−m
1

|−u2 + u1|

 dx.

(1.179)

It is possible to observe that a comparison principle cannot be obtained in
case the solutions v or u are equal to zero. This fact is due to the lack of
the Lipschitz condition in both, the absorption and reaction terms. Nonethe-
less, we have required the initial conditions to be positive and based on the
regularity of solutions expressed by the condition (1.139) and the positivity
of the lower solutions (see expressions (1.288) and (1.79)), we can ensure
the positivity of any solution. Thus, in the frame of the comparison theorem,
we can only consider positive solutions for which the Lipschitz condition is
met.

We define the following Lipschitz constant:

K = max{m,n} 1

minγ(t){v
1−n
1 , u1−m

1 }
. (1.180)

57



1.6 Comparison of solutions Non-linear reaction and diffusion.

Then, returning to the integral assessment, we have:

d

dt

∫
γ(t)

(
u2 − u1

v2 − v1

)
dx ≤ κK

∫
γ(t)

(
|v2 − v1|
|−u2 + u1|

)
dx. (1.181)

If we apply the Gronwall´s inequality:

d

dt

∫
γ(t)

(
u2 − u1

v2 − v1

)
dx ≤ κK

∫
γ(t)

(
|v0,2 − v0,1|
|−u0,2 + u0,1|

)
dx+

κK

∫
γ(t)

∫ t

0

(
|v2 − v1|
|−u2 + u1|

)
ds dx.

(1.182)

Now, we can make
σ(t)→ 0, (1.183)

so that the domain γ(t) approximates the center point x0. We can say that
for any time is B(t) >> σ(t):

d

dt

∫
β(t)

(
u2 − u1

v2 − v1

)
dx ≤ d

dt

∫
γ(t)

(
u2 − u1

v2 − v1

)
dx. (1.184)

It is clear that in case of having κ→ 0 in the domain β(t), the comparison
principle applies easily, indeed:

d

dt

∫
β(t)

(
u2 − u1

v2 − v1

)
dx ≤

(
0
0

)
→
(
u2t ≤ u1t

v2t ≤ v1t

)
β
, (1.185)

which means that (
du2 ≤ du1

dv2 ≤ dv1

)
β
. (1.186)

This last expression can be evaluated as:(
u2 − u2(∂γ) ≤ u1 − u1(∂γ)
v2 − v2(∂γ) ≤ v1 − v1(∂γ)

)
β
, (1.187)

where ui(∂γ) and vi(∂γ) represent the evaluation of each function in the
border of the domain γ. We remind that the expression (1.170) holds, so,
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we can conclude: (
u2 ≤ u1

v2 ≤ v1

)
β
, (1.188)

as we are aiming to proof. The index β(t) stresses the fact that the com-
parison holds locally as described in the theorem postulations.

Nonetheless, if we consider that κ > a > 0 (for example κ = 1),
we can ensure a comparison provided the initial conditions are sufficiently
close and that we operate in small time intervals t = T → 0. Under these
assumptions we have, as well:

u2 ≤ u1,

v2 ≤ v1.
(1.189)

Locally in β(x0, t).

We have shown that a comparison principle holds provided the absorp-
tion and reactions terms are sufficiently small or when the initial conditions
are close enough integrating over arbitrary small times. This result is par-
ticularly interesting as it reveals that a comparison principle does not hold,
in general, due to the dynamic of the coupling between the reaction and
absorption terms, and it provides the most general conditions in which com-
parison between solutions can be ensured.

In addition, we consider for completeness, the following lemma:

Lemma 1.5. Let consider
u0 ≥ v0, (1.190)

for x ∈ RN , then
u ≥ v, (1.191)

for any (x, t) ∈ RN × (0, T ).

Proof. For the shake of convenience and without impacting the final conclu-
sion, we operate making ε = δ = 1 in the difussion.
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After the application of the Duhamel principle and making the substrac-
tion, we read the following expression:

u− v = G ∗ (u0 − v0) +

∫ t

0
c · ∇G(t− s) ∗ (u− v)(s)ds

+

∫ t

0
G(t− s) ∗ (vn + um)(s)ds.

(1.192)

Under the positivity condition of both solutions (u, v) (see the positivity of
the lower solutions in the expressions (1.288) and (1.79)) the term:∫ t

0
Gδ(t− s) ∗ (vn + um)(s)ds, (1.193)

is positive, as the integrand Gδ is positive. Therefore, we have:

(u− v)−
∫ t

0
c · ∇G(t− s) ∗ (u− v)(s)ds

= G ∗ (u0 − v0) +

∫ t

0
G(t− s) ∗ (vn + um)(s)ds.

(1.194)

We know that:

c · ∇G =
N∑
i=1

ci∇Gi =
N∑
i=1

− ci

(4πt)
N
2

2xi
4t
e−

x2
4t , (1.195)

thus:

(u− v) +

∫ t

0

N∑
i=1

ci

(4π(t− s))
N
2

2xi
4(t− s)

e
− x2

4(t−s) ∗ (u− v)(s)ds

= G ∗ (u0 − v0) +

∫ t

0
G(t− s) ∗ (vn + um)(s)ds ≥ 0

(1.196)
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Therefore, we have that:

(u−v)+

∫ t

0

N∑
i=1

ci

(4π(t− s))
N
2

2xi
4(t− s)

e
− x2

4(t−s) ∗ (u−v)(s)ds ≥ 0.

(1.197)
Given the possitivity of the integrand governed by the exponential term, this
last condition holds provided that

u ≥ v (1.198)
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1.7 On global and local solutions

Our next objective, is to define the conditions to ensure the monotone be-
haviour of both solutions u, v. Indeed, the physical meaning requires us to
have an increasing solution (u) which indicates the predominance of this
solution when compared to the decreasing solution (v). For this purpose,
we shall enunciate what conditions are required to ensure that ut ≥ 0 and
vt ≤ 0.

When convection is introduced into a diffusion system with absorption
and reaction, we shall establish the conditions to avoid the convection to be
much predominant over the absorption or reaction. The fact of having a pre-
dominant convection can induce the solutions to be governed by it, minimiz-
ing, or even extinguishing, the effect of reaction and absorption. Therefore,
any compatibility condition shall take into account a comparison between
any parameter (mainly through an initial distribution mean value) of the so-
lutions when subjected to reaction and absorption and when subjected, in
addition, to the convection.

We stress the fact that diffusion will not be part of the ending compari-
son between reaction/absorption and convection. The diffusion acts when
a initial mass for each of the searched solutions is given motivating the ini-
tial concentration to change over the domain when subjected to the forcing
terms reaction/absorption. Nonetheless, our concern in this chapter is not
related to the behaviour of the diffusion, indeed and independently of diffu-
sion, any strong convection may lead to minimize the effect of the absorption
and reaction terms. This is, in fact, the purpose of the following lemma:

Lemma 1.6. Given a pair of solutions (u, v) ∈ C2+γ, 1+γ/2(RN×(0, T ))
to the problem P , so that ut ≥ 0 and vt ≤ 0 inRN×(0, T ) , the following
compatibility conditions shall be met to ensure the absorption and reaction
terms are predominant over the convection:

vn0 ≥ 2c · ∇u0,∫
RN

um0 ≥ ‖c‖v0.
(1.199)

Proof. We start by the set of equations defined under the scope of the prob-
lem P multiplying the first equation by u2 and the second equation by v2.
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Note that, we can make δ = ε = 1 in the development below without
impacting the ending results:

utu
2 = δ∆uu2 + c · ∇uu2 + vnu2,

vtv
2 = ε∆vv2 + c · ∇vv2 − umv2.

(1.200)

And integrating overRN × (0, T ), we have:∫
RN

∫ T

0
utu

2 =

∫
RN

∫ T

0
δ∆uu2

+

∫
RN

∫ T

0
c · ∇uu2 +

∫
RN

∫ T

0
vnu2,

(1.201)

∫
RN

∫ T

0
vtv

2 =

∫
RN

∫ T

0
ε∆vv2

+

∫
RN

∫ T

0
c · ∇vv2 −

∫
RN

∫ T

0
umv2.

(1.202)

Integrating by parts, we obtain:∫
RN

∫ T

0
δ∆uu2 =

∫ T

0
δu2|∇u| −

∫
RN

∫ T

0
δ|∇u|22u, (1.203)

∫
RN

∫ T

0
c · ∇uu2 =

∫ T

0
‖c‖u3 −

∫
RN

∫ T

0
u2uc · ∇u. (1.204)

Analogously for v:∫
RN

∫ T

0
ε∆vv2 =

∫ T

0
εv2|∇v| −

∫
RN

∫ T

0
ε|∇v|22v, (1.205)

∫
RN

∫ T

0
c · ∇vv2 =

∫ T

0
‖c‖v3 −

∫
RN

∫ T

0
v2vc · ∇v. (1.206)

After the integral assessment, we return to the expressions defined in (1.201)
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and (1.202):∫
RN

∫ T

0
utu

2 =

∫ T

0
δu2|∇u| −

∫
RN

∫ T

0
δ|∇u|22u

+

∫ T

0
‖c‖u3 −

∫
RN

∫ T

0
u2uc · ∇u+

∫
RN

∫ T

0
vnu2

≥
∫
RN

∫ T

0
vnu2 −

∫
RN

∫ T

0

(
δ|∇u|22u+ u2uc · ∇u

)
.

(1.207)

Assuming ut ≥ 0, implies to show that the last expression is≥ 0:

vnu2 ≥ δ|∇u|22u+ u2uc · ∇u. (1.208)

And performing the similar operations for the equation in v, we arrive at:∫
RN

∫ T

0
vtv

2 =

∫ T

0
εv2|∇v| −

∫
RN

∫ T

0
ε|∇v|22v

+

∫ T

0
‖c‖v3 −

∫
RN

∫ T

0
v2vc · ∇v −

∫
RN

∫ T

0
umv2

≤
∫ T

0
εv2|∇v|+

∫ T

0
‖c‖v3 −

∫
RN

∫ T

0
umv2.

(1.209)

Showing that vt ≤ 0, implies to show that the last expression is≤ 0:∫ T

0
εv2|∇v|+

∫ T

0
‖c‖v3 −

∫
RN

∫ T

0
umv2 ≤ 0. (1.210)

In summary, we need to determine what conditions are required to be met,
so that the inequalities (1.208) and (1.210) are satisfied. For this purpose:

vnu2 ≥ δ|∇u|22u+ u2uc · ∇u ≥ u2uc · ∇u. (1.211)

In the last expression, we have focused our attention only on the convective
terms rather than diffusion, as we are interested on deriving an expression
to compare convection with reaction and absorption. Therefore, we have
that:

vn ≥ 2c · ∇u. (1.212)

64



1.7 On global and local solutions Non-linear reaction and diffusion.

And for the solution v, we have:∫
RN

∫ T

0
umv2 ≥

∫ T

0
εv2|∇v|+

∫ T

0
‖c‖v3, (1.213)

so that ∫
RN

umv2 ≥ εv2|∇v|+ ‖c‖v3 ≥ ‖c‖v3, (1.214)

and ∫
RN

umv2 ≥ ‖c‖v3. (1.215)

We disregard the effects of the diffusion; we are interested in comparing the
convection with the reaction and absorption. The assessment of the integral
can be considered for mean values of v, so that the expressions reads as:∫

RN
um ≥ ‖c‖v. (1.216)

The conditions obtained in the expressions (1.212) and (1.216) applies to
the initial conditions as well, as both are applicable for any arbitrary small
time T :

vn0 ≥ 2c · ∇u0,∫
RN

um0 ≥ ‖c‖v0.
(1.217)

It is particularly relevant to discuss the conditions shown. For this pur-
pose, we start by considering the second equation of the system given by
P and the condition for v given in (1.217). Indeed and in order to have
vt ≤ 0, the mean integral over the domain of the initial data shall be higher
than the magnitude of the convection given by the ‖c‖. This will ensure that
the absorption term is capable of avoiding any possible positive effect of the
convection to contribute toward a positive vt for any T > 0.

Additionally, the condition given in (1.217) reflects the fact that the reac-
tion term shall be higher than the convective effects to ensure the increasing
condition of the solution ut ≥ 0.

Note that the condition (1.217) is expressed as a compatibility condition
for the initial data. Nonetheless, they apply to any local T > 0 as both
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conditions have been obtained integrating between 0 and T .

Once we have shown the relationships between the convection and the
forcing terms to meet the monotony properties of the solutions. It is, now,
our aim to determine solutions locally for a given time t > 0. For this kind
of local solutions, it is possible to determine the spatial distributions. This is
the objective of the following lemma:

Lemma 1.7. Given a pair of solutions (u, v) to the problem P in RN ×
(0, T ), the following functions represent an asymptotic evolution (for T >>
1) of the spatial distribution for the concentrations u, v. Both shall be under-
stood, as valid locally for a given t > 0, so that the following expressions
define the spatial distributions:

us = u0 +D1

∫
RN

(|x− s|)
1
2

2+m(1−n)
1−nm Cu(t)e−

|s|2
4t ds, (1.218)

vs = v0 −D2

∫
RN

(|x− s|)
m+1

1−nm−2
Cv(t)e

−|s|
2

4t ds, (1.219)

where
D1 = 1

2Γ(2α1+1)
,

D2 = 1
2Γ(2α2−1)

,

(1.220)

being Γ the Gamma function.

In addition:

Cu(t) = t
−1

2
2+m(1−n)

1−nm ,

Cv(t) = t
1−1

2
m+1

1−nm .

(1.221)

Proof. We proceed by searching solutions in the self-similar structure, as
disposed by Barenblatt in [16] for a wide variety of problems. For this pur-
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pose, we consider that the solutions can be expressed as:

u = u0 + tα1φ
(
|x|t−β1

)
,

v = v0 − tα2ψ
(
|x|t−β2

)
,

ξ1 = |x|t−β1,

ξ2 = |x|t−β2,

(1.222)

where α1, α2, β1 and β2 are constants to be assessed.

We are interested in determining the asymptotic evolution profile (for
T >> 1). Therefore, we operate making u0 = v0 = 0, i.e. when T >> 1
the effect of the initial conditions are considered to be null or negligible.

Substituting the derivatives into the problem P , we read:

α1t
α1−1φ

(
|x|t−β1

)
− tα1|x|β1t

−β1−1φt

(
|x|t−β1

)
= tα1−2β1φξξ + tα1t−β1c · ∇φ(ξ) + tα2nψn,

−α2t
α2−1ψ

(
|x|t−β2

)
+ tα2|x|β2t

−β2−1ψt

(
|x|t−β2

)
= tα2−2β2ψξξ − tα2t−β2c · ∇ψ(ξ)− tα1mφm.

(1.223)

We perform the following equalities in the coefficients:

α1 − 1 = α1 − 2β1 → β1 = 1
2 ,

α1 − β1 = α2n → α1 − 1
2 = α2n,

α2 − 1 = α2 − 2β2 → β2 = 1
2 ,

α2 − β2 = α1m → α2 − 1
2 = α1m.

(1.224)

67



1.7 On global and local solutions Non-linear reaction and diffusion.

An upon resolution:

α1 = 1
2

2+m(1−n)
1−nm , β1 = 1

2 ,

α2 = 1
2
m+1

1−nm , β2 = 1
2 .

(1.225)

The resulting equations are:

−φ′′ −

 1

t

α1−1
α1−β1

c+ 1

t

α1−β1−1
α1−1

ξ
2

φ′ = −α1φ+ 1

t

α1−1
α1−β1

ψn,

−ψ′′ +

 1

t

α2−1
α2−β2

c+ 1

t

α2−β2−1
α2−1

ξ
2

ψ′ = α2ψ − 1

t

α2−1
α2−β2

φm.

(1.226)
We can easily check that:

αi − 1

αi − βi
> 0, i = 1, 2. (1.227)

Therefore in the asymptotic approach with t >> 1, we have:

−φ′′ −K1(t)ξ2φ
′ = −α1φ,

−ψ′′ +K2(t)ξ2ψ
′ = α2ψ,

(1.228)

where:

K1(t) =
1

t
α1−β1−1
α1−1

, K2(t) =
1

t
α2−β2−1
α2−1

. (1.229)

As our intention is to obtain a spatial distribution, we can consider t as a
parameter, so that the system of equations is solved for a given t > 0 pro-
viding fixed values for K1 and K2. We obtain a spatial distribution making

K1 = K2 = 1. (1.230)

Note that the spatial distribution structure will no change if we consider other
values for K1 and K2.
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It is possible to solve, now, any of the equations. Note that we have
removed the coupling effects of the system to obtain an asymptotic evolution
that will drive the solutions autonomously.

Let operate in the equation for φ, naturally and in a similar procedure we
can operate in the equation in ψ. Making the Fourier Transformation, we
have:

−ω2Φ− 1

2
(Φ + ωΦ′)− α1Φ = 0, (1.231)

so that:

Φ′ = (−2ω − 1

ω
− 2α1

ω
)Φ. (1.232)

Upon resolution, we arrive at the following expression for Φ:

Φ = e−ω
2+logω−1−2α1

. (1.233)

The anti-transformation is:

Φ = D1ξ
2α1 ∗ e−

ξ2

4 . (1.234)

Where ∗ represents the convolution operator and

D1 =
1

2Γ(2α1 + 1)
, (1.235)

being Γ the Gamma function.

Analogously, for the concentration v, we have:

Ψ = D2ξ
2α2−2 ∗ e−

ξ2

4 , (1.236)

where

D2 =
1

2Γ(2α2 − 1)
. (1.237)

Finally and after compilation, we have:

us = u0 +D1

(
|x|
t1/2

)21
2

2+m(1−n)
1−nm

∗ e−
|x|2
4t , (1.238)
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us = u0 + Cu(t)D1 (|x|)
1
2

2+m(1−n)
1−nm ∗ e−

|x|2
4t , (1.239)

where:

Cu(t) = t
−1

2
2+m(1−n)

1−nm . (1.240)

And finally,

us = u0 +D1

∫
RN

(|x− s|)
1
2

2+m(1−n)
1−nm Cu(t)e−

|s|2
4t ds. (1.241)

Operating analogously for the population v:

vs = v0 −D2

(
|x|
t1/2

)21
2
m+1

1−nm−2

∗ e−
|x|2
4t , (1.242)

vs = v0 −D2Cv(t) (|x|)
m+1

1−nm−2 ∗ e−
|x|2
4t . (1.243)

where:

Cv(t) = t
1−1

2
m+1

1−nm . (1.244)

Thus:

vM = v0 −D2

∫
RN

(|x− s|)
m+1

1−nm−2
Cv(t)e

−|s|
2

4t , (1.245)

where

D2 =
1

2Γ(2α2 − 1)
, (1.246)

being Γ the Gamma function.

The fact of having vt < 0 and ut > 0 shall be considered together
with the positivity of solutions. If the solution u grows uncontrollably, it may
induce that v goes to negativity and in turn, it may lead to a decreasing evo-
lution for u down to negativity as well. In order to keep the positivity in the
solutions, but keeping the order growth to avoid the term −um acts toward
negativity, the coming lemma shall be taken into account. We stress the fact
that the coming maximal solution for u represents a bound that can be con-
sidered for assessing the maximum concentration of any of the substances
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involved. For example, in the biological application, the following lemma
provides the maximum concentration of cancerous cells in the media:

Lemma 1.8. Let assume (u0, v0) > (0, 0) and the parameter n satisfying
0, 5 < n < 1. For any τ > 0 and R > 0 such that t ≤ τ and |x| ≤ R
and under the condition (u(x, t), v(x, t)) ≥ (0, 0), the following upper
bound is obtained for u:

max(u(x, t), t ≤ τ, |x| < R) ≤ 1

k

(
1

2
√
πδt

) 1
nm
∫ x

0
e
−(x−ξ)2

4δtnm ∗u
1
nm
0 (ξ).

(1.247)
where

k = −cos(nπ). (1.248)

Making use of the norm in L1(|x| ≤ R) we have:

max(u(x, t), t ≤ τ, |x| < R) ≤ 1

k
‖u0‖

1
nm . (1.249)

Proof. We start by considering Duhamel principle for our problem:

u(t) = Gδ ∗ u0 +
∫ τ

0 |c · ∇Gδ|(t− s) ∗ u(s)ds+
∫ τ

0 Gδ(t− s) ∗ v
n(s)ds,

v(t) = Gε ∗ v0 +
∫ τ

0 |c · ∇Gε|(t− s) ∗ v(s)ds−
∫ τ

0 Gε(t− s) ∗ u
m(s)ds.

(1.250)
The term vn in the first equation can be obtained from the second equation;
it can be replaced into the first equation, so that it is possible, after operating,
to get an equation only dependant on u. Indeed:

u(t) = Gδ ∗ u0 +

∫ τ

0
|c · ∇Gδ|(t− s) ∗ u(s)ds

+

∫ τ

0
Gδ(t− s)

∗
[
Gε ∗ v0 +

∫ s

0
|c · ∇Gε|(s− r) ∗ v(r)dr −

∫ s

0
Gε(s− r) ∗ um(r)dr

]n
ds

≥ Gδ ∗ u0 +

∫ τ

0
Gδ(t− s) ∗

[
−
∫ s

0
Gε(s− r) ∗ um(r)dr

]n
ds

= Gδ ∗ u0 + (−1)n
∫ τ

0
Gδ(t− s) ∗

[∫ s

0
Gε(s− r) ∗ um(r)dr

]n
ds.

(1.251)
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Considering that 0, 5 < n < 1, we read:

(−1)n = −k = cos(nπ), (1.252)

where consequently
0 < k < 1. (1.253)

Making use of the Jensen inequality together with the condition (1.252), we
have:

Gδ ∗ u0 − k
∫ τ

0
Gδ(t− s) ∗

[∫ s

0
Gε(s− r) ∗ um(r)dr

]n
ds

≥ Gδ ∗ u0 − k
∫ τ

0
Gδ(t− s) ∗

∫ s

0
Gnε (s− r) ∗ umn(r)drds.

(1.254)

Assume that
ν = max(u(x, t), t ≤ τ, |x| < R), (1.255)

then we have:

Gδ ∗ u0 − k
∫ τ

0
Gδ(t− s) ∗

∫ s

0
Gnε (s− r) ∗ umn(r)drds

≥ Gδ ∗ u0 − k
∫ τ

0
Gδ(t− s) ∗

∫ s

0
Gnε (s− r) ∗ νmndrds

= Gδ ∗ u0 − νmnk
∫ τ

0
Gδ(t− s) ∗

∫ s

0
Gnε (s− r)drds

≥ Gδ ∗ u0 − νmnk
∫ τ

0
Gδ(t− s) ∗

∫ s

0
Gε(s− r)drds.

(1.256)

The normalization of the Gaussian Kernel leads to:

Gδ ∗ u0 − νmnk ≥ 0 (1.257)

so that,

ν ≤ 1

k
(Gδ ∗ u0)

1
nm =

1

k

(∫ x

0

1

2
√
πδt

e
−(x−ξ)2

4δt ∗ u0(ξ)

) 1
nm

.

(1.258)
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therefore

ν ≤ 1

k

(
1

2
√
πδt

) 1
nm
∫ x

0
e
−(x−ξ)2

4δtnm ∗ u
1
nm
0 (ξ). (1.259)

In order to account for a magnitude, we can operate in the L1 norm, so that
the following is get:

max{u(x, t), t ≤ τ, |x| < R} ≤ 1

k
‖G

1
nm
δ ‖‖u

1
nm
0 ‖ ≤ 1

k
‖u0‖

1
nm

(1.260)

Our next intention is to find an estimation to the solution v applicable
locally in space. We remind that vt < 0, therefore, the idea is to search for
a time-decaying estimation. The following lines are inspired by a procedure
(adapted to our conditions and needs) already contemplated in Lemma 2.5
according to [24]. In addition, a similar approach was previously used in
[25]. Note that in [24], the proposed estimation was used to obtain a super-
solution, nonetheless, and in our case, it will be used to get a subsolution as
local estimate. Indeed, this fact will lead to important differences compared
to [24]. On top of the mathematical approach, in the biological application,
the following lemma provides a minimum local concentration of healthy cells
that can keep the organ alive:

Lemma 1.9. Given a local point x0 and a positive parameter R:

0 < R <

(
1

2
− ε
)

1

c
< |x0|, x0 ∈ RN . (1.261)

There exists a positive T satisfying:

T ≤
[ α
νm

(2ε+ c2R− 1)
] 1

1−α , (1.262)

(where ν is the maximum value of u as per (1.255)), such that the following
lower local bound for the solution v holds in 0 < t < T :

v(x, t) ≥ K
(R2 + t)2α

(R2 − x2 + t)α
, 0 < x ≤ R, (1.263)
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where:

k
1

‖u0‖
1−nm
n

≤ K ≤
(

(R2 + T )4

εα4R2(α + 1)

) 1
1−m

, (1.264)

note that k is as per (1.252), and

α =
2

m− 1
. (1.265)

Proof. We start by considering the equation for v:

vt = ε∆v + c · ∇v − um ≤ ε∆v + c · ∇v − vm, (1.266)

then,
vt − ε∆v − c · ∇v + vm ≤ 0. (1.267)

This last inequality holds as we have shown that u ≥ v (Lemma 1.5).
Therefore, we have an inequality whose approximate resolution will provide
a subevolution for the population v. We assume an evolution of the form
(according to [24] and [25]):

V (x, t) = K
(R2 + t)2α

(R2 − x2 + t)α
. (1.268)

The associated time derivative is:

Vt = K2α(R2 + t)2α−1(R2 − x2 + t)−α

−K(R2 + t)2αα(R2 − x2 + t)−α−1,
(1.269)

The first spatial derivative is:

Vx = K(R2 + t)2αα2x(R2 − x2 + t)−α−1, (1.270)

and the second:

Vxx = K(R2 + t)2αα2(R2 − x2 + t)−α−1

+K(R2 + t)2αα2x(α + 1)2x(R2 − x2 + t)−α−2.
(1.271)
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And introducing these last derivatives into the equation (1.267), we have:

K2α(R2 + t)2α−1(R2 − x2 + t)−α

−K(R2 + t)2αα(R2 − x2 + t)−α−1

− εK(R2 + t)2αα2(R2 − x2 + t)−α−1

− εK(R2 + t)2αα2x(α + 1)2x(R2 − x2 + t)−α−2

− cK(R2 + t)2αα2x(R2 − x2 + t)−α−1

+Km (R2 + t)2αm

(R2 − x2 + t)αm
≤ 0.

(1.272)

Aiming the easiest comparison, we make:

−αm = −α− 2→ α =
2

m− 1
< 0. (1.273)

To achieve the inequality condition, we shall find an appropriate value of K .
For this purpose, we require that:

εK(R2 + t)2αα4x2(α + 1) ≥ Km(R2 + t)2αm,

ε(R2 + t)−4α4x2(α + 1) ≥ Km−1,

K ≤
(
εα4x2(α+1)

(R2+t)4

) 1
m−1

,

K ≤
(

(R2+t)4

εα4x2(α+1)

) 1
1−m

≤
(

(R2+T )4

εα4x2(α+1)

) 1
1−m

.

(1.274)

By replacing x = x0 in this last expression and making the convergence
R→ |x0|, we obtain the following estimation for the parameter K :

K ≤
(

(R2 + T )4

εα4R2(α + 1)

) 1
1−m

. (1.275)

Our next intention is to show that (1.268) with the estimations (1.273) and
(1.275) is a subsolution for 0 < t < T . For this purpose we shall show
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that:
vt ≤ ε∆v + c · ∇v − um, (1.276)

or, equivalently:
vt − ε∆v − c · ∇v + um ≤ 0. (1.277)

Therefore, we have:

K2α(R2 + t)2α−1(R2 − x2 + t)−α

−K(R2 + t)2αα(R2 − x2 + t)−α−1

− εK(R2 + t)2αα2(R2 − x2 + t)−α−1

− εK(R2 + t)2αα2x(α + 1)2x(R2 − x2 + t)−α−2

− cK(R2 + t)2αα2x(R2 − x2 + t)−α−1 +Kνm ≤ 0.

(1.278)

where um has been replaced by Kνm in the assumption that ν is suffi-
ciently large to consider

Kνm ≥ um. (1.279)

Note that ν is given by (1.255). The expression (1.279) holds for a suit-
able value of K that can be chosen by comparing the initial conditions in
accordance with (1.260)

K ≥ um

νm
∼ k

‖u0‖m

‖u0‖
m
nm

. (1.280)

Upon operation, we have

K ≥ k
1

‖u0‖
1−nm
n

. (1.281)

where k is as per (1.252).

Now, making t = T >> 1 and considering the leading terms in (1.278),
we read:

Kα +KνmT 1−α ≤ 2Kαε+ cKα2x. (1.282)

Making x→ R and obtaining T we have:

T ≤
[ α
νm

(2ε+ c2R− 1)
] 1

1−α , (1.283)
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According to (1.273) α < 0, therefore to account for a suitable positive
value for the upper bound of T we require:

1 > 2ε+ c2R, (1.284)

which provides the following value for R:

R <

(
1

2
− ε
)

1

c
. (1.285)
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1.8 Evolution of solution profiles

In this section, we use the monotone properties of the reaction and absorp-
tion forcing terms to show the behaviour and precise evolutions of an upper
solution and a lower solution. In addition, we determine the asymptotic order
of growth.

In the industrial application, we are interested on finding a non-decreasing
upper solution for the concentration u (i.e. ut ≥ 0) and a non-increasing
lower solution for the concentration v (i.e. vt ≤ 0). This can be explained
in view of the following argument:

Within the industrial scope, the set of equations in P has the objective to
determine suitable concentrations of nitrogen (represented by u) and oxy-
gen (represented by v) capable of preventing fuel tank ignition in the pres-
ence of a spark or hot surfaces. The fact of having a lower solution for u
and a upper solution for v will under-estimate the quantity of nitrogen and
over-estimate the quantity of oxygen for any given time t > 0. These ap-
proximations are perfectly valid for our purposes as they are overly conser-
vative. Indeed, consider that at a given time t > 0, the upper solution and
the lower solution determine the existence of a potentially flammable mix-
ture of oxygen and nitrogen in the presence of a spark or hot surface. It is,
thus, required to continue with the evolution to reach and under-estimation
of nitrogen (the lower solution for u) and a over-estimation of oxygen (the
upper solution for v). Both estimations will be determined at a time t > 0
and are values for which we relay that a non-flammable mixture is given.

The following theorem provides a proof about the behaviour and precise
evolution of the mentioned upper solution and lower solution:

Theorem 1.8.1. Assume that:

u(x, 0) > 0,

v(x, 0) > 0.
(1.286)

Let consider a variable ν:
ν ∈ R+, (1.287)
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and
0 < ν < min

x∈RN
(u(x, 0), v(x, 0)). (1.288)

So that, the initial conditions are re-written as:

u(x, 0) + ν, v(x, 0) + ν,

u(x, 0)− ν, v(x, 0)− ν.
(1.289)

Assume the following flow evolutions resulting from the mentioned initial
conditions:

(u(x, 0) + ν, v(x, 0) + ν)→ evol → (Û(x, t), V̂ (x, t)),

(u(x, 0)− ν, v(x, 0)− ν)→ evol → (Ũ(x, t), Ṽ (x, t)).

(1.290)

The upper solutions (Û(x, t), V̂ (x, t)) are time monotone non-increasing
and the lower solutions (Ũ(x, t), Ṽ (x, t)) are time monotone non-decreasing
for t ∈ (0, T ).

Additionally, we have that for any t ∈ (0, T ),

((Û(x, t), V̂ (x, t)) ≥ ((Ũ(x, t), Ṽ (x, t)), (1.291)

and the following limit apply:

limν→0(Û(x, t), V̂ (x, t)) = (Û(x, t)a, V̂ (x, t)a),

limν→0(Ũ(x, t), Ṽ (x, t)) = (Ũ(x, t)a, Ṽ (x, t)a).

(1.292)

such that:
Û(x, t)a ≥ Ũ(x, t)a,

V̂ (x, t)a ≥ Ṽ (x, t)a.

(1.293)

In addition, the upper solutions (Ûa(x, t), V̂a(x, t)) are monotone non-
increasing and the lower solutions (Ũa(x, t), Ṽa(x, t)) are monotone non-
decreasing for t ∈ (0, T )

Proof. We, firstly, show the order between the upper and lower solutions.
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For this purpose, we define:

w1 = Û − Ũ ,

w2 = V̂ − Ṽ ,
(1.294)

and the initial conditions:

w1(x, 0) = Û(x, 0)− Ũ(x, 0) = u0 + ν − u0 + ν = 2ν > 0,

w2(x, 0) = V̂ (x, 0)− Ṽ (x, 0) = v0 + ν − v0 + ν = 2ν > 0.
(1.295)

Now, we focus on the operator:

L(Û) = V̂ n; L(Ũ) = Ṽ n. (1.296)

And making the substraction:

L(w1) = V̂ n − Ṽ n. (1.297)

Analogously:
L(V̂ ) = −Ũm; L(Ṽ ) = −Ûm. (1.298)

Again, making the substraction, we have:

L(w2) = Ûm − Ũm. (1.299)

In summary, we have the following problem:

L(w1) = V̂ n − Ṽ n,

L(w2) = Ûm − Ũm,

w1(x, 0), w2(x, 0) > 0.

(1.300)

If we assume that V̂ n ≥ Ṽ n for t ∈ (0, T ), we have:

L(w1) = V̂ n − Ṽ n ≥ 0,

w1 ≥ 0 → Û ≥ Ũ .

(1.301)
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Therefore, we can consider that in the w2 equation, the following is met:

L(w2) = Ûm − Ũm ≥ 0,

w2 ≥ 0 → V̂ ≥ Ṽ ,

(1.302)

for any t ∈ (0, T ). The same results can be obtained by considering the
strong positivity of the parabolic operator L (for a complete discussion on
the maximum principle and stong positivity of the parabolic operator, we can
refer to Section 7 in [23]). If the initial conditions w1 and w2 are positive,
any flow subjected to L is positive, i.e:

L(w1) ≥ 0,

L(w2) ≥ 0.
(1.303)

Our next intention is to show the time monotone properties of each of the
defined solutions, namelly, Û , Ũ , V̂ and Ṽ . For this purpose, we consider
two fixed real parameters σ1, σ2 > 0, such that, we make the following
differences:

Ũσ1(x, t) = Ũ(x, t+ σ1)− Ũ(x, t),

Ṽσ1(x, t) = Ṽ (x, t+ σ1)− Ṽ (x, t),

Ûσ2(x, t) = Û(x, t+ σ2)− Û(x, t),

V̂σ2(x, t) = V̂ (x, t+ σ2)− V̂ (x, t).

(1.304)

For t = 0, we have:

Ũσ1(x, 0) = Ũ(x, σ1)− u(x, 0) + ν,

Ṽσ1(x, 0) = Ṽ (x, σ1)− v(x, 0) + ν,

Ûσ2(x, 0) = Û(x, σ2)− u(x, 0)− ν,

V̂σ2(x, 0) = V̂ (x, σ2)− v(x, 0)− ν.

(1.305)

We can select a sufficiently large ν or a sufficiently small and positive values
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for the parameters σ1 and σ2 so that:

Ũσ1(x, 0) ≥ 0; Ṽσ1(x, 0) ≥ 0; Ûσ2(x, 0) ≤ 0; V̂σ2(x, 0) ≤ 0.
(1.306)

The defined solutions Ûσ2, Ũσ1, V̂σ2 and Ṽσ1 satisfy the given equations
in P . For this purpose, we submit such solutions to the operator L:

L(Ũσ1) = Ṽ (x, t+ σ1)n − Ṽ (x, t)n,

L(Ṽσ1) = Û(x, t)m − Û(x, t+ σ2)m,

L(Ûσ2) = V̂ (x, t+ σ2)n − V̂ (x, t)n,

L(V̂σ2) = Ũ(x, t)m − Ũ(x, t+ σ1)m.

(1.307)

Assume that for t ∈ (0, T ):

Ṽ (x, t+ σ1)n ≥ Ṽ (x, t)n, (1.308)

then we have:

L(Ũσ1) ≥ 0→ Ũσ1 ≥ 0→ Ũ(x, t+ σ1) ≥ Ũ(x, t). (1.309)

As
L(V̂σ2) = Ũ(x, t)m − Ũ(x, t+ σ1)m, (1.310)

we read:
L(V̂σ2) ≤ 0→ V̂ (x, t+ σ2) ≤ V̂ (x, t). (1.311)

And again, as

L(Ûσ2) = V̂ (x, t+ σ2)n − V̂ (x, t)n, (1.312)

we read:

L(Ûσ2) ≤ 0→ Ûσ2 ≤ 0→ Û(x, t+ σ2) ≤ Û(x, t). (1.313)

And finally, we repeat the process for

L(Ṽσ1) = Û(x, t)m − Û(x, t+ σ2)m, (1.314)
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so that:

L(Ṽσ1) ≥ 0→ Ṽσ1 ≥ 0→ Ṽ (x, t+ σ1) ≥ Ṽ (x, t). (1.315)

Initially, we assumed that Ṽ (x, t+σ1)n ≥ Ṽ (x, t)n. In the last expression,
we have reached a condition that satisfies the initial assumption, showing,
thus, its validity.

Summarizing the conditions obtained, we have:

Ṽ (x, t+ σ1) ≥ Ṽ (x, t),

Ũ(x, t+ σ1) ≥ Ũ(x, t),

V̂ (x, t+ σ2) ≤ V̂ (x, t),

Û(x, t+ σ2) ≤ Û(x, t),

(1.316)

which permit to show that the upper solutions are time monotone non-
increasing and that the lower solutions are time monotone non-decreasing
as postulated in the theorem enunciation.

The upper and lower solutions can be defined for any arbitrary small
ν > 0 approaching the initial conditions as ν → 0. For any ν, the monotony
properties of the upper and lower solutions sequences (as defined in lemma
1.3) holds, permitting to ensure the existence of a limit solution such that:

limν→0(Û(x, t), V̂ (x, t)) = (Û(x, t)a, V̂ (x, t)a),

limν→0(Ũ(x, t), Ṽ (x, t)) = (Ũ(x, t)a, Ṽ (x, t)a).

(1.317)

In addition, the limit solutions when ν → 0 preserves the ordered proper-
ties between upper and lower solutions and the time monotony properties.
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Indeed, when passing to the limit, we can say that:

Ṽa(x, t+ σ1) ≥ Ṽa(x, t),

Ũa(x, t+ σ1) ≥ Ũa(x, t),

V̂a(x, t+ σ2) ≤ V̂ (x, t),

Ûa(x, t+ σ2) ≤ Û(x, t).

(1.318)

We have shown the theorem postulation stating that the upper solutions
(Ûa(x, t), V̂a(x, t)) are monotone non-increasing and the lower solutions
(Ũa(x, t), Ṽa(x, t)) are monotone non-decreasing for t ∈ (0, T ).

Furthermore:
Ûa ≥ Ũa,

V̂a ≥ Ṽa.

(1.319)

We are interested on finding a lower solution for the concentration u
and a upper solution for v. We have shown, in the previous section, that
any lower solution is monotone non-decreasing and any upper solution is
monotone non-increasing. Our next intention is to find a upper and lower
solutions complying with the time monotone properties described. In par-
ticular, we are going to search only for spatially homogeneous distributed
solutions (also known as flat solutions) so that we only take into account the
time variable.

It is to be stressed that the forcing terms are only functions of the so-
lutions, there are not explicit dependency with the spatial term. Therefore,
we do not need to take the supreme of the forcing term for the variable
x. This means that the time evolution profile for the expected upper and
lower solutions are given by the initial data shift Ũ(x, 0) = u(x, 0) − ν
and V̂ (x, 0) = v(x, 0) + ν together with the linear first derivative in the
operator L
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The problem to study is, therefore:

Ũt = Ṽ n,

V̂t = −Ũm,

Ũ(x, 0) = u(x, 0)− ν,

V̂ (x, 0) = v(x, 0) + ν.

(1.320)

Any solution to this problem shall satisfy the time monotony properties given
in the expressions (1.318).

With the aim of solving the problem (1.320), we shall perform an as-
sumption for the lower solution Ṽ . We know that such solution shall be time
monotone non-decreasing in virtue of the conditions obtained in (1.318). Let
assume that we can know a lower threshold for the solution v. This lower
threshold cannot be trespass by any solution in virtue of the uniqueness
properties of our problem obtained in Section 1.5. Therefore, let consider:

Ṽ = µ1/n (1.321)

So that, the problem in (1.320) reads:

Ũt = µ,

V̂t = −Ũm,

Ũ(x, 0) = u(x, 0)− ν,

V̂ (x, 0) = v(x, 0) + ν.

(1.322)

Uppon integration, we have a linear evolution for the lower solution of u that
can be used for obtaining the upper solutions to v:

Ũ(t) = Ũ0 + µt,

V̂ (t) = V̂0 − 1
µ(m+1)

(Ũ0 + µt)m+1.
(1.323)
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For the initial data, we have required

u0(x), v0(x) ∈ L1
loc(R

N) ∩ L∞(RN), (1.324)

which is the case when the initial data are given constants (see problem P
in (1.318))

For all other case in which the initial data is not constant, and to account
for a close solution search, we require:

u(x, 0), v(x, 0) ∈ L1(RN), (1.325)

Thus, we define:

‖Ũ0‖L1 = ‖u(x, 0)‖
L1 − νn. (1.326)

And analogously for the concentration v:

‖V̂0‖L1 = ‖v(x, 0)‖
L1 + νn. (1.327)

The value of νn may be different compared to ν so that the Schwarz in-
equality turns to equality:

‖u(x, 0)− ν‖
L1 = ‖u(x, 0)‖

L1 − νn ≤ ‖u(x, 0)‖
L1 + ν, (1.328)

analogously for v:

‖v(x, 0) + ν‖
L1 = ‖v(x, 0)‖

L1 + νn ≤ ‖v(x, 0)‖
L1 + ν, (1.329)

We can choose νn → 0 (idem for ν), so that the solutions adopt the follow-
ing form:

Ũa(t) = ‖u(x, 0)‖
L1 + µt,

V̂a(t) = ‖v(x, 0)‖
L1 − 1

µ(m+1)
(‖u(x, 0)‖

L1 + µt)m+1.
(1.330)

It is remarkable to say that the solutions are valid in a interval (0, T ) in
which we can ensure that the postulated lower solution in (1.321) for v ap-
plies. Indeed, the decreasing rate of the solution v will lead to intersect the
constant lower solution given by Ṽ = µ1/n. It is, then, required to obtain
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the upper limit T in which the spatially homogeneous solutions are valid:

µ1/n = ‖v(x, 0)‖
L1 −

1

µ(m+ 1)
(‖u(x, 0)‖

L1 + µT )m+1. (1.331)

We can, now, obtain T as:

T =
(µ(m+ 1))

1
m+1 (‖v(x, 0)‖

L1 − µ1/n)
1

m+1 − ‖u(x, 0)‖
L1

µ
.

(1.332)
In the assumption that ‖v(x, 0)‖

L1 >> µ1/n, we have that solutions will
exist provided:

µ(m+ 1)(‖v(x, 0)‖
L1 ≥ ‖u(x, 0)‖m+1

L1 . (1.333)

So that the value of µ shall be selected under the condition:

µ ≥
‖u(x, 0)‖m+1

L1

(m+ 1)‖v(x, 0)‖
L1
. (1.334)

Another assumption that we can make for the lower solution Ṽ , towards
solving the problem in (1.320), is to consider a monotone non-decreasing
logistic evolution in the form:

Ṽ =
µ

1 + e−βt
. (1.335)

And making ν → 0, the system (1.320) adopts the form:

Ũt = µ

1+e−βt
,

V̂t = −Ũm,

Ũ(x, 0) = u(x, 0)− (ν → 0),

V̂ (x, 0) = v(x, 0) + (ν → 0).

(1.336)
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The solutions to this system are:

Ũa = ‖u(x, 0)‖
L1 + σ

β log

(
1+e−βt
e−βt

)
,

V̂a = ‖v(x, 0)‖
L1 −

∫ T
0

(
‖u(x, 0)‖

L1 + σ
β log

(
1+e−βt
e−βt

))m
dt.

(1.337)
And making use of the mean value theorem for the solution V̂a, we read:

V̂a = ‖v(x, 0)‖
L1
−

(
‖u(x, 0)‖

L1 +
σ

β
log

(
1 + e−βtm

e−βtm

))m
T,

(1.338)
where 0 < tm < T .

The solutions given in (1.337) exist provided the asymptotic value of the
logistic growth (µ) ,admitted for Ṽ , satisfies the condition derived in (1.334).

Our next intention is to show the stability of the solutions Ũa and V̂a. We
ennunciate the following lemma:

Lemma 1.10. The solutions (Ũa, Ṽa) and (Ûa, V̂a) satisfy the following
conditions in RN × (0, T ):

(u0, v0) ≤ (Ûa, V̂a) ≤ (Û , V̂ ), (1.339)

and
(Ũ , Ṽ ) ≤ (Ũa, Ṽa) ≤ (Ûa, V̂a), (1.340)

where,

Ûa, V̂a, Ũa, Ṽa ∈ C2+γ, 1+γ/2(RN × (0, T )). (1.341)
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Proof. Let define the following variables:

w1 = Ûa − Û ,

W1 = Ũa − Ũ ,

w2 = V̂a − V̂ ,

W2 = Ṽa − Ṽ .

(1.342)

And introducing the above expression in the operator evolution, we read:

L(w1) = V̂ na − V̂ n,

L(W1) = Ṽ na − Ṽ n,

L(w2) = −Ũma + Ũm,

L(W2) = −Ûma + Ûm.

(1.343)

The time monotony properties of each of the terms in the right hand side
of the last expressions are the same between the elements involved in the
difference (See inequalities in (1.316) and (1.318)). In addition, each of the
terms with sub-index a were defined as a limit solutions in the expressions
(1.317).

The non-increasing condition of the upper solutions permits to write V̂a ≤
V̂ , therefore we have:

L(w1) ≤ 0→ w1 ≤ 0→ Ûa ≤ Û . (1.344)

In the same way we can say:

L(W2) = −Ûma + Ûm ≥ 0→ W1 ≥ 0→ Ṽa ≥ Ṽ . (1.345)

We repeat the process for W1:

L(W2) = Ṽ na − Ṽ n ≥ 0→ W2 ≥ 0→ Ũa ≥ Ũ . (1.346)
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Eventually, a similar argument applies to w2:

L(w2) = −Ũma + Ũn ≤ 0→ w2 ≤ 0→ Ṽa ≥ Ṽ . (1.347)

Then, we can write the following bounds based on the ordered properties
obtained between the solutions:

(u0, v0) ≤ (Ûa, V̂a) ≤ (Û , V̂ ),

(Ũ , Ṽ ) ≤ (Ũa, Ṽa) ≤ (Ûa, V̂a).

(1.348)

As it was our aim to proof.

Note that this condition ensures a band for the the limit solutions Ûa, V̂a, Ũa
and Ṽa. In addition, the involved functions in the borders of the band satisfy
the regularity condition in the expression (1.139), therefore we can say that:

Ûa, V̂a, Ũa, Ṽa ∈ C2+γ, 1+γ/2(RN × (0, T )). (1.349)

Note that the solutions described in the expressions (1.330) and (1.337)
satisfy to be in C2+γ, 1+γ/2(RN × (0, T ))
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1.9 Travelling Waves (TW)

In the kind of the physical reality, we aim to characterize, it is common to
have stationary solutions towards the evolution tends for a sufficiently large
time. In our case, we have ut > 0 and vt < 0, thus, the long time behaviour
of solutions suggests that the population u will tend to a value such that:

u = d > max
x∈RN

u0(x). (1.350)

And the population v will tend to a value close to zero:

v → 0+ (1.351)

The problem P is now rewritten as:

ut = δ∆u+ c · ∇u− vn(u− d),

vt = ε∆v + c · ∇v − umv,

m, n < 1.

(1.352)

For convenience, and aiming the understanding of the system dynamic in
the Travelling Wave (TW) domain, we require the initial conditions to be the
opposite Heaviside function:

u0(x) = v0(x) = H(−x) ∈ L1
loc(R

N ) ∩ L∞(RN ),

x ∈ RN .
(1.353)

The equations (1.352) and (1.353) will be referred as the problem PT .

We are interested on understanding the dynamics when the solutions
starts from the initial data to the stationary solutions asymptotically; showing
a non-decreasing behaviour for u (as 0 < u < d) and a non-increasing
condition for v (as v > 0). The initial function given in (1.353) defines two
parts; one part constitutes a positive function in (−∞, 0) and, another part
exhibits a null function in (0,∞). Both different behaviours are connected
by a step at the origin. If we introduce the opposite Heaviside initial condition
into the problem PT , we can understand the evolution of the positive mass
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and the null one. Furthermore, we can determine a precise evolution for the
TW kind of solutions. (1.353).

The existence and uniqueness of solutions will become apparent during
the analysis in the travelling waves domain. In addition, we provide numeri-
cal evidences of the solutions (see Figures 1.2 to 1.7).

1.10 TW profiles

The TW profiles are of the form:

u(x, t) = f(ξ) ,

ξ = x · nd − at ∈ R.
(1.354)

Where nd is a unitary vector inRN that defines the TW-propagation direc-
tion. a is the TW-speed and f : R→ (0,∞) is a function in L1

loc(R
N ) ∩

L∞(RN ).

We consider that two TW are equivalent if they are different by translation
ξ → ξ+ξ0 or by symmetry ξ → −ξ. Both changes do not affect the nature
of the TW solution. Without loss of generality, our study is, then, based on a
TW propagating from−∞ to∞.

We study only one propagating direction of the TW-profile. Thus, we
require the vector nd to adopt the value nd = (1, 0, ..., 0); then, we have:

u(x, t) = f1(ξ), ξ = x− at ∈ R,

v(x, t) = f2(ξ), ξ = x− at ∈ R.
(1.355)

The problem PT can be transformed into the TW-domain by considering the
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following derivatives:

ux = ξxf
′
1,

uxx = ξxxf
′
1 + ξ2

xf
′′
1 ,

ut = ξtf
′
1,

vx = ξxf
′
2,

vxx = ξxxf
′
2 + ξ2

xf
′′
2 ,

vt = ξtf
′
2.

(1.356)

And after substitution into the problem PT :

ut = f ′′1 + cf ′1 − f
n
2 (f1 − d) = f ′′1 + cf ′1 + fn2 (d− f1),

vt = f ′′2 + cf ′2 − f
m
1 f2,

f1,0 = f2,0 = H(−x) x ∈ R,

ut = −af ′1; vt = −af ′2.

(1.357)

H corresponds to the Heaviside function. It is remarkable to say that the
model is postulated so that the concentration of f2 can go to zero from
above; while the concentration of f1 tends to d > H(−x) from below, so
that we have (d− f1) > 0.

Note that a linearization of the problem (1.357) in the proximity of the
critical point (f1 = d, f2 = 0) is not possible as the term fn2 is not Lips-
chitz in the proximity of zero. Nonetheless, in such proximity, we know that
fn2 > f2, therefore, the problem analyzed replacing the term fn2 by f2 is
below the solution corresponding to the the problem PT . In addition, and
as the solution f1 → d, we can consider f1 = d in the second equation
in (1.357). The set of equations (1.357) are, then, uncoupled, and after
making f1 = d, we have a subsolution for the second equation in (1.357).
Hence, we operate in the following problem whose solutions are lower than
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the solutions for the set of equations (1.357):

f ′′1 + (c+ a)f ′1 + f2(d− f1) = 0,

f ′′2 + (c+ a)f ′2 − d
mf2 = 0,

f1,0 = f2,0 = H(−x) x ∈ R.

(1.358)

Any solution to (1.358) is a subsolution to (1.357). Therefore, if we ensure
the positivity of the TW solutions for the problem (1.358), we can postulate
that the solutions for the problem (1.357) are, indeed, positive in the TW
domain. This is the purpose of the coming results.

We perform now the following change of variables:

d− f1 = f̂1. (1.359)

So that, the system reads:

−f̂ ′′1 − (c+ a)f̂ ′1 + f2f̂1 = 0,

f ′′2 + (c+ a)f ′2 − d
mf2 = 0,

f̂1,0 = d−H(−x) x ∈ R,

f2,0 = H(−x) x ∈ R.

(1.360)

This problem is considered together with the following boundary like condi-
tions:

(f̂1, f2)→ (0, 0), ξ →∞,

(f̂1, f2)→ (d− 1, 1), d > 1, ξ → −∞.
(1.361)

Our intention is to find a suitable (non-oscillating) exponential behaviour of
the TW-tail related to the profile speed. In the proximity of the equilibrium set
(f̂1 = 0, f2 = 0), we can consider the moving tail within a linearized frame.
Note that the solutions have a non-increasing behaviour when connecting
heteroclinically the boundary-like conditions reflected in (1.361). Thus we
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require an exponential behaviour of the form:

f̂1 = Ae−λ1ξ,

f2 = Be−λ2ξ.

(1.362)

And replacing into the system (1.360):

−Aλ2
1e
−λ1ξ + (c+ a)λ1Ae

−λ1ξ +BAe−(λ1+λ2)ξ = 0,

Bλ2
2e
−λ2ξ − (c+ a)λ2Be

−λ2ξ −Bdme−λ2ξ = 0.

(1.363)

As the second equation is uncoupled, we can obtain a relation between
the exponential decay rate and the TW-speed together with the convection
(c+ a). This value is given by:

λ2 =
c+ a+

√
(c+ a)2 + 4dm

2
. (1.364)

If we operate analogously, we can obtain a similar relation for the decay rate
λ1:

λ1 =
c+ a+

√
(c+ a)2 + 4Be−λ2ξ

2
. (1.365)

In the limit with ξ → ∞, we can consider that the term 4Be−λ2ξ is a
positive infinitesimal ε. So that, we have the asymptotic speed λ1,a:

λ1,a =
c+a+

√
(c+a)2+4Bε

2 ,

ε→ 0+.

(1.366)

It is particularly interesting to observe, in view of the results obtained for λ1

and λ2, that the decaying rate is higher than the convection-moving terms
(c+ a). This behaviours explains that an effective decaying moving TW-tail
shall be able to compensate the convection effect of the media (c) and the
own moving frame of the TW (a).

The following theorem is a caracterization of the TW involved in our prob-
lem and aims to compile the relevant results. We compare the linearized
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solutions obtained for the problem (1.358) with the solutions for the original
problem (1.357):

Theorem 1.10.0.1. The system of equations PT (1.357) admits TW profiles
as solutions. In addition, the solutions of (1.358), provided in the proximity
of the equilibrium (f1 = d, f2 = 0), are subsolutions of (1.357).

Note: The bundle of TW moving to the opposite direction can be obtained
by spatial reflection without impacting the exponential rate of the TW and the
smoothness-regularity of the TW trail.

Proof. The condition of the exponential decaying rate has been obtained un-
der a linearization, that in turn, provided a subsolution. Our aim is, now, to
show that the solutions to the problem (1.358) are subsolutions to the prob-
lem (1.357) and then, the monotony is ensured during the whole evolution
to the equilibrium (f1 = d, f2 = 0).

To support our analysis, we provide numerical evidences (see Annex I for
the code definition). The numerical approach has the following properties:

• The integration domain for the computation is (0, 100). The upper
limit is sufficiently large to avoid the effect of the pseudo-boundary
conditions. The domain is divided into sub-domains for representation
purposes.

• The error tolerances have been adjusted according to the integration
sub-domain. For the computation over the interval (0, 100), the con-
sidered tolerance is 10−6.

• The number of nodes for the integration is N = 100000.

• The first assessment for the solution to start the numerical analysis is
considered to be a "step-like" function given by the initial conditions
f1,0 = f2,0 = H(−x).

• The system has different parameters that need to be defined previous
to the numerical proposal. We run the exercise considering the value
for d = 2 and the value for (c + a) = 4. Both values have been
selected for simplicity shake of convenience; nonetheless, there is not
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loss of generality in the final conclusions. Additionally, the numeri-
cal evidences are given for different combination of the parameters
n,m ∈ (0, 1)

The results are as follows:

• n = 0.9;m = 0.1. We have considered m = 0.1 to account for
sufficient margin to avoid encountering a singular Jacobian during the
numerical exercise, due to the strong non-lipschitz condition of fm1
whenm approaches zero. For this case, and assuming that c+a = 4,
we can observe in Figures 1.2, 1.3 and 1.4 that the solutions for the
problem (1.358) are indeed subsolutions for the problem (1.357). We
can see in the pointed figures that the function f2m (representing the
solution f2 to the problem (1.358)) is positive everywhere (note that for
simplification and better picture resolution we have selected a reduced
interval for ξ ∈ [0, 2]). Therefore, when moving with decaying rate
given by the expression of λ2 in (1.364), we can ensure the asymptotic
positivity of the TW-tail. Even further, one can check that the solutions
to the original problem (1.357) evolve closely to the linearized problem
(1.358).

• n = 0.2;m = 0.9. We have considered n = 0.2 to account for suffi-
cient margin to avoid encountering a singular Jacobian during the nu-
merical exercise, due to the strong non-lipschitz condition of fn2 when
n approaches zero. We can observe in Figures 1.5, 1.6 and 1.7 that
the solutions for the problem (1.358) are indeed subsolutions for the
problem (1.357). We can see in the pointed figures that the function
f2m (representing the solution f2 to the problem (1.358)) is positive
everywhere (note that for simplification and better picture resolution
we have selected a reduced interval for ξ ∈ [0, 2]). Therefore, when
moving with decaying rate given by the expression of λ2 in (1.364),
we can ensure the asymptotic positivity of the TW-tail. Even further,
one can check that the solutions to the original problem (1.357) evolve
closely to the linearized problem (1.358).

We have shown that the postulated travelling wave speed given by the
expressions (1.364) and (1.365) provides a subevolution to the problem PT
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Figure 1.2: Travelling Wave evolution for c + a = 4 corresponding to n =
0.9 and m = 0.1. For convenience d = 2. The horizontal axis represents the
TW independent variable ξ = x− at.

Figure 1.3: Travelling Wave evolution for c+a = 4 corresponding to n = 0.9
and m = 0.1. For convenience d = 2. It is possible to see the sub-evolution
f1m as solution for the problem (1.358). The horizontal axis represents the
TW independent variable ξ = x− at.
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Figure 1.4: Travelling Wave evolution for c+a = 4 corresponding to n = 0.9
and m = 0.1. For convenience d = 2. It is possible to see the sub-evolution
f2m as solution for the problem (1.358). The horizontal axis represents the
TW independent variable ξ = x− at.

Figure 1.5: Travelling Wave evolution for c + a = 4 corresponding to n =
0.2 and m = 0.9. For convenience d = 2. The horizontal axis represents the
TW independent variable ξ = x− at.

99



1.10 TW profiles Non-linear reaction and diffusion.

Figure 1.6: Travelling Wave evolution for c+a = 4 corresponding to n = 0.2
and m = 0.9. For convenience d = 2. It is possible to see the sub-evolution
f1m as solution for the problem (1.358). The horizontal axis represents the
TW independent variable ξ = x− at.

Figure 1.7: Travelling Wave evolution for c+a = 4 corresponding to n = 0.2
and m = 0.9. For convenience d = 2. It is possible to see the sub-evolution
f2m as solution for the problem (1.358). The horizontal axis represents the
TW independent variable ξ = x− at.
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(1.357) that ensures the positivity of the involved solutions (u, v). Indeed
the TW-profiles in the problem (1.358) have been obtained by replacing fn2
by f2 in the proximity of f2 = 0 where we know that f2 < fn2 ; and by
making f1 = d; so that the problem (1.358) provides subsolutions to the
problem PT (1.357). As the TW-profiles do not oscillate for TW-speed com-
plying with (1.364) and (1.365), the solutions of the problem PT will be pos-
itive when propagating toward the stationary solutions u = d and v = 0.
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2 Existence, evolution of solutions and finite prop-

agation for a PME problem with a reaction of

the form |x|σup, σ > 0 and p < 1

2.1 Description and objectives

The Porous Medium Equation (PME) is classified within the nonlinear parabolic
partial differential equations scope (see the page 85 of [33] for a discussion
on the regularity conditions associated to the parabolic PME) . Unlike in
the previous studied diffusion problem, in a PME, the non-linearity is given
in the diffusion term which introduces a set of properties differing from the
classical order two diffusion. It has application on mechanical and physical
problems where slow diffusion is important or where the pressure due to the
over-population (in case of biological applications) induces diffusion in the
media. The PME main key features depart from the Heat Equation (HE) and
derive into a complete set of novelties of relevance in applied sciences that
we will specify in this memory.

To illustrate the relevancy and novelties of the PME compared to the HE,
we can think on a simple mechanical problem in which a small particle with
a high temperature (much higher than the ambient temperature) is set fixed
in the space. The physics establishes a precise heat transfer evolution prob-
lem that derives into the classical HE. Even when this equation is capable
of precisely predicting the behaviour of the solution, it provides positivity ev-
erywhere in the domain; in the sense that the points located at a infinite
location will increase its temperature instantaneously. This HE feature is
usually referred as infinite propagation speed in the literature (see the re-
marks in page 49 of [23]) . On the contrary, the PME exhibits a non-linear
diffusion which turns out on a finite propagation speed. This is one of the
main key features of the PME and indicates that upon evolution, a diffusion
front carries the information from zero to non-zero and, hence, positivity is
not given at all places in the domain instantaneously, as predicted by the
HE. In section 2.3, we provide a comparison of the infinite speed versus a
finite speed of propagation and the advantages derive upon.

But not only the heat transfer process can be modelled by the PME by
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replacing the classical HE. Another sort of important problems is related
to the mass diffusion in a given media. Here is where we introduce the
potentialities of the PME to model problems in biology and engineering.

Bertsch and Gurtin employed a PME in [20] to simulate a biological inter-
action in which the diffusion coefficient depends on each biological agent,
i.e., the population gradient (u+ v)x is proportional to u and v, being such
variables the corresponding population densities:

ut = k1{u(u+ v)x}x,

vt = k2{v(u+ v)x}x,
(2.1)

where,
k1, k2 > 0. (2.2)

This biological model is relevant when the diffusion in the medium is affected
by the over-population pressure. In other words, the crowding effects in one
part of the domain provokes the population to invade other areas with a finite
speed propagation.

In our case, we purport to model the population evolution when the
crowding makes the biological agents to travel. To explain our purposes,
let consider a sub-region of the domain where the biological specie starts to
increase. The pressure acting on the population makes the specie to move
towards other sub-region with a finite propagation speed. This phenomena
can be simulated by the homogeneous Porous Medium Equation [33]:

ut = ∇ · (um−1∇u),

m > 1,

(2.3)

where um−1 is known as the pressure term.

Additionally, we propose a reaction term of the form |x|σup, σ > 0 and
p < 1, that can be justified as follows:

When any biological specie starts to populate any region, this medium is
rich in nutrients, therefore, we can expect that the time growing rate is high
and positive at the beginning, but with less growing rate when the population
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increases due to the saturation of the overcrowding in the media:

ut = up,

p < 1.
(2.4)

Additionally, we consider that the nutrients are not homogeneous spatially
distributed. This leads to the further increasing of the biological individuals
in certain locations. Mathematically speaking, we can think on:

ut = F (x)up, (2.5)

where F (x) is a smooth function that permits to characterize the time grow-
ing rate depending on the location. In our case, we are going to consider:

F (x) = |x|σ,

σ > 0.
(2.6)

The selection of F (x) responds to:

ut →∞, (2.7)

whenever:
|x| → ∞, (2.8)

to model a heterogeneous distributed population which overcrowding effect
comes from a location sufficiently far in the domain.

One key question that will arise during our study is the finite time blow-up
phenomena. We will proof if such property can be given in certain locations;
Indeed, if the specie concentration growing rate goes to infinity with the
space variable, it may induce the own concentration to go to infinity in a
finite time.

In the engineering scope, and as discussed in the introduction to this
thesis, one of our purposes is to model accurately the dynamics of the fire
extinguishing agent in areas where equipment capable of originating a fire
exists, particularly aircraft areas where engines and auxiliary power units
are working. In addition, it is our aim to model the dynamic of nitrogen
evolution when the nitrogen invades the tank from an adjacent inerted tank
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Figure 2.1: The tank 2 is the source of nitrogen concentration u that invades
the tank 1 through the interfacing wall.

interfacing through one wall (Figure 2.1).

As a piece of background in relation with the fire extinguishing systems
in aircrafts, it is remarkable to remember, at this point, that plenty of ground
and flight testing campaigns have been performed in the aerospace sec-
tor regarding fire extinguishing agents discharge processes in areas where
the turbomachinery is hosted. The observations reveal that the predicted
positivity everywhere of the heat equation is not given in a real scenario. In-
deed, the positivity property would lead us to think that the concentration of
the discharged agent distributes everywhere leading to the fire extinguishing
almost since the beginning. However, this is not completely true. Indeed,
once the discharging process is initiated, the agent propagates with a finite
speed, i.e., the propagation front carries the positivity in the media, switch-
ing the solution from zero to positive. In addition, the concentration of fire
extinguisher agent is much higher in certain locations of the environment
that in others. This last observed behaviour is related to the complexity of
the engine nacelles and auxiliary power units compartments where plenty of
electromechanical equipment and computers are hosted. In certain areas
of these compartments, mainly zones with complex geometry close to the
discharging area, the diffusion and the reaction terms interacts to increase
the concentration of the discharging agent unexpectedly. One can think that
this growth, in certain locations, can be modelled by considering a finite time
blow-up in the equations. As discussed, the simulation of this growth would
be one of our purposes.

In relation with the modelling exercises currently being followed by the
industry, we can highlight that engineers have tried to simulate appropriately
the environment with digital mock-ups using advanced software techniques.
After this digitalization exercise, the discharge process is simulated using a
classical linear order two diffusion under numerical algorithms based on a
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discretization of equations [14]. Nonetheless, the results may not fit closely
the observations obtained during posterior testing activities in the aircraft
either on ground or in flight. This potential mismatch between predictions
and observations leads to incorporate important modifications in the model
(but without modifying the linear diffusion) that implies a significant reduction
of the scope of the model. Eventually, the model modifications are only
carried out for the particular testing conditions, thus losing the possibility
of employing the model for designing in the complete aircraft operational
envelope.

The fact of following a testing and model tuning handmade process is
costly in terms of human efforts, leading to high time-consuming, even, end-
less works. We propose, instead, to model the discharge process by a PME
equation of the form:

ut = ∆um + |x|σup, (2.9)

where:

m > 1 , σ > 0 , p < 1.

As discussed, the diffusion term, ∆um, induces finite propagation of the
fire extinguisher agent while the reaction term, R(x, u) = |x|σup, will be
proved to provide blow-up properties for certain values of σ to be charac-
terized upon. The term |x|σ is introduced as a location variable that can
be adapted, based on observations, to the location where the extinguishing
agent concentration grows unexpectedly. Mathematically speaking, we can
abstract by considering that in such locations finite time blow-up is given.
The results obtained in this thesis have been applied to a real scenario to
model the fire extinguisher discharge in the Annex II.

We focus our attention, now, to understand the term up (p < 1). This
term aims to model the effect of the discharge process. Indeed, if we make
the first derivative, we have

1

u1−p , (2.10)

where we can see that for low concentration values (u→ 0), the derivative
increases asymptotically. Nonetheless, when the concentration starts to
develop and follows a monotone increasing evolution during the discharge,
the derivative decreases (but still positive) due to the own saturation of the
media by the discharged agent.
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The PME equation can be applied to model the inerting process of a fuel
tank as well (Figure 2.1). For this purpose, we shall consider a situation, in
which, the growing rate of nitrogen (ut) increases with |x|. This phenomena
can be associated with an invading nitrogen concentration located at the
tank 2, so that:

|x| >> 1, (2.11)

and then:
ut >> 1. (2.12)

The growing rate decreases when |x| → 0. In addition, the term up intends
to introduce the saturation effect of the nitrogen in the tank 1. This process is
simulated with a PME related diffusion, so that the invading nitrogen moves
with a finite speed down to reach the tank wall located at x = 0.

One of the main aspects of the equation (2.9), to be characterized, is the
existence of finite time blow-up. In our models, such phenomena expresses
the effect of a massive invasion (from the biological agent, the discharged
fire extinguisher or the nitrogen gas concentration) that leads the solution
to increase randomly to infinity in a certain finite time. We shall notice that
the existence of such finite time blow-up may no be given in a real scenario.
In fact, in the application compiled in the Annex II, finite time blow-up is not
a feature given during the discharge of an engine fire extinguisher. The
non-existence of finite time blow-up, in this case, is established by the pa-
rameters involved in the PME and determined for the application in Annex
II, this means that we have not imposed any ad hoc condition.

Working with a PME equation of the form (2.9) implies to consider sig-
nificant novelties. To illustrate the differences, in terms of results, compared
to the assessments performed up to now in related studies, we stress that a
similar equation (but with a reaction term not depending on |x|σ) was stud-
ied by De Pablo and Vázquez in [31]. In particular, the authors showed that
solutions to the problem:

ut = ∆um + up,

p < 1,
(2.13)

does not exhibit local blow-up.

Additionally, R. Ferreira et al. showed in [37] the existence of blow up
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for a equation of the form:

ut = ∆um + up(x), (2.14)

where p(x) is a smooth function with bounds (p−, p+). They showed that
when the integration domain Ω = RN, there exists local (finite in time)
blow-up provided that the following condition is met:

1 < p− ≤ p+ ≤ 1 + 2/N. (2.15)

The coefficient p∗ = 1 + 2/N is denoted as Fujita exponent and is well
known to be a boundary between values of p motivating finite time blow-up
(as expressed under the condition (2.15)) and values of p providing global
blow up, for which the following condition is shown:

p− > 1 + 2/N. (2.16)

Nonetheless, in our case, we show the existence of blow-up in finite time,
due to the introduction of the term |x|σ, for certain values of σ and in the
condition with p < 1 (which according to [31], no finite time blow up is
given). Eventually, we formulate a new value of the critical exponent to
segregate between the existence of local in time blow-up and the existence
of global solutions. In a physical intuition, this means:

• Finite time Blow-up: The solutions goes to infinity for a given finite time
due to the cumulative effect of the reaction term. This phenomena
is well known in the study of parabolic operators and has become a
source of investigations [39]. Considering that the blow-up is given at
t = T , we can express the finite time blow-up phenomena as:

|u(x, T )| → ∞. (2.17)

In a physical sense, a finite time blow-up corresponds to an extreme
invasion, either from a biological agent or from a gas substance, that
provokes the solutions to increase suddenly up to a theoretical infinity.

• Global solutions: The solutions evolve with no blow-up in finite time.
This means, that solutions can go to infinity, nonetheless, this will hap-
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pen in a infinite time as well. Then, we can read:

u(x, T →∞)→∞. (2.18)

In this case, the physical intuition suggests that the solutions are not
bounded unless we limit the exposure time (i.e. we make T finite).
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2.2 Summary

This work starts by determining and comparing the so-called source-type
solution for the HE and for the PME. The source-type solution for the PME
is also known as Zeldovich, Kompaneets and Barenblatt (ZKB) solution in
honour to the first authors investigating the properties of the PME (page 6
in [33]). Afterwards, we proceed to discuss topics related to existence and
uniqueness of solutions. We characterize solutions through the analysis of
uniqueness, a comparison principle and a precise evolution of them. Even-
tually, we finish with finite propagation for a reaction problem with a non-
Lipschitz term. The fact of having a non-Lipschitz term makes useless the
available techniques for existence of solutions contemplated only for Lip-
schitz reaction (see the different problems provided in Chapter 4 of [33]).
Therefore, we proceed firstly to convert our original problem P into a Lip-
schitz problem referred as P ′, so that we show existence and uniqueness
of solutions. Lately, we show existence of solutions for the non-Lipschitz
problem (P ) by making the limit of an appropriate parameter involved in the
Lipschitz approach.

We discuss, now, some aspects about the PME pressure term (also
known as diffusivity). For a PME, the pressure term is of the form:

D(u) = m|u|m−1, (2.19)

with m > 1.

To show this, it suffices to re-write the Laplacian term as:

∆um = ∇ · (mum−1∇u), (2.20)

where:
D(u) = m|u|m−1. (2.21)

Alternatively, the diffusivity for HE equation is:

D(u) = 1, (2.22)

Indeed
∆u = ∇ · (1∇u), (2.23)

which is positive for any value of u. Nonetheless, the diffusivity introduced
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by the PME, called degenerate difussivity, leads to the fact that whenever
u = 0, the diffusion coefficient is null (D(u) = 0). This particular behaviour
of the PME introduces relevant properties related to finite speed propagation
in a local ball BR in which the solution u(x, t) → 0 for x ∈ BR and
0 ≤ t ≤ τ (with τ sufficiently small).

As discussed and to complete our problem, we introduce a reaction term
of the form

|x|σup. (2.24)

In this case, the reaction term does not satisfy the Lipschitz condition (hence
introduces non-uniqueness) whenever u = 0 or u → 0 locally. It is impor-
tant to highlight that, even when non-Lipschitz, the forcing reaction term is
considered to be positive at some moment during the finite propagation.
Additionally, it satisifies the condition:

R(x, u) ⊂ L∞loc(R
N ). (2.25)

The existence of solutions for a Lipschitz problem discussion employs al-
ready known results compiled in [31] and [32]. Nonetheless, the differences
of our problem compared to that in the cited references are notable and
will introduce novelties in the development of a consistent theory. The main
differences compared to the already known problems are summarized as:

• The introduction of a non-Lipschitz reaction with a term depending on
|x|. This means that the reaction is

R(x, u) ∈ L∞loc(R
N). (2.26)

• A generalization on the growth condition for the initial data.

Due to the degeneracy of the diffusion coefficient (D(u)), any solution
cannot be classically defined, in case it is locally null for a certain time.
This is the case of compact support initial conditions and solutions. As a
consequence, the theory developed in this work employs a generalization on
the way solutions are defined, i.e. we focus our attention in weak solutions.

We will say
u ∈ QT = RN × (0, T ), (2.27)
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is a weak solution to the problem P , if for every t, such that 0 ≤ t ≤ T ;
and for every test function

φ ∈ C∞(QT ), (2.28)

with compact support, the following identity holds:∫
RN

u(t)φ(t) =

∫
RN

u(0)φ(0)+

∫ t

0

∫
RN

[uφt+u
m ∆φ+|x|σup φ]ds.

(2.29)
Note that when we refer to a subsolution (minimal) or a supersolution (max-
imal), the ” = ” in the last equation is replaced by ” ≤ ” and ” ≥ ”
respectively.

One of the intentions of this work is to analyze the existence and to de-
termine a characterization of maximal and minimal solutions for the problem
P . Such study does not prevent us to analyze uniqueness of solutions.

We will see that the sign of the parameter

γ = mσ + 2(1− σ)p+ σ, (2.30)

plays and important role to understand the applicable solutions:

• When γ < 2, the non-Lipschitz reaction is relevant. Thus, the exis-
tence of solutions is guaranteed whenever the initial data u0(x) > 0.
While in the case of u0 ≡ 0, the proof of existence is more subtle
and, in general, we will show that there exist two particular solutions
(the maximal and minimal solutions) that are key to demonstrate exis-
tence and to bound the family of possible solutions.

• When γ ≥ 2, the existence of solutions is shown with the help of the
so-called self-similar solution which is obtained as a minimal asymp-
totic behavior. Additionally, the degeneracy of the diffusion implies that
uniqueness cannot be guaranteed in case u = 0 in a ball BR. In this
case, a minimal solution can be proved to exist with the property of
finite speed propagation and a maximal solution positive for each time
0 ≤ t ≤ T and all x ∈ RN

One of the main features studied in a non-linear PDE evolution is the ex-
istence of a blow up pattern. Blow up can be given for a finite time, in which
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solutions tend very fast to infinity in a local spatial ball within the integration
domain. The finite time blow-up has its own designation to segregate it from
the case in which blow-up is given as a evolution problem whose solution
tends to infinity when t → ∞. This last case is usually referred as global
existence or global blow up. This work proves that there exists a critical
exponent p∗ defined as:

p∗ = sign+

(
1− σ(m− 1)

2

)
. (2.31)

Such that for p > p∗, there exists blow up in finite time while for p ≤ p∗

there exist global solutions.

In summary, the most general problem (P ) we aim to study throughout
the present work is:

ut = ∆um + |x|σup,

u (x, 0) = u0(x),

u0(x) ≥ 0,

(2.32)

where

m > 1 , σ > 0 , p < 1,

(x, t) ∈ QT = RN × (0, T ).

Without losing generality and in virtue of typical applied sciences problems,
we will consider that any solution is u ≥ 0.

The work for the problem P starts by a generalization of the maximal re-
quired growing condition for the initial data to support the study of existence
of solutions. Later on, the original problem P is replaced by a Lipschitz con-
tinuous problem for which existence, uniqueness and a comparison principle
can be established. Finally, we contemplate the limit of such Lipschitz prob-
lem to convert it into a non-Lipschitz problem with the intention to derive the
existence of the maximal and minimal solutions to the problem P , and what
conditions are required for unique solutions. In addition, this work provides
exact evolution profiles for the maximal and minimal solutions solved as part
of an asymptotic approximation.
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2.3 Source-type solutions and comparison of the Heat Equa-
tion versus the Porous Medium Equation

This section has the aim of setting the fundamental (or source-type) solu-
tions for the HE firstly and for the PME secondly. In both cases, the initial
condition is given in the form of a finite pulsed mass (M):

u(x, 0) = Mδ(x), (2.33)

where δ(x) represents the Dirac pulse at the spatial coordinate origin.

The homogeneous equation to solve for the HE is of the form:

ut = ∆u, (2.34)

and for the PME:
ut = ∆um. (2.35)

The role of the source-type solution is to find a basic evolution that acts
as a representative example of the typical behaviour expected once the HE
or the PME are solved. We develop the theory with special emphasis in the
strong positivity, which is the main feature of the HE source evolution; and
the finite propagation speed, which constitutes the paramount difference of
the PME source solution when compared with the HE.

2.3.1 Heat Equation source-solution

The process of obtaining a fundamental solution for the HE outlined in this
section is based on the theory developed in the page 45 of [23]. It is deemed
adequate to reproduce such theory as it stresses the main aspects required
for the source-type solution of the PME.

We study the class of solutions that are invariant under the scaling group
in the variables (x, t, u) which give the so-called self-similar form:

u(x, t) = t−αf(η), (2.36)

where
η = xt−β. (2.37)
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The exponents α and β are called self-similarity exponents and the function
f is called the self-similar profile.

Now, if we insert the expression (2.36) into the HE equation (2.34), we
have:

−αt−(α+1)f(η) + t−α(−β)xt−(β+1)fη(η)︸ ︷︷ ︸
ut

= t−(α+2β)fηη(η)︸ ︷︷ ︸
∆u

.

(2.38)
Upon operation, we have:

−αt−(α+1)f(η)− t−(α+1)β xt−β︸ ︷︷ ︸
η

fη(η)− t−(α+2β)fηη(η) = 0.

(2.39)
We require the exponents in the time variable to be equal with the aim of
involving an elliptic differential equation in the variable η, while keeping the
equation invariant:

α + 1 = α + 2β → β =
1

2
. (2.40)

Therefore the elliptic equation reads as:

αf +
1

2
ηfη + fηη = 0. (2.41)

To simplify the resolution, we require the function f(η) to be radial in the
variable η. From now on, the reader shall understand the variable η as the
radial variable r. In the radial restriction, the second derivative is read as
expressed by the following expression:

αf +
1

2
rfr + frr +

N − 1

r
fr︸ ︷︷ ︸

fηη

= 0. (2.42)

For convenience, we choose the exponent α as:

α =
N

2
, (2.43)

and upon substitution in the expression (2.42) and multiplying such equation
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by rN−1, we read:

rN−1N

2
f +

1

2
rNfr + rN−1frr + (N − 1)rN−2fr = 0, (2.44)

we know that:

rN−1N

2
f +

1

2
rNfr =

1

2
(rNf)r, (2.45)

and
rN−1frr + (N − 1)rN−2fr = (rN−1fr)r, (2.46)

so that, the expression in (2.42) adopts the following form:

(rN−1fr)r +
1

2
(rNf)r = 0. (2.47)

Thus, we can solve making a simple first integral:

rN−1fr +
1

2
rNf = K. (2.48)

for some constant K. We can consider

K = 0, (2.49)

under the assumption that

lim
r→∞

f = 0, (2.50)

hence:

fr = −1

2
rf. (2.51)

Upon integration and for some arbitrary constant M :

f = Me−
r2
4 . (2.52)

And finally upon substitution of the involved variables in the equation (2.36)
to recover the original (x, t) as independent, we have:

f(x, t) = M
1

tN/2
e−
|x|2
4t . (2.53)
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Figure 2.2: The source-type evolution solution for the Heat Equation. It is to
be highlighted the positivity condition everywhere. (Source reference [33])

This fundamental or source-type solution is normally named as Gaussian
kernel and is represented in Figure 2.2.

Figure 2.2 is a visual representation of the property referred as infinite
speed of propagation that naturally appears as a consequence of the HE
resolution. Starting from a single and finite mass at an isolated spacial point
(u(x, 0) = Mδ(x)), the solution evolves towards positivity everywhere in
the domain. This property is the basis for a certain comparison with the
PME source-type solution to come up in the following chapter.

2.3.2 Porous Medium Equation source-solution

The scaling of the variables, typically performed in the search of a funda-
mental solution, applies to the PME analogously as we did for the previous
HE.

We proceed with the following self-similar solution:

u(x, t) = t−αf(η) , η = xt−β. (2.54)
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−αt−(α+1)f(η) + t−α(−β)t−(β+1)x · fη(η)︸ ︷︷ ︸
ut

= t−(αm+2β)fmηη(η)︸ ︷︷ ︸
∆um

.

(2.55)

−αt−(α+1)f(η)−t−(α+1)βη ·fη(η)−t−(αm+2β)fmηη(η) = 0. (2.56)

The elliptic differential equation for the self-similar profile is set after remov-
ing the time dependence in the equation (2.56). Hence, we have:

α + 1 = αm+ 2β, (2.57)

so that:
α(m− 1) + 2β = 1. (2.58)

We arrive at one equation expressing a relation between the self-similar
exponents α and β; Therefore, another relation is required to determine
two particular values for each exponent. This second relation is given by the
energy conservation during the evolution:∫

RN
t−αf(xt−β)dx = M. (2.59)

If we make the following change of variable:

η = xt−β, (2.60)

we shall take into account that the term dx is a volume magnitude to repre-
sent a differential in the whole spaceRN , therefore operating with volumes,
we have:

‖x‖N
RN

= ‖η‖N
RN

tNβ. (2.61)

Then, we have that the differential in volumes are given by:

d‖x‖N
RN

= d‖η‖N
RN

tNβ. (2.62)

Note that it is usual to simply write:

dx = dη tNβ, (2.63)
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to represent the volume integral, so that we have:∫
RN

t−αf(xt−β)dx = t−α+βN
∫
RN

f(η)dη = M. (2.64)

If we remove the time-dependency in the previous equation, we have α =
βN , so that we read the following set of algebraic equations:

α(m− 1) + 2β = 1, (2.65)

α = βN. (2.66)

After resolution for the variables α and β, we have:

α =
N

N(m− 1) + 2
, (2.67)

β =
1

N(m− 1) + 2
. (2.68)

It is still pending to solve the following elliptic differential equation for the
self-similar profile f :

fmηη(η) + βη · fη(η) + αf(η) = 0. (2.69)

As we did in the previous section, we search for non-negative solutions with
a radial symmetric profile. After the substitution of the Laplacian by its cor-
responding radial coordinates, we arrive at the following expression:

1

rN−1
[(rN−1(fm)′)′ + βrNf ′ + rN−1Nβf ] = 0. (2.70)

Which can be re-written as:

1

rN−1
[(rN−1(fm)′)′+(βrNf)′] = 0→ (rN−1(fm)′+βrNf)′ = 0.

(2.71)
We can solve the first integral to have:

rd−1(fm)′ + βrdf = C. (2.72)

As we did with the HE we require that f → 0, whenever r → ∞. Hence,
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we determine C = 0 and the equation (2.72) reads as:

(fm)′ + βrf = 0. (2.73)

The equation (2.73) can be solved using ordinary differential equations tech-
niques:

dfm

f = −βrdr;

mfm−1df
f = −βrdr,

mfm−2df = −βrdr,

m
m−1f

m−1 = −β2 r
2 + C.

(2.74)

The profile solution is:

f(r) =

(
A− β(m− 1)

2m
r2
) 1
m−1

, (2.75)

and in the variable η:

f(η) =

(
A− β(m− 1)

2m
|η|2
) 1
m−1

. (2.76)

Finally, the source-type solution adopts the following expression after sub-
stitution in the expression (2.54):

u(x, t) = tα
(
A− β(m− 1)

2m
|x|2t−2β

) 1
m−1

, (2.77)

where:

α =
N

N(m− 1) + 2
, (2.78)

and

β =
1

N(m− 1) + 2
. (2.79)

We can make the graphical representation of the self-similar solution (Fig-
ure 2.3) with the aim of comparing with the same graphic obtained in the HE
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Figure 2.3: The source-type evolution solution for the Homogenous PME. It
is to be highlighted the non-negativity everywhere. (Source reference [33])

case. The graphical representation for the PME manifests a relevant differ-
ence in the character of the fundamental profile. Namely, the fundamental
profile of the PME is not positive everywhere in the domain as we had with
the HE.

2.3.3 Comparison of the fundamentals solutions for the HE and PME

The contrast between both solutions of the HE and PME can be summarized
as follows:

• HE: A non-negative solution of the heat equation is automatically pos-
itive everywhere in its domain of definition.

• PME: Disturbances from the level u = 0 propagate in time with finite
speed.

To make the comparison more intuitive, we can think how the initial and
finite mass evolves in the HE and in the PME. For the HE the initial mass
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provides positivity everywhere as the gaussian kernel is positive for any t >
0. Nonetheless, the evolution of the PME is not positive everywhere; indeed
the support of the solution in the spatial domain propagates with a finite
speed introducing a propagation front that turns the domain from zero to
positivity. This propagating support evolves precisely in the (x, t) space
following the expression:

t =

(
A2m

β(m− 1)

) 1
β
. (2.80)

The finite propagation feature of the PME is very important in the develop-
ment of this work and shall be considered as a property that will appear
when solving the PME with a forcing-reaction term. This property permits to
model diffusion problems in which a propagating front appears as a result
of the evolution. In the biological application, a specie, invading the domain,
moves with finite propagation speed until it covers the whole domain. This
principle can be applied, as well, to the aerospace industry related to fire
extinguishing and tank inerting. In both cases, a substance (the fire extin-
guisher agent and the nitrogen respectively) propagates through the media
with a finite speed. In the PME, the finite speed is given by the propagation
of the function support that shifts the null state to positivity or existence of
substance.
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2.4 Initial data growing condition

The whole theory developed in this part of the thesis to solve the problem P
(2.32) can be perfectly developed considering the following condition for the
initial data:

u0(x) ≥ 0 ∈ L1
loc(R

N) ∩ L∞(RN). (2.81)

In fact and for convenience, we will refer to the condition (2.81) in some
cases that we will specify.

A generalization to consider functions of the form:

u0(x) ≥ 0 ∈ L1
loc(R

N) ∩ L∞loc(R
N), (2.82)

can be considered provided a condition is set for the growing behavior of
the initial data in the spirit of [31] and [32].

The baseline integrability condition requires to introduce the following
Banach space:

E0 =
{
φ ∈ L1

loc(R
N) : ‖φ‖r <∞

}
, (2.83)

where the norm ‖φ‖r(r ≥ 1) is defined by:

‖φ‖r = sup
R≥r

R−N−aσ
∫
RN
|φ(x)| dx, (2.84)

with

aσ = max

{
σ

1− p
,

2

m− 1

}
. (2.85)

Considering:

BR =
{
x ∈ RN; |x| < R

}
, (2.86)

and
‖φ‖∗ = lim

r→∞
‖φ‖r. (2.87)

The reason for the aσ expression in (2.85) can be understood if we con-
sider two separated problems with different growing conditions in RN. The
first problem is the homogeneous problem that we solved in (2.77). If we
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consider a constant time, the evolution inRN is given by

u ∼ |x|
2

m−1 , (2.88)

for
|x| >> 1. (2.89)

The mentioned second problem is related to the forcing term solved inde-
pendently of the diffusion:

ut = |x|σup. (2.90)

Upon resolution and for a fixed time we have:

u ∼ |x|
σ

1−p . (2.91)

Thus, any initial data needs to be weighted and compare to any of the two
solutions with the aim to ensure that any growing initial data condition does
not jeopardize the existence of solutions.
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2.5 The Lipschitz Problem

Firstly, we remark that the reaction term in the problem P (2.32) is not Lip-
schitz due to the term up (p < 1). This can be shown by considering two
functions

u1 > u2, (2.92)

such that:

|up1 − u
p
2| ≤

p

u
1−p
2

|u1 − u2| ≤ L|u1 − u2|. (2.93)

In case of
u2 → 0 or u2 = 0, (2.94)

it is not possible to define a finite Lispchitz constant L.

As part of our strategy to show existence of solutions, firstly we proceed
to study a equivalent Lipschitz problem referred as P ′:

ut = ∆um + flip(x, u) in QT = RN × [0, T ] ,

u (x, 0) = u0(x),

u0(x) ≥ 0 ∈ E0,

(2.95)

where T is a time value in 0 < T ≤ ∞ and flip(x, u) is a Lipschitz func-
tion on the u variable; flip(u) : [0,∞) → [0,∞) with Lipschitz constant
L:

|flip(u1)− flip(u2)| ≤ L |u1 − u2|. (2.96)

To show existence based on already available techniques contemplated by
de Pablo in [36] and by de Pablo and Vázquez in [31] and [32], we perform
a truncation to bound the |x|σ term globally inRN. Indeed, this step allows
us to show existence for a forcing term that has been already discussed by
the cited authors:

|x|σε =

[
|x|σ when 0 ≤ |x| < ε
εσ when |x| ≥ ε

]
. (2.97)

The following problem P ′ε is defined in accordance with the truncation in
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(2.97):

ut = ∆um + |x|σε f(u) ≤ ∆um + εσf(u) in QTε = RN × [0, Tε] ,

u (x, 0) = u0(x),

u0(x) ≥ 0 ∈ E0,
(2.98)

where,
f : [0,∞)→ [0,∞), (2.99)

is a Lipschitz function and

|x|σε ∈ L∞(RN). (2.100)

Our intention is to show existence and a comparison principle for the prob-
lem P ′ε based on already available results [31], [32] and [36]. It is to be
highlighted that the novelty is provided by the the introduction of the term
|x|σ that has not been treated previously.

Theorem 2.5.1. For a given ε > 0 and if u0 ∈ E0, there exists a unique
uε in QTε (existing for each ε) continuous weak solution to the problem P ′ε
in a time interval (0, Tε).

Proof. De Pablo and Vázquez, [32], showed existence of solutions for the
problem

ut = (um)xx + λun, (2.101)

with
λ > 0, m > 1, n ∈ R. (2.102)

In our case the truncated term |x|σε , bounded by εσ, plays the role of the
parameter λ. Thus, the aim is to proof the existence of solution(s) for the
problem P ′ε within the time interval (0, Tε) to be determined.

It is our aim to operate with bounded initial data, therefore and firstly, we
define the truncation for u0 ∈ E0 and n ≥ 1 as:

u0n(x) =


u0(x) when |x| ≤ n, u0(x) < n,
n when |x| ≤ n, u0(x) ≥ n,

0 when |x| > n

 . (2.103)
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It is necessary to remark that, at this point, we have the problem P ′ε with a
Lipschitz forcing term and with bounded initial data given by the truncation
in (2.103).

Summing up:

u0n(x) ∈ L1(RN) ∩ L∞(RN). (2.104)

The defined problem P ′ε is of Lipschitz type with

|x|σε ∈ L∞(RN). (2.105)

Under these conditions, we can make use of already available results to
ensure the existence and uniqueness of solutions. The reader can consult
Theorem 3.1 in [35].

The intention is, now, to have a global bound for a subsolution (w) of the
problem P ′ε that will permit the determination of a value for the time Tε. For
this purpose, de Pablo and Vázquez [32] proposed to perform the following
change of variables:

x→ x,

t→ τ = ek(m−1)t−1
k(m−1)

,

u(x, t)→ w(x, τ).

(2.106)

In our case, it is convenient to use a similar change of variables, but with a
modification to account for the Lipschitz constant L and the bound εσ:

x→ x,

t→ τ = eε
σL(m−1)t−1
εσL(m−1)

,

u(x, t)→ w(x, τ).

(2.107)

This change of variables is very useful as it transforms the PME for the u
variable into a problem where w is a subsolution given by an exponential
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decay. Indeed, if we make the operations we have:

ut = wτ τt = wτe
εσL(m−1)t,

eε
σL(m−1)twτ = ∆wm,

wτ = e−ε
σL(m−1)t ∆wm︸ ︷︷ ︸

∆um

.

(2.108)

The temporal evolution of the problem in the function w is driven by the
decaying exponential term that was not part of the original problem in u.
Given a particular value for the ∆um, the evolution of u is given by:

ut = ∆um, (2.109)

while the evolution of w is given by:

wτ = e−ε
σL(m−1)t∆um. (2.110)

Thus, for a time sufficiently large we can say that w is indeed a subsolution:

wτ ≤ ∆um. (2.111)

Note that to recover the original solution for the PME, it suffices to consider:

u(x, t) = eε
σL(m−1)tw(x, τ(t)). (2.112)

The fact of having such exponential decrease rate in (2.110) allows us to
bound the function w by an already known estimation [34] of the form:

w(x, τ) ≤ cR2/(m−1)τ−α‖w(·, 0)‖2α/Nr , (2.113)
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where,

α = N
N(m−1)+2

,

|x| < R,

1 ≤ r ≤ R,

0 < τ = eε
σL(m−1)t−1
εσL(m−1)

≤ c‖w(·, 0)‖(1−m)
r ,

(2.114)

and c ∈ R+ is a suitable constant that ensures the compliance of the last
inequality.

It is convenient to remember that our intention is to determine the exis-
tence time Tε based on the bound estimation of the solution for the Lipschitz
problem in (2.113).

From now on, we will refer our solution for the PME as uεn(x, t). Indeed
such solution is obtained for a given n in the truncation of the initial data and
for a given ε in the truncation for the term |x|σ.

Based on the expression (2.113), the following estimation applies for
uεn(x, t) considering that for t sufficiently large we have:

u(x, t) ∼ eε
σLmtw(x, τ(t)), (2.115)

so that,

uεn(x, t) ≤ cR2/(m−1)eLmε
σtτ−α‖un(·, 0)‖2α/Nr . (2.116)

The expression (2.116) can be re-written as:

uεn(x, t) ≤ cR2/(m−1)eLmε
σt

(
eLε

σ(m−1)t − 1

Lεσ(m− 1)

)−α
‖un(·, 0)‖2α/Nr ,

(2.117)
where:

|x| < R, 1 ≤ r ≤ R, 0 < t ≤ Tr,ε. (2.118)
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The time Tr,ε can be obtained operating the expression:

τ =
eε
σL(m−1)t − 1

εσL(m− 1)
≤ c‖un(·, 0)‖(1−m)

r . (2.119)

And upon operation in the last expression, we arrive at:

Tr,ε =
1

Lεσ(m− 1)
log
(

1 + cLεσ(m− 1)‖u0,n‖1−mr

)
. (2.120)

Now, for a given ε, we can take the limit n → ∞ to consider the whole
initial data. This operation is permitted as we are controlling the initial data
by the norm ‖u0,n‖r. This means that we can eliminate the truncation in
the initial data whenever we control the increasing rate of u0 thanks to the
weighting function in R (implicitly |x|) used to define the norm ‖·‖r as per
(2.84). Thus, we can write:

0 < t ≤ Tε =
1

Lεσ(m− 1)
log
(

1 + cLεσ(m− 1)‖u0‖1−m∗
)
,

(2.121)
where r →∞ .

Finally, we have arrived at the estimation of a time interval where the
Lipschitz problem with spacial-bounded forcing term (through the truncation
in (2.97)) and with initial data whose increasing rate is controlled by the norm
‖u0‖∗ has existence of solutions.

It is interesting to observe two cases of time existence:

• ε→ 0⇒ cLεσ(m−1)‖u0‖
1−m
∗

Lεσ(m−1)
= c‖u0‖1−m∗ .

This case corresponds to a time where solutions exist for a finite time
given by growing norm of the initial data.

• ε→∞⇒ log(cLεσ(m−1)‖u0‖
1−m
∗ )

Lεσ(m−1)
→ 0.

This case does not provide information about the existence time due
to the globally not bounded evolution of the term |x|σ in the whole
space domain. In this case and for a particular value of |x| = ε, it
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is possible to ensure existence of solutions, as the expression (2.121)
provides a dedicated value for Tε. Then and at least, we can ensure
the local existence of solutions for finite values of |x| in the proximity
of ε. Note that the fact of losing a existence criteria when ε → ∞
can be considered as a condition in which blow-up may be given. The
blow-up behaviour is characterized in Section. 2.6.2.
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2.6 The non-Lipschitz problem

In this section, we consider the following non-Lipschitz problem, named as
Pε:

ut = ∆um + |x|σε up ≤ ∆um + εσup in QTε = RN × [0, Tε] ,

u (x, 0) = u0(x),

u0(x) ≥ 0 ∈ E0,

p < 1; m > 1 N ≥ 1
(2.122)

The condition of a non-Lipschitz reaction term has implications on the study
of existence of solutions. One of them is the impossibility to show unique-
ness for any value of u, particularly when u = 0 or when u increases from
zero to positivity. Our effort is, hence, focused on determining the existence
and characterizing two particular solutions, named as the maximal and the
minimal solutions, so that any other solution will exist between them.

Theorem 2.6.1. There exist two particular solutions to the problem Pε re-
ferred as maximal solution uM and minimal solution um existing in [0, Tε]
with Tε(ε, ‖u0‖∗) such that any solution to problem Pε satisfies:

um ≤ uε ≤ uM .

Proof. With the objective of applying Theorem 2.5.1, we firstly construct a
Lipschitz function depending on a parameter δ:

fδ(s) =

[
εσδ(p−1)s for 0 ≤ s < δ

εσsp for s ≥ δ

]
, (2.123)

so that in the limit for δ → 0, we recover the original term up (p < 1) (see
Figure 2.4 together with the equation (2.123)).

For building the maximal solution, we consider the following problem
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Figure 2.4: The function fδ(s) is used to approximate the non-Lipschitz
problem by a Lipschitz one. Note that in the limit δ → 0, we recover the
original non-Lipschitz term

PMε :

ut = ∆um + fδ(u) in QTε,δ
= RN ×

[
0, Tε,δ

]
,

u (x, 0) = u0(x) + ν for x ∈ RN and ν > 0.

(2.124)

ν is selected such that:

fδ(u0 + ν) > f(u0), (2.125)

which gives:
ν > |f−1

δ f(u0)− u0|. (2.126)

The Lipschitz constant for the expression fδ(s) can be obtained as follows:

εσ(s
p
1 − s

p
2) ≤ εσL(s1 − s2) ≤ εσδ(p−1)L(s1 − s2).

We remind that p < 1, therefore the last inequality make sense for |δ| < 1.
We shall consider the Lipschitz constant as:

εσLδ(p−1) (2.127)

The problem PMε has a unique solution, in virtue of Theorem 2.5.1, existing
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for a time interval Tε,δ given by the following expression:

Tε,δ ≥
1

Lδ(p−1)εσ(m− 1)
log
(

1 + Lcδ(p−1)εσ(m− 1)‖u0 + ν‖1−m∗
)
.

(2.128)
The problem has, now, three different parameters: ε used to bound the
forcing term, δ used to approximate the non-Lipschitz problem by a Lipschitz
one and the paremeter ν that shall be chosen to ensure the maximality of
uM .

For a given ε, we can make δ → 0, to recover the non-Lipschitz problem.
Then, it is possible to determine the following condition for the existence
time:

Tε,δ→0 ≥ 0. (2.129)

Or explicitly with δ:

Tε,δ→0 ≥
1

Lεσ(m− 1)
δ1−p. (2.130)

This condition means that the existence time is given in the proximity of any
δ.

To recover the forcing term |x|σ, we shall impose ε → ∞ while to
recover the non-Lipschitz problem we shall impose δ → 0. To account for
both effects, we can take:

ε =
1

δa
, a > 0, (2.131)

to joinly evaluate both parameters, ε and δ, in the limit with δ → 0 and
ε→∞.

Previously and first of all, we make δ → ∞ and ε → 0. We show that
in this case, we recover the result obtained in the Lipschitz case (we remind
that σ > 0).

Tε,δ ≥
δ(1−p)δaσ

L(m− 1)
log

(
1 + c

1

δ(1−p)δaσ
L(m− 1)‖u0 + ν‖1−m∗

)
,

(2.132)

Tε→0,δ→∞ ≥ c‖u0 + ν‖1−m∗ , (2.133)
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for any a > 0.

Even when the value for Tε,δ has been obtained in the limit for ε→ 0, it
can be applied for any positive ε and by extension for any local single point
in x ∈ RN as the function |x|σ ∈ L∞loc.

Nonetheless, to recover the original problem we shall require δ → 0 and
ε→∞. In this case, we operate with the term δ → 0 :

Tε,δ ≥
δ(1−p)δaσ

L(m− 1)
log

(
c

1

δ(1−p)δaσ
L(m− 1)‖u0 + ν‖1−m∗

)
,

(2.134)

Tε,δ ≥ 0, (2.135)

Or explicitly with δ:

Tε,δ→0 ≥
1

L(m− 1)
δ1−p+aσ. (2.136)

for any a > 0.

This case corresponds to the existence of global blow-up as it will be
shown afterwards in section 2.6.2. This global blow-up prevents us of get-
ting a definite and clean conclusion about the existence of a maximal so-
lution. Nonetheless, we can, at least, think on a maximal solution existing
for arbitrary and fixed values of δ and ε. This implies that, if we select two
values, one arbitrary for δ sufficiently small and other one for ε sufficiently
large; we are in a position to calculate a value for Tε,δ and, therefore, to
ensure the existence of a local maximal solution, not hidden by the global
blow-up that seems, previous to any formal proof, to be an inherent feature
of our problem. The existence of a maximal solution is supported by the
precise calculation of such solution performed in Section 2.6.1.

For building the minimal solution, we consider the following problem Pmε :

ut = ∆um + fδ(u) QTε,δ
= RN ×

[
0, Tε,δ

]
,

u (x, 0) = u0(x) for x ∈ RN and δ > 0.

(2.137)

The problem Pmε has a unique solution in virtue of Theorem 2.5.1 existing
for a time interval (0, Tε,δ). Any solution, umδ , to the problem Pmε is a

136



2.6 The non-Lipschitz problem Non-linear reaction and diffusion.

subsolution to the problem Pε and to the original problem P . Indeed the
approximation fδ(u) of the non-Lipschitz function up satisfies:

fδ(u) ≤ εσup ≤ |x|σup,

umδ ≤ u.
(2.138)

Given δ1 > δ2 we have that fδ1(u) < fδ2(u) for an arbitrary decreasing
sequence of δ‘s, we have a non-decreasing sequence of umδ that satisfies
umδ ≤ u, such that in the limit with δ → 0 we can establish:

um = lim
δ→0

umδ . (2.139)

Each element of the sequence umδ does exist in virtue of Theorem 2.5.1,
therefore, um is a minimal solution to the problem Pε and to the problem P
(in virtue of the ordered property in (2.138)). Indeed, um has been obtained
under the change of the reaction original term up by a Lipschitz function
from below fδ(u).

The provided proof of Theorem 2.6.1 is based on the approximation to a
Non-Lipschitz problem from a Lipschitz one. The Non-Lipschitz condition of
the reaction term implies that uniqueness cannot hold. It has been proved
that two particular solutions, maximal and minimal, exist. The determination
of both solutions, with a classification in accordance with the problem data,
is done in the immediate following sections.

2.6.1 Discussion about types of solutions

We have shown the existence of a maximal and a minimal solution, when
the non-Lipschitz reaction imposes non-uniqueness. It is, now, the intention
to obtain such solution profiles together with the expected types of solutions
depending on the problem P data. This is especially relevant for the maxi-
mal solution, where it was not possible to obtain a general existence criteria
(according to expression (2.134)), due to the highly suspected global blow-
up (see Section 2.6.2 for a characterization of the blow-up phenomena).
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We consider the initial condition of the form:

u0 ≡ 0, (2.140)

or,
u0 = 0, (2.141)

in
BR = {|x− x0| < R}. (2.142)

In this case, and whenever u0 → 0, the reaction term predominates over
the diffusive term (indeed the reaction term has p < 1 while the diffusion
m > 1). Based on the fact that the non-Lipschitz reaction is predominant,
we can think on two different solutions: The minimal solution to the problem
P of the elementary form

um = 0, (2.143)

and a maximal positive solution that can be shown to be:

uMτ = |x|σ/(1−p)(1− p)1/(1−p)(t− τ)1/(1−p), (2.144)

for any τ > 0.

To show the structure of such maximal solution, we start by a function of
the form:

uMτ = |x|θk(t− τ)α. (2.145)

Introducing the expression (2.145) into the problem P , we have:

|x|θkα(t−τ)α−1 = mθ(mθ−1)|x|mθ−2km(t−τ)mα+|x|pθ+σkp(t−τ)pα.
(2.146)

The above expression determines the following values for θ and α, provided
the reaction term predominates over the diffusion:

θ = σ
1−p ,

α = 1
1−p ,

k = (1− p)
1

1−p .

(2.147)
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The postulated maximal solution adopts the following form:

uM
τ→0+ = |x|σ/(1−p)(1− p)

1
1−p (t)1/(1−p). (2.148)

In Theorem 2.6.3.2 , we will show that any maximal solution is positive.

In addition, we can take benefit of the development in the expression
(2.146) to deduce a parameter condition to determine when the reaction
predominates. As we start by a null initial condition, either in the whole
domain or in BR, the reaction shall be relevant in the proximity of u = 0.
For this purpose, we make:

t→ τ → 0+, (2.149)

and the reaction predominates if:

pα < mα, (2.150)

in the right hand side term of the expression (2.146); meaning that:

p < m. (2.151)

We have, then, recovered the initial data as per the original problem, in
which we made the requirement 0 < p < m.

Once the solution starts to be positive, the local time evolution provides
a positive and growing solution. Therefore, we shall require that the spatial
term does not contradict such condition when the reaction predominates
over the diffusion by the imposition of the following requirement (see the
exponents of |x| in the right hand side of the expression (2.146)):

pθ + σ > mθ − 2,

mσ + 2(1− σ)p+ σ < 2,
(2.152)

which shall be met for a maximal solution of the form (2.148). In fact, this
condition can be used to state the following results to understand the ex-
pected type of solutions depending on the data parameters for P :

• mσ + 2(1− σ)p+ σ ≥ 2.
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The diffusion predominates and finite speed of propagation shall be
considered whenever the solution is null in a certain ballBR. This kind
of solutions, where finite speed is given, are characterized in Theorem
2.6.2.2.

• mσ + 2(1− σ)p+ σ < 2.

The reaction is relevant, and particularly, the non-Lipschtiz condition
provides non-uniqueness. Two particular solutions, um = 0 and
uMτ→0 have been proved to exist (Theorem 2.6.1). In this case, the
finite speed is not a predominant feature. This means that the non-
uniqueness of solutions is the inherent behaviour to expect. We high-
light that the two solutions, um = 0 and uMτ→0, have been obtained
based on the reaction term properties.

2.6.2 Precise minimum order of growth. A selfsimilar approach.

The intention, now, is to establish a minimum order of growth for the positive
solutions to the problem P . During the development of this section and for
complete understanding of the solution, we consider that the initial condition
is a compactly supported function. This fact will permit to obtain the precise
evolution of the support. The interest of a compactly supported function is
focused on understanding the evolution of a smooth function whose support
is null, and therefore, we can expect finite propagation speed due to the de-
generacy of the diffusivity when u → 0 in accordance with the parameters
conditions derived in Section 2.6.1.

This kind of solution can be used to model a biological invasion in which
the solution propagates with finite speed. In addition, the propagation of gas
substances (either in the fire extinguishing application or the nitrogen inva-
sion from one tank to another with a interfacing wall) can be modelled with a
compactly supported function to understand the dynamic of the propagation.

For the purpose of dealing with a compactly supported function evolu-
tion, we firstly develop a self-similar solution to the problem P . We are
going to see that we need to distinguish between the global evolution prob-
lem and the blow-up in finite time case; defining, thus, a critical parameter
p∗. This result is compiled in the following theorem:
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Theorem 2.6.2.1. There exist a critical exponent p∗ defined as:

p∗ = sign+

(
1− σ(m− 1)

2

)
, (2.153)

such that for:
p > p∗, (2.154)

there exists blow up in finite time, while for:

p ≤ p∗, (2.155)

there exists a global solution.

Proof. We look for self-similar profiles of the form:

E(x, t) = t−αf(|x|tβ), χ = |x|tβ. (2.156)

We make N = 1 for simplification purposes. The involved components, in
the problem P , adopt the following forms:

ut = −αt−α−1f + β |x|tβ︸︷︷︸
χ

t−α−1f ′,

∆um = t−αmt2βfmxx,

|x|σup = χσt−σβ−αpfp.

(2.157)

Upon substitution into P

−αt−α−1f + β |x|tβ︸︷︷︸
χ

t−α−1f ′ = t−αmt2βfmxx + χσt−σβ−αpfp.

(2.158)
And comparing the exponents of each variable t in the expression (2.158),
we arrive at:

−α− 1 = −αm+ 2β,

αm− 2β = αp+ βσ.
(2.159)
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The solutions for α and β are:

α = σ+2
σ(m−1)+2(p−1)

,

β = m−p
σ(m−1)+2(p−1)

.

(2.160)

Note that the term:
σ(m− 1) + 2(p− 1), (2.161)

is common to α and β and in the blow-up in finite time case, it must be
positive; while for the existence of a global solution, it must be negative (refer
to the form of the self-similar profile in (2.156) where the time exponent is
−α). This two qualitative different behaviour of the solutions to the problem
P can be clearly separated thanks to the definition of the critical exponent

0 < p∗ < 1. (2.162)

For the finite time blow up case, we have:

σ(m− 1) + 2(p− 1) > 0,

p > p∗ = sign+

(
1− σ(m−1)

2

)
.

(2.163)

Where the function sign+ returns zero whenever:(
1− σ(m− 1)

2

)
< 0. (2.164)

The complementary case provides the criteria for the existence of global in
time solutions in QT : p ≤ p∗.

The following theorem provides us with the evolution of a positive point
u(x0, t0) > 0 and the evolution of the support, given a compactly sup-
ported initial data. It can be stated as:

Theorem 2.6.2.2. Let u be a solution to problem P , such that u(x0, t0) >
0 for a given point in QT , then the following evolutions hold:
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• u(x0, t) ≥ c1(x0)(t− t0)−α for any

t > t0, (2.165)

and

α =
σ + 2

σ(m− 1) + 2(p− 1)
. (2.166)

• u(x, t) > 0 for any
t > t0, (2.167)

such that
|x− x0| < c2(x)(t− t0)β, (2.168)

where

β =
p−m

σ(m− 1) + 2(p− 1)
. (2.169)

And where:

c1(x0) = |x0|
σ

1−p (−α + βN)
1
p−1 . (2.170)

c2(x) = csupp|x|
σ(m−1)
2(1−p) , (2.171)

being,

csupp =
(−α + βN)

m−1
2(p−1)(

(m−1)β
2m

)1/2
. (2.172)

Proof. The stated results are obtained from a lower estimation to the reac-
tion term (see the coming term hε,n to be characterized), so that compari-
son can be applied with an explicit subsolution.

The proof of the theorem starts by considering the following problem Ps:

ut = ∆um + hε,n, (2.173)

where:
hε,n = nσmin

[
up, εp−1u

]
, (2.174)
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for:
n > 0 and ε > 0, (2.175)

understood as parameters such that in the limit with:

n→∞ and ε→ 0, (2.176)

we recover the original term |x|σup.

The function hε,n satisfies the Lipschitz condition and, as a consequence,
solutions exist under the scope of Theorem 2.5.1 .

The solution to the problemPs can be obtained using a self-similar struc-
ture. The self-similar form is as per (2.156). The following equation holds for
the determination of an exact solution profile for the term f(|x|tβ), being
χ = |x|tβ in the case of x ∈ RN:

−αt−α−1f + βχt−α−1f ′ = t−αm(fm)′′ +
N − 1

χ
(fm)′ + hε,n,

(2.177)
where:

hε,n(f, t) = nσmin
[
fp, εp−1tα(p−1)f

]
. (2.178)

Note that we write

hε,n(f, t) = nσmin
[
t−αpfp, εp−1t−αf

]
. (2.179)

This last expression and the expression in (2.178) have exactly the same
intersection f = tαε. For simplification purposes, we make the calculations
with the expression in (2.178) operating with the linear term:

εp−1tα(p−1)f. (2.180)

We can select a time t (to be determined), such that we have:

hε,n(f, t) ≥ nσ c f (2.181)

and c can be chosen as

c = n−σ(−α + βN) (2.182)

, for simplification during the resolution of (2.177).
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The profile f(χ) must satisfy the coming equation in (2.185) for each
time (we assume t = 1). We consider that:

hε,n(f, t) = nσ c f, (2.183)

such that, the equation reads:

−αf + βχf ′ = (fm)′′ +
N − 1

χ
(fm)′ + (−α + βN)f. (2.184)

βχf ′ = (fm)′′ +
N − 1

χ
(fm)′ + βNf. (2.185)

We have an elliptic equation with a known treatment [36]:

f(χ) = (A−Bχ2)
1

m−1 , (2.186)

where:
A > 0,

B =
(m−1)β

2m .

(2.187)

This solution is valid for a sufficiently large time to hold the inequality (2.181)
and to be determined as:

nσmin
[
fp, εp−1tα(p−1)f

]
≥ nσ c f,

min
[
fp, εp−1tα(p−1)f

]
≥ c f.

(2.188)

And in the sublinear case:

εp−1tα(p−1) ≥ n−σ(−α + βN). (2.189)

We perform, now, the change of variable:

n =
1

ε
, (2.190)

to jointly evaluate the effect of both ε and nσ. Indeed, we recover the original
problem P when we make ε→ 0 and nσ →∞.
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We can obtain a explicit value of tε from the expression (2.189):

tε = (−α + βN)
−1

α(1−p)ε−1/α
(

1

ε

) σ
α(1−p)

, (2.191)

such that the solution in (2.186) is a subsolution provided that:

t ≥ tε. (2.192)

It is particularly interesting to make the limit with ε → 0. In this case, we
have two cases to distinguish:

• Blow up case α > 0:

tε = (−α + βN)
−1

α(1−p) 1

ε
σ

α(1−p)+ 1
α

→∞. (2.193)

• Global solution case α < 0:

tε = (−α + βN)
1

|α|(1−p)ε
σ

|α|(1−p)+ 1
|α| → 0. (2.194)

The self-similar solution is a subsolution for t ≥ tε as it has been ob-
tained by approximating the reaction term by the function hε,n. Note that,
on one side, the blow up case represents a singularity as the self-similar es-
tructure blows-up in a finite time. On the other side, the self-similar solution
is a subsolution for any t ≥ tε in case a global solution exists.

Any solution to the problem Ps is, indeed, a subsolution to the problem
P as hε,n ≤ nσup. We can further assess this condition by letting y to be
a solution to the problem P and u a solution to the problem Ps, starting at
t = tε. For any τ > tε, we have:

y(x, τ) ≥ u(x, tε) x ∈ RN, (2.195)

for any t ≥ 0, we have:

y(x, τ + t) ≥ u(x, tε + t) x ∈ RN, (2.196)
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and in the limit with τ → 0:

y(x, t) ≥ u(x, t) x ∈ RN. (2.197)

Showing that u(x, t) solution of the problem Ps is indeed a subsolution to
the problem P .

Coming back to the expression (2.186): The precise evolution of the
global solutions is given by directly obtaining the evolution of the maximum
value in the function (2.186) for χ = 0. The intention is to have a growing
evolution starting at the positive A.

u(x, t) = A
1

m−1 t−α,

α = σ+2
σ(m−1)+2(p−1)

.

(2.198)

A value for A can be determined from the expression (2.188):

min
[
fp−1, εp−1tα(p−1)

]
≥ n−σ(−α + βN). (2.199)

To obtain A, we make χ = 0:

min

[
A
p−1
m−1 , εp−1tα(p−1)

]
≥ n−σ(−α + βN). (2.200)

Our solution departs from the point f(χ = 0), which is the minimum point
as the time evolves due to the increasing behaviour of the global solution
as per the expression (2.198) with α < 0. Therefore we can determine A
considering the following expression:

A
p−1
m−1 = n−σ(−α + βN), (2.201)

A = n
σ(m−1)

1−p (−α+βN)
m−1
p−1 = c(α, β,N,m, p)n

σ(m−1)
1−p . (2.202)
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Upon recovering of the independent variable |x|:

A(x) = c(α, β,N,m, p)|x|
σ(m−1)

1−p . (2.203)

Eventually, the minimum growing evolution of the point with f(χ = 0) is:

ym(x, t) = |x|
σ

1−p (−α + βN)
1
p−1 t−α. (2.204)

This last expression provides the proof of the first part of the enunciated
theorem considering that:

c1(x) = |x|
σ

1−p (−α + βN)
1
p−1 . (2.205)

Now, our intention is to determine the time evolution of the support of f(χ).
For this purpose, we firstly calculate the χ values determining such support
of f :

f(χ) = 0⇒ χ =
(
A
B

)(1/2)
,

χsupp = 1(
(m−1)β

2m

)1/2
c(1/2)(α, β,N,m, p)|x|

σ(m−1)
2(1−p)

= csupp|x|
σ(m−1)
2(1−p) .

(2.206)

We can easily determine the evolution of the self-similar solution support in
the (x, t) hiperspace:

|x|supp =
1

csupp
t

2(m−p)(1−p)
(σ(m−1)+2(p−1))2 . (2.207)

Coming back to the second bullet of the theorem enunciation, we can cal-
culate the value of c2(x) as:

c2(x) = csupp|x|
σ(m−1)
2(1−p) . (2.208)
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The theorem is, therefore, shown and the final results are as per the follow-
ing expressions:

• u(x0, t) ≥ c(α, β,N,m, p)|x0|
σ(m−1)

1−p (t − t0)−α for any t > t0
and

α =
σ + 2

σ(m− 1) + 2(p− 1)
. (2.209)

• u(x, t) > 0 for any t > t0 and

|x− x0| < csupp|x|
σ(m−1)
2(1−p) (t− t0)β, (2.210)

where

β =
m− p

σ(m− 1) + 2(p− 1)
. (2.211)

In addition, note that:

csupp =
(−α + βN)

m−1
2(p−1)(

(m−1)β
2m

)1/2
, (2.212)

and,

c(α, β,N,m, p) = (−α + βN)
m−1

2(p−1) (2.213)

Once we have shown the evolution of the solutions for the problem P
with compactly supported initial data, we proceed to enunciate the condi-
tions required for a unique solution. This is the purpose of the following
section.

2.6.3 Uniqueness

As already discussed, the non-Lipschitz reaction term induces non unique-
ness if the initial condition has compact support, as well as, if the initial
condition is null (u0 = 0). In Sections 2.6.1 and 2.6.2, we obtained two
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particular solutions, maximal and minimal, whose existence was shown in
Theorem 2.6.1. Both solutions were obtained under the condition that the
initial data is null, at least in a ball BR, and were of the form (note that for
the minimal solutions, we consider the trivial case):

um = 0,

uM = |x|σ/(1−p)(1− p)
1

1−p (t)1/(1−p).

(2.214)

Our objective is, now, to establish the required conditions, so that there ex-
ists only one solution to the problem P . Essentially, uniqueness of solutions
leads to consider only positive initial data:

u0 ≥ φ > 0, (2.215)

so that the reaction term, R(x, u) = |x|σup, is Lipschitz in the interval
[φ,∞). We remind that the existence of solutions for a reaction term of the
Lipschitz type has been already shown in Section 2.5. Thus, we enunciate
the following lemma:

Theorem 2.6.3.1. Let consider:

u0 ≥ φ > 0, (2.216)

and let consider that the reaction term is Lipschitz with constant:

p

φ1−p . (2.217)

Under these conditions, uniqueness of solutions holds in the interval given
by QT

Proof. The non-linear diffusion term is associated to a degenerate diffusivity
(D(u) = mum−1). In case of u→ 0, for example if φ→ 0, the degener-
acy does not lead to positivity, and thus, solutions cannot be classical locally
in time as u(x, t→ 0)→ 0.

We shall proceed with the definition of a weak solution, as per the ex-
pression (2.29), for a given test function ψ(x, t) ∈ C∞(QT ) with compact
support.
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Let consider the existence of two solutions u1(x, t) and u2(x, t). By
initial assumption, and without losing of generality, we consider that

u1 ≥ u2. (2.218)

Both solutions have the same initial positive data:

u1(x, 0) = u2(x, 0) = u0(x) ≥ φ > 0. (2.219)

By the definition of a weak solution, we mean:∫
RN

u1(t)ψ(t)dx =

∫
RN

u(0)ψ(0)dx

+

∫ t

0

∫
RN

[u1 ψt + um1 ∆ψ + |x|σup1 ψ]dxds,

(2.220)

∫
RN

u2(t)ψ(t)dx =

∫
RN

u(0)ψ(0)dx

+

∫ t

0

∫
RN

[u2 ψt + um2 ∆ψ + |x|σup2 ψ]dxds,

(2.221)

and making the substraction:∫
RN

(u1 − u2)(t)ψ(t)dx

=

∫ t

0

∫
RN

[(u1 − u2)ψt + (um1 − u
m
2 ) ∆ψ + |x|σ(u

p
1 − u

p
2)ψ]dxds.

(2.222)

Under the Lipschitz condition we have:

(u
p
1 − u

p
2) ≤ |up1 − u

p
2| ≤

p

φ1−p |u1 − u2|. (2.223)

Where the Lipschitz constant is obtained as:

Kl = pup−1 = p
1

u1−p ≤
p

φ1−p . (2.224)
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Analogously:

(um1 − u
m
2 ) ≤ mum−1

1 |u1 − u2| ≤ κm−1|u1 − u2|. (2.225)

Where:
κ = max

(x,t)∈QT
{u1}. (2.226)

We continue by considering a particular value for the test function, so that,
the involved integrals can be solved.

ψ(x, s) =
e−ls

(1 + |x|2)γ
. (2.227)

We notice that
ψ(x, t) ∈ C∞(QT ), (2.228)

and where γ is such that:

els
∫
RN
|x|σψ(x, s)dx <∞. (2.229)

Without impacting the ending conclusions and aiming the easiest way for-
ward during the proof, we require

els
∫
RN
|x|σψ(x, s)dx = 1. (2.230)

For this purpose, we shall impose the condition that the mass of the inte-
grand shall be null when |x| → ∞. This can be expressed considering that
for a R >> 1, the following is met:∫

|(|x|−R)|→∞
|x|σψ(x, s)dx = 0. (2.231)

Which is equivalent to say, in the asymptotic condition, |x| → ∞, that:

|x|−2γ |x|σ |x|N → 0. (2.232)
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Then:
−2γ + σ +N < 0,

γ > σ+N
2 > 0.

(2.233)

We define:∫
RN

ψ(x, s)dx = e−ls
∫
RN

1

(1 + |x|2)γ
dx = e−lsΨ(x), (2.234)

where Ψ(x) is the integral defined as:

Ψ(x) =

∫
(x∈RN)→∞

1

(1 + |β|2)γ
dβ, (2.235)

where
β ∈ RN. (2.236)

The integral (2.235) is finite in virtue of the condition for γ in the expression
(2.233) and the∞ for the vector x shall be understood in a component wise.

In the same way:∫
RN

∆ψ(x, s)dx ≤
∫
RN

K1(γ)ψ(x, s)dx = K1(γ)e−lsΨ(x).

(2.237)
Where K1(γ) is obtained as:

e−ls∆ψ = e−lsγ(γ + 1)4x2 1

(1 + |x|2)γ+2
− 2γ

1

(1 + |x|2)γ+1

≤ e−lsγ(γ + 1)4x2 1

(1 + |x|2)γ+2
.

(2.238)

In the limit with |x| → ∞:

e−lsγ(γ + 1)4x2 1

(1 + |x|2)γ+2
∼ e−ls

γ(γ + 1)4

(1 + |x|2)γ
1

|x|2

≤ e−ls
γ(γ + 1)4

(1 + |x|2)γ
= γ(γ + 1)4ψ(x).

(2.239)
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Then:
K1 = γ(γ + 1)4. (2.240)

The next step is to evaluate the involved integrals in the expression (2.222):

∫ t

0

∫
RN

(u1 − u2)ψtdxds =

∫ t

0

∫
RN
−l(u1 − u2)ψdxds

=

∫ t

0

∫
RN

l(u2 − u1)ψdxds

≤ l sup|u2 − u1|Ψ(x)

∫ t

0
e−lsds

= l sup|u2 − u1|Ψ(x)

(
1

l

)
(1− e−lt).

(2.241)

∫ t

0

∫
RN

(um1 − u
m
2 ) ∆ψdxds

≤ sup|u1 − u2|
∫ t

0
κm−1K1(γ)

∫
RN

ψ(x, s)dxds

= sup|u1 − u2|
∫ t

0
κm−1K1(γ)e−lsΨ(x)

= sup|u1 − u2|κm−1K1(γ)(1− e−lt).

(2.242)

∫ t

0

∫
RN
|x|σ(u

p
1 − u

p
2)ψ(x, s)dxds

≤ p

φ1−p sup|u1 − u2|
∫ t

0
e−ls

∫
RN

els|x|σψ(x, s)dxds

=
p

φ1−p sup|u1 − u2|(1− e−lt).

(2.243)

Compiling the assessments on the integrals in the expression (2.222), we
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have:∫
RN

(u1 − u2)(t)ψ(t)dx ≤ sup|u2 − u1|Ψ(x)(1− e−lt)

+ sup|u1 − u2|κm−1K1(γ)(1− e−lt)

+
p

φ1−p sup|u1 − u2|(1− e−lt).

(2.244)

For a given t > 0, let consider that for the two functions u1 and u2, we
determine the supremum of their difference. Then, if we require that:

sup|u1 − u2| → 0, (2.245)

and knowing that:
φ > 0,

|Ψ(x)| <∞.
(2.246)

We conclude: ∫
RN

(u1 − u2)(t)ψ(t)dx ≤ 0. (2.247)

The integral preserves the ordered monotony properties (p. 338 in [21]),
thus, we have

u1(t) ≤ u2(t). (2.248)

As we have initially assumed that

u1(t) ≥ u2(t), (2.249)

the only compatible result is to consider:

u1(t) = u2(t), (2.250)

showing, then, the uniqueness of solutions.

The following theorem aims to show the evolution of the unique solution.

Theorem 2.6.3.2. Let u be a solution to problem P , such that

u0(x) ∈ E0, (2.251)
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and ν ∈ R+ with:
u ≥ ν, (2.252)

for all 0 ≤ t < T . Then u coincides with the maximal solution to problem
P .

Proof. Firstly, we perform the usual truncation to the term |x|σ as follows:

|x|σε =

[
|x|σ for 0 ≤ x ≤ ε

εσ for x > ε

]
. (2.253)

If we consider v as the maximal solution to the problem Pε in 0 ≤ t < T
and x ∈ RN, we have that the following expression holds for every test
function φ ∈ C∞(QT ) with compact support in x:

0 ≤
∫
RN

(v − u)(t)φ(t)

=

∫ t

0

∫
RN

[(v − u)φt + (vm − um)∆φ+ |x|σε (vp − up)φ)]ds.

(2.254)

The bound of any solution to problem Pε is necessary during the proof of
the theorem to ensure the correct convergence of the integrals. For this
purpose, the truncation in (2.253) is used whenever the term |x| appears
during the involved integrals assessments.

0 ≤
∫
RN

(v − u)(t)φ(t)

≤
∫ t

0

∫
RN

[(v − u)φt + (vm − um)∆φ+ εσ(vp − up)φ)]ds.

(2.255)

To ensure the convergence of the integrals in (2.255), we require

φ ∈ C∞(QT ) ∩ L1(QT ). (2.256)

The following function will be of help during the integral assessment:

a(ε, s) =

[
v(ε,s)m−u(ε,s)m

v(ε,s)−u(ε,s)
for v 6≡ u

mvm−1 otherwise

]
. (2.257)
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Given two fixed values for ε and s = T , the last expression is bounded
satisfying that:

0 ≤ a(ε, s) ≤ c0(m, ‖u0‖∞, T ). (2.258)

We try the following test function:

φ(|x|, s) = ek(T−s)(1 + |x|2)−γ, (2.259)

for some constant k and γ.

The determination for γ is given by the condition related to the compact
support and integral convergence inRN. Indeed:∫
RN;|x|→∞

ek(T−s)(1 + |x|2)−γ|x|σdx

∼ ek(T−s)
∫
RN;|x|→∞

(|x|)−2γ+σdx ∼ ek(T−s)(|x|)−2γ+σxN → 0

(2.260)

when |x| → ∞.

The condition in (2.260) holds for

γ >
σ +N

2
. (2.261)

In addition, the test function satisfies the following expressions:

φt = −kφ,

∆|x|φ ≤ c1(γ,N)φ,
(2.262)

we have:
φt + a∆φ ≤ (−k + a(ε, s) c1(γ,N))φ. (2.263)

We are particularly interested in making:

φt + a∆φ ≤ 0, (2.264)

as it will be shown shortly.
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For this purpose, we can consider a k sufficiently large satisfying:

k > a(ε, s) c1(γ,N). (2.265)

In such a case, the inequality in (2.255) can be rewritten as:

0 ≤
∫
RN

(v − u)(t)φ(t)

≤
∫ t

0

∫
RN

[(v − u)φt + a(v − u)∆φ+ εσ(vp − up)φ)]ds,

(2.266)

and

0 ≤
∫
RN

(v − u)(t)φ(t)

≤
∫ t

0

∫
RN

[(v − u)[φt + a∆φ] + εσ(vp − up)φ)]ds.

(2.267)

Considering that:
φt + a∆φ ≤ 0, (2.268)

we have:

0 ≤
∫
RN

(v − u)(t)φ(t)

≤
∫ t

0

∫
RN

εσ(v(|x|ε, s)p − u(|x|ε, s)p)φ(|x|ε, s)ds.
(2.269)

The proof of Theorem 2.6.3.2 will succeed if we demonstrate that the right
hand side of the inequality in (2.269) is cero or tends to cero under certain
suitable conditions that involve making ε→∞.

Given a positive initial data, de Pablo and Vázquez showed in [31] that:

u(ε, s) = εσ/(1−p)(1− p)(1−p)(t)1/(1−p), (2.270)

is the minimum solution of the positive solutions. This expression is used to
perform the following truncation:

0 ≤ εσ(vp − up)(|x|ε, s) ≤ εσ
p(v − u)

u(1−p) ≤
p

1− p
v − u
s

. (2.271)
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Therefore, we can write:∫
RN

(v − u)(t)φ(t)

≤ p

1− p

∫ t

0

∫
RN

(v(|x|ε, s)− u(|x|ε, s))φ(|x|ε, s)s−1ds.

(2.272)

We define now the following function:

f(t) =

∫ t

ν

∫
RN

(v − u)φs−1ds, (2.273)

where ν → 0.

This ν can be considered as the one mentioned in the postulations of
the theorem, when we established u ≥ ν > 0, as it is a free parameter that
we can make positive and tending to cero. The derivative is as follows:

ḟ(t) = t−1
∫
RN

(v − u)(t)φ(t)dx; tḟ(t) =

∫
RN

(v − u)(t)φ(t)dx.

(2.274)
The inequality (2.272) can be expressed as:

tḟ(t) ≤ p

1− p
f(t) (2.275)

The ordinary differential equation in (2.275) has the solution:

f(t) = ctp/(1−p), (2.276)

for a constant c to be determined.

Given ε > 0 such that ν < t < T we have:

f(ν) = cνp/(1−p) → c =
f(ν)

νp/(1−p)
. (2.277)

Finally, the solution to (2.275) is:

f(t) ≤ f(ν)

(
t

ν

)p/(1−p)
. (2.278)
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In the limit t→ ν, we have f(t)→ 0 whenever f(ν)→ 0. Therefore, our
problem has resulted in the searching of a suitable function, such that

f(ν)→ 0, (2.279)

whenever t→ ν.

In order to find the suitable f(ν), we can arrange the inequality (2.272)
aiming to obtain another upper estimation that after comparison with the
expression in (2.278), will support the finding of that suitable f(ν).∫

RN
(v − u)(t)φ(t) ≤

∫ t

0

∫
RN

(vp − up)(τ)φ(τ)εσdxdτ

≤
∫ t

0

(∫
RN

φ(τ)εσdx

)1−p (∫
RN

(v − u)φ(τ)εσdx

)p
dτ.

(2.280)

Note that the integral: ∫
RN

φ(τ)εσdx, (2.281)

is bounded inRN:∫ t

0

(∫
RN

φ(τ)εσdx

)1−p
≤ c(t→ T ). (2.282)

And the inequality in (2.280) is expressed as:∫
RN

(v − u)(t)φ(t) ≤
∫ t

0

∫
RN

(vp − up)(τ)φ(τ)εσdxdτ

≤ c(T )

∫ t

0

(∫
RN

(v − u)φ(τ)εσdx

)p
dτ.

(2.283)

We have obtained two upper estimates for every 0 ≤ s = τ ≤ T and
x ∈ RN in (2.272) and (2.283). Making both of them coincide and obtaining
the value for the integrand v − u we arrive at:∫

RN
(v − u)(s)φ(s)dx =

(
c(T )

1− p
p

τ

)1/(1−p)
ε
σp

1−p . (2.284)

And now considering any of the two upper bounds (in this case (2.272)) we

160



2.6 The non-Lipschitz problem Non-linear reaction and diffusion.

have:

p

1− p

∫ t

0

(
c(T )

1− p
p

τ

)1/(1−p)
ε
σp

1−p τ−1dτ. (2.285)

The integral in (2.285) can be solved considering that after integration the
|x| variable is introduced within the truncation in (2.253) to obtain:

p

1− p

∫ t

0

(
c(T )

1− p
p

τ

)1/(1−p)
ε
σp

1−p τ−1dτ = c(T, p, σ)ε
pσ

1−p t
1

1−p .

(2.286)
Now we approximate t → ν → 0 and ε → ∞. To simplify the balance
between both conflicting parts of the integral, we consider

ε =
1

νa
, (2.287)

for any a > 0 ∈ R to be chosen. Hence, the expression (2.286) can be
reformulated in terms of ν only:

c(T, p, σ)ε
pσ

1−p t
1

1−p = c(T, p, σ)

(
1

νa

) pσ
1−p

ν
1

1−p , (2.288)

for

a <
1

pσ
. (2.289)

and making ν → 0, we finally arrive at:∫
RN

(v − u)(t)φ(t) ≤ c(T, p, σ)

(
1

νa

) pσ
1−p

ν
1

1−p → 0. (2.290)

In virtue of the expression in (2.290), we ensure, hence, that u ≡ v in QT
for any T > 0.

We can use the conclusions of this theorem to show, a priori, the unique-
ness of positive solutions considering the initial data positive as well. if in
a certain time τ , the solution is positive then the solution will be unique for
any t ≥ τ .

161



2.6 The non-Lipschitz problem Non-linear reaction and diffusion.

2.6.4 Comparison of solutions

The PME implies a degenerate diffusivity. This means that whenever u →
0, the diffusivity tends to cero as well; additionally, the reaction term is not
Lipschitz when u→ 0. Therefore, we cannot make use of monotone prop-
erties of the forcing terms to compare solutions as we did in Section 1.3 for
the coupled system. Indeed:

• PME: ∆um = ∇ · (mum−1∇u) where D(u) = m|u|m−1, with
m > 1.

• HE: ∆u = ∇ · (∇u) where D(u) = 1.

If u → 0, the PME defines the divergence of an infinitesimal function,
D(u), whose derivatives may not be classically defined. Thus, we have to
refer to the weak solution definition (2.29) for showing a comparison theo-
rem:

Theorem 2.6.4.1. Let u and v be two solutions to the problem P in QT ,
such that 0 < u0 ≤ v0 in RN and u0, v0 ∈ E0, then the following
comparison principle holds:

0 < u ≤ v in QT (2.291)

Proof. The proof of this theorem starts by considering the definition of a
weak solution as per the equation (2.29) for 0 ≤ τ < t < T :∫

RN
u(t)φ(t)dx =

∫
RN

u0(τ)φ(τ)dx

+

∫ t

τ

∫
RN

[(u)φt + (um) ∆φ+ |x|σ up φ]dxds.

(2.292)

∫
RN

v(t)φ(t)dx =

∫
RN

v0(τ)φ(τ)dx

+

∫ t

τ

∫
RN

[(v)φt + (vm) ∆φ+ |x|σ vp φ]dxds,

(2.293)
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where u0(τ) and v0(τ) represent the time translation in τ units of the initial
data u0 and v0

After performing the substraction, we have:∫
RN

(u− v)(t)φ(t)dx =

∫
RN

(u0 − v0)(τ)φ(τ)dx

+

∫ t

τ

∫
RN

[(u− v)φt + (um − vm) ∆φ+ |x|σ (up − vp)φ]dxds,

(2.294)

for every test function φ ∈ C∞(QT ) with compact support.

Note that the functions up, vp, in the reaction term, are Lipschitz, as we
assume that both will be always positive to derive the comparison statement.

Our next intention is to assess each of the integrals involved in the ex-
pression (2.294), making use of the norm defined in (2.84) and using the
same test function structure than in (2.227), but probably with a different
exponent γ, namely:

φ(x, s) =
e−ls

(1 + |x|2)γ
. (2.295)

Then, the evaluation of the first integral in the right hand side of (2.294)
reads: ∫

RN
(u0 − v0)(τ)φ(τ)dx ≤ ‖u0 − v0‖∗ · ‖φ‖∗, (2.296)

where:

‖φ‖∗ = lim
R→∞

R−N−aσ
∫
RN
|φ(x)| dx

∼ |x|−N−aσ
∫
RN

e−ls

(1 + |x|2)γ
dx.

(2.297)

In this last expression, we evaluate the integral asymptotically when

|x| → ∞, (2.298)
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and γ is selected so that:

|x|−N−aσ
∫
RN; |x|→∞

dx

(1 + |x|2)γ
= 0. (2.299)

For this purpose:
|x|−N−aσ |x|−2γ|x|N = 0, (2.300)

when |x| → ∞.

This condition implies that:

−N − aσ − 2γ +N < 0, (2.301)

for which it suffices to consider:

γ > −aσ
2
, (2.302)

where aσ > 0 as shown in (2.85).

With the intention of preserving the decreasing behaviour with |x| of the
test function (2.295), we can, then, simply require that:

γ > 0, (2.303)

so that this condition satisfies (2.302) as well.

As the function φ(x) is monotone decreasing with |x|, we can ensure
that the maximum value of φ corresponds to |x| = 0:

max
x∈RN

φ(x, s) = e−ls. (2.304)

And returning to the integral (2.296):∫
RN

(u0 − v0)(τ)φ(τ)dx ≤ ‖u0 − v0‖∗ · ‖φ‖∗

= ‖u0 − v0‖∗ lim
R→∞

R−N−aσ
∫
RN
|φ(x)| dx

≤ ‖u0 − v0‖∗ lim
R→∞

R−N−aσ max|φ(x)|RN

= ‖u0 − v0‖∗ e−lτ lim
R→∞

R−aσ ,

(2.305)
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where aσ > 0.

We continue by assessing the rest of the integrals involved on the right
hand side of (2.294):∫ t

τ

∫
RN

[(u− v)φtdxds =

∫ t

τ

∫
RN

(u− v) (−l)φ

≤
∫ t

τ
|−l|‖u− v‖∗ · ‖φ‖∗ds

≤ ‖u− v‖∗(e−lτ − e−lt) lim
R→∞

R−aσ .

(2.306)

Let continue, now, with the integral associated to the diffusion term for which
we make use of the already known calculation in (2.242):∫ t

τ

∫
RN

(um − vm) ∆φ ≤
∫ t

τ
κm−1‖u− v‖∗K1(γ)‖φ‖∗ds

≤
∫ t

τ
κm−1‖u− v‖∗K1(γ)e−lsds lim

R→∞
R−aσ

= κm−1‖u− v‖∗K1(γ)
1

l
(e−lτ − e−lt) lim

R→∞
R−aσ .

(2.307)

Before proceeding with the assessment of the integral related to the reaction
term, we firstly show the convergence of the integrals involved in RN , for
which we make |x| → ∞. Indeed, we have:∫

RN
|x|σφ(x)dx ≤ ‖φ‖∗

∫
RN
|x|σdx

= lim
R→∞

R−N−aσ
∫
RN
|φ(x)| dx

∫
RN
|x|σdx

∼ lim
R→∞

R−N−aσe−ls
∫
RN
|x|−2γdx

∫
RN
|x|σdx

∼ e−ls
1

σ + 1

1

(−2γ + 1)
lim
R→∞

R−N−aσR−2γ+1Rσ+1.

(2.308)

Therefore, we require γ to satisfy the following inequality to ensure the con-
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vergence of the integral:

−N − aσ + σ + 2− 2γ < 0, (2.309)

so that,

γ >
−N − aσ + σ + 2

2
. (2.310)

In order to have a single value of γ considering the expressions (2.302) and
(2.310), we use the following condition:

γ > max

{
−N − aσ + σ + 2

2
, −aσ

2
, 0

}
. (2.311)

We are in a position, now, to determine the integral related to the reaction
term, for which we make use of the definition for the Lipschitz constant pro-
vided in (2.224)∫ t

τ

∫
RN

(up − vp)φdxds ≤ Kl

∫ t

τ
‖u− v‖∗

∫
RN
|x|σφds

≤ Kl‖u− v‖∗
1

σ + 1

1

(−2γ + 1)
lim
R→∞

R−N−aσR−2γ+1Rσ+1∫ t

τ
e−lsds

≤ Kl‖u− v‖∗
1

l

1

σ + 1

1

|−2γ + 1|
lim
R→∞

R−N−aσR−2γ+1Rσ+1

(e−lτ − e−lt)
(2.312)
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Finally, and after compilation of the assessments, we have:∫
RN

(u− v)(t)φ(t)dx

≤ ‖u0 − v0‖∗ e−lτ lim
R→∞

R−aσ

+ ‖u− v‖∗ (e−lτ − e−lt) lim
R→∞

R−aσ

+ κm−1‖u− v‖∗K1(γ)
1

l
(e−lτ − e−lt) lim

R→∞
R−aσ

+Kl‖u− v‖∗
1

l

1

σ + 1

1

|−2γ + 1|
lim
R→∞

R−N−aσR−2γ+1Rσ+1

(e−lτ − e−lt).
(2.313)

Note that:
lim
R→∞

R−aσ = 0, (2.314)

lim
R→∞

R−N−aσR−2γ+1Rσ+1 = 0. (2.315)

Where γ is as per expression (2.311).

In terms of the time variable, If we consider that τ →∞, we have:

τ →∞ < s < t, (2.316)

Then:
s , t→∞. (2.317)

Under this condition for the time variables, we have:∫
RN

(u− v)(t)φ(t)dx ≤ 0. (2.318)

We obtain, then:
u(t) ≤ v(t), t→∞. (2.319)

Note that we have started in the assumption of 0 < u0 ≤ v0 and we have
obtained that, when the time progresses to infinity, the same order condition
is met as expressed by (2.319).

We have shown that given a solution with positive initial data, the solu-
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tion is unique (see Theorem 2.6.3.1). Therefore, the solutions u and v keeps
the monotone behaviour between them, without intersecting during the evo-
lution. Thus, we can conclude that the ordered properties expressed at the
initial conditions and at infinite time in (2.319), together with the uniqueness
of solutions, permits to write that:

u(t) ≤ v(t), t > 0, in QT (2.320)
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2.7 Finite Propagation

The finite propagation is a well known property of the PME equation [33]
(see the discussion in Section 2.1). Our intention, now, is to show that finite
propagation holds. This is remarkable for the case when the diffusion is
relevant compared to reaction, nonetheless, it will appear, in a less extent,
when reaction predominates over diffusion due to the introduction of the
PME operator.

The following theorem is shown in [31] for a PME equation with a reac-
tion term not a function of the independent variable |x|. Alternatively, in this
work, it is shown for a more general reaction term depending on |x|. Addi-
tionally, we introduce certain improvements in the proof compared to that in
[31] for a wider generality.

Theorem 2.7.1. For the case when the diffusion is important, i.e.:

mσ + 2(1− σ)p+ σ ≥ 2, (2.321)

with
u0(x) ∈ L1(RN) ∩ L∞(RN), (2.322)

and
u0 ≡ 0, (2.323)

in some ball B(x0, R). Then, any minimal solution to the problem P satis-
fies:

u(x, t) ≡ 0 for some ball B
(
x0,

R
2n

)
for any n ∈ N+ and t between

0 < t < τ (τ sufficiently small)

Proof. For simplicity, we make x0 = 0 and R = 1. The proof of the
theorem relies upon finding a local supersolution whose behaviour in the
selected ball determines the local behaviour of the postulated minimal solu-
tion.

Firstly, we define the following change of variable to work with the pres-
sure term:

v =
m

m− 1
um−1. (2.324)
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So that:

ut =

(
m− 1

m

) 1
m−1

v
2−m
m−1 vt, (2.325)

∆um =

(
m− 1

m

) 1
m−1

(
v

2−m
m−1 |∇v|2 + v

1
m−1∆v

)
. (2.326)

Upon substitution, the problem P is, then, transformed into:

vt = (m− 1)v∆v + |∇v|2 + µ|x|σvδ, (2.327)

δ = p+m−2
m−1 ,

µ = m
(
m−1
m

)δ
.

(2.328)

When v → 0, the laplacian term in equation (2.327) vanishes leading to a
first order spatial equation:

vt ∼ |∇v|2 + µ|x|σvδ. (2.329)

This equation is of the first order type that propagates along characteristics.
Therefore, in the search of potential solutions, we will search for linear dis-
tributions involving the time and spatial variables, i.e. solutions of the form:

v(x, t) = g(x+ ct), (2.330)

where g is a suitable function and c is the propagation speed along charac-
teristics.

The intention now is to find a suitable maximal solution for the equation
(2.327) in the assumption that diffusion is relevant, solutions will not blow-
up and will preserve the bound condition given at the initial data. A formal
proof of this statement is out of the scope of this section, nonetheless, the
bound condition of the PME operator, when starting with bound initial data,
has been shown in Lemma 3.3 of [33].
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we consider the following function in the search of a maximal solution:

w(x, t) = a
(
ct+ r − 1

n

)
+
,

r = |x|; n ∈ N.
(2.331)

Both a and c > 0 are constants to be determined. In particular, given
0 ≤ τ ≤ 1, we can impose:

cτ =
1

2n
, (2.332)

Where c shall be determined.

Under this condition, we have:

w(x, t) ≡ 0 for r <
1

2n
and 0 ≤ t ≤ τ. (2.333)

It is clear that any solution to the equation (2.327) is bounded for

0 ≤ t ≤ τ, (2.334)

because u0 is bounded according to the theorem condition

u0(x) ∈ L1(RN) ∩ L∞(RN), (2.335)

and the diffusion is relevant compared to reaction. Then, we have:

v(x, t) ≤ K for x ∈ RN 0 ≤ t ≤ τ and K(σ, p, ‖u0‖∞). (2.336)

Our intention is to make w(x, t) as a maximal solution:

w(x, t) ≥ v(x, t), (2.337)

a

(
ct+ r − 1

n

)
+
≥ K. (2.338)

We can select any r > 1
n , for example we establish:

r =
2

n
. (2.339)
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Thus, for t = 0 we have:

a

(
2

n
− 1

n

)
+
≥ K, (2.340)

a ≥ nK. (2.341)

We have built a supersolution, such that:

w(x, t) ≥ v(x, t), (2.342)

in r = 2
n and 0 ≤ t ≤ τ . Once we have established a suitable condition

for the constant a, the next intention is to precise another criteria for c. The
value of c shall be chosen in such a way that w(x, t) is a supersolution not
only for:

r =
2

n
, (2.343)

but for the range:

0 < r <
2

n
, (2.344)

and in the time interval:
0 ≤ t ≤ τ. (2.345)

w(x, t) is a supersolution if it satisfies:

wt ≥ (m− 1)w∆w + |∇w|2 + µ|x|σwδ, (2.346)

and considering that:

wt = ac; wr = a; wrr = 0, (2.347)

the following value for c is obtained:

c ≥ a+ µ

(
2

n

)σ
aδ−1

(
cτ +

1

n

)δ
. (2.348)

For the values of a and c derived in expressions (2.341) and (2.348) respec-
tively, the function w(x, t) is a supersolution locally:

w(x, t) ≥ u(x, t), (2.349)
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for

0 < |x| < 2

n
, (2.350)

and
0 ≤ t ≤ τ. (2.351)

This inequality (2.349) permits to conclude on the proof of the theorem,
as any maximal local solution satisfies the null criteria in a region of the
selected ball. By direct argument, any minimal solution u(x, t) satisfies the
theorem postulations.
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3 Conclusions and future lines of research

The main objectives outlined in the Introduction section of this thesis have
been fulfilled in accordance with the development and resolution of each
of the problems described in Sections 1.1 and 2.1. We remark that our
top level aim, consisting on following a process to solve a problem coming
from the specialty areas in biomedical and aerospace engineering, has been
achieved. Each selected problematic has been modelled making use of the
physical laws. Afterwards, each of the problems has been solved thanks
to relevant advances in Partial Differential Equations. Once each problem
has been solved, the different parameters involved in the solutions have
been determined by testing activities, particularly related to fire prevention in
aircrafts fuel tanks and fire extinguishing in engine nacelles (Annex II). The
results obtained, after the mathematical analysis, have been shown to be
accurate enough to support the physics concept phase related to any design
process in the engineering fields scoping this thesis, i.e. fire prevention
and extinguishing in aircrafts and biological predator-prey (invasive-invaded)
models.

We remark that each of the problems solved are of reaction and diffu-
sion type. The diffusion has been considered as the classical linear for the
problem in Section 1.1 and non-linear for the problem in Section 2.1. Addi-
tionally and in both cases, the reaction considered is of non-lipschtiz which
brought some novel discussions to ensure the existence and uniqueness of
solutions for each diffusion operator. For both cases, solutions have been
obtained and, as discussed, such solutions have been deemed as precise
due to the mathematical treatment related to the searching of exact solu-
tions and to the real engineering applications in which such solutions have
been applied (Annex II).

The mathematical work developed in this thesis has been in line with
the current advances in Partial Differential Equations. Beyond this, we can
stress some future researching lines: In relation to the first problem de-
scribed in Section 1.1, the considered diffusion has been as the classical
linear obtained after the application of the basic Fick law (Section 1.1). This
fact is an approximation to a well-proven diffusion, as most of the physical
and engineering models formulated with diffusion principles are based on
the Fick law. Nonetheless, further aspects about diffusion can be postu-
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lated by the introduction of a non-linear concept, for instance of the PME
type. This kind of diffusion would allow us to explore the possibility of having
a diffusive front with finite propagating speed. In such case, the problem
described in 1.1 would adopt the following form:

ut = δ∆ud + c · ∇u+ vn,

vt = ε∆vd + c · ∇v − um,

n,m ∈ (0, 1),

d > 1,

u0(x), v0(x) ∈ L1
loc(R

N) ∩ L∞(RN).

(3.1)

And for the problem solved making use of a TW approach, the formulation
with a PME would lead to:

ut = δ∆ud + c · ∇u− vn(u− d),

vt = ε∆vd + c · ∇v − umv,

n,m ∈ (0, 1),

d > 1,

u0(x), v0(x) ∈ L1
loc(R

N) ∩ L∞(RN).

(3.2)

Additionally, further related problems can be formulated in light of a high
order diffusion. High order diffusion involves high order spatial derivatives,
so that the operator adopts the following form:

ut = −(−∆m)u. (3.3)

where m ∈ N represents the derivative index. In case of m = 1, we re-
cover the classical heat equation. In case ofm = 2, the involved derivatives
are of the fourth order.

High order diffusion appears in areas such as lubrication theory, flame
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propagation, phase transition and bistable systems [47].

For our case, we can consider that the diffusion involves spatial deriva-
tives of fourth order:

ut = −δ∆2u+ c · ∇u+ vn,

vt = −ε∆2v + c · ∇v − um,

n,m ∈ (0, 1),

u0(x), v0(x) ∈ L1
loc(R

N) ∩ L∞(RN).

(3.4)

And for the problem solved with TW solutions:

ut = −δ∆2u+ c · ∇u− vn(u− d),

vt = −ε∆2v + c · ∇v − umv,

n,m ∈ (0, 1),

u0(x), v0(x) ∈ L1
loc(R

N) ∩ L∞(RN).

(3.5)

where

∆2 =
∂4

∂x4
. (3.6)

The minus sign in the bi-laplacian term (−δ∆2 and−ε∆2) is set to account
for a regular asymptotic stable equation.

For the case of dealing with the high order operator, we would like to
introduce some relevant aspects in the spirit of providing a background to
guide future works:

The Fisher-Kolmogorov equation was proposed to study the interaction
of different populations in a biological environment. Initially, the Fisher-
Kolmogorov equation was of a second order type with classical diffusion,
and the regularity of the gaussian kernel was intended to provide accurate
model results. The equation is of the form:

ut = ∆u+ u− u3. (3.7)
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The predictions resulting from the Fisher-Kolmogorov equation have been
questioned. In particular, physicians have observed an onset of instabili-
ties near degenerate points given by the Fisher-Kolmogorov equation [43].
This fact led to a reformulation ending in the extended Fisher Kolmogorov
equation (3.8). In addition, other authors proposed the Extended Fisher-
Kolmogorov equation to model the behaviour of bi-stable systems, which
can be defined as those systems with only two uniform states and a solution
travelling between stable solutions, either forming a heteroclinic or homoclin-
inc orbit [45]. Peletier and Troy [44], on one hand, and Bonheure [46] in the
other hand, showed the existence of oscillatory spatial patterns for the Ex-
tended Fisher-Kolmogorov equation. Additionally, they exhibited examples
of oscillating heteroclinic (the authors also called it kinks) and homoclinic
orbits (pulses) in the spatial domain. In any of the examples mentioned, the
instabilities were found to be permanent oscillations, leading to think that
there shall be evolution flows hidden by the regularity of the second order
diffusion. The studied problem was of the form:

ut = −γ∆2u+ ∆u+ u− u3, (3.8)

where
γ << 1. (3.9)

In the classical sense, the Extended Fisher-Kolmogorov equation requires
solutions to have continuous derivatives up to the fourth order. One can
think, very preliminary, that oscillation functions (such as sine, cosine or a
combination of both) may have potential to constitute solutions that will ex-
plain the permanent instabilities that the Extended Fisher-Kolmogorov equa-
tion aims to characterize. On top of the work by Peletier and Troy [44],
Rottschäfer and Doelman [43] showed the nature of the oscillations making
use of a development in the exponential bundles of solutions.

In relation to the PME problem discussed in Section 2.1, a future re-
searching line would consist on adding a convective term, so that the prob-
lem would adopt the following form:

ut = ∆um + c · ∇u+ |x|σup, (3.10)

where:
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m > 1 , σ > 0 , p < 1, c ∈ RN .

The fact of adding a convective term would not affect, a priori, the exis-
tence and uniqueness of solutions already discussed in Section 2.6. Nonethe-
less, it would modify substantially the structure of the solutions obtained in
Section 2.6.

Another aspect for future discussions would consist on adding a higher
order-PME diffusion of the form:

ut = −∆2um + |x|σup, (3.11)

where:

m > 1 , σ > 0 , p < 1.

In this case, we shall assess the finite propagation features in combi-
nation with the natural oscillations brought by the bi-laplacian term in the
proximity of the null solution. We postulate that finite propagation features
will be kept and that the speed of propagation in the support (in the sense
of Figure 2.3 where the propagating support shifts the solution from null to
positivity) would be lower as a positivity principle cannot hold when dealing
with high order operators.
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4 Some Useful Definitions

The following terms are deemed as useful for the reader:

Convection: The convection refers to the general motion of a fluid. It
encompasses the diffusion and the forced flow due to external agents such
as media flow, boundary layer flow or buoyant flow.

Diffusion: In fluid motion, the diffusion refers to the random flow due to
the differences of concentrations in the media. The flowing particles go from
the zones with higher concentration to the zones with lower concentration.

Finite Speed of Propagation: This definition is based on the information
provided in Chapter 1.2 of [33]. The finite propagation refers to the speed of
the moving front constituting the Porous Medium Equation. The finite prop-
agation supports the physical soundness of the Porous Medium Equation to
model diffusion or heat propagation. The property of finite propagation im-
plies the appearance of a free boundary, that separates the regions where
the solution is positive, from the empty regions, where u = 0

Finite time blow-up: This definition is based on the information in [40].
When a solution to an initial value problem reaches infinity in finite time, the
solution is said to blow up. That is, if P (t) is a solution to the problem:

dP

dt
= f(t, P ), (4.1)

with initial condition:
P (t0) = P0. (4.2)

then, the solution blows-up in finite time if:

lim
t→T−

P (t) = +∞. (4.3)

In Latin languages, the term blow-up is usually referred as explosion.

Kernel: The Kernel of a partial differential equation refers to the funda-
mental solution given in the integration domain. The Kernel permits to study
the main features of the under-study equation.

Lipschitz function: The Lipschitz condition represents the regularity
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of a function. It is relevant when studying the uniqueness of differential
equations, that in general, can be shown by calling to the Lipschitz condition.

Porous Medium Equation: The PME is a way to model diffusion when
speed of propagation is expected in our area of study. It is usually referred
as the Darcy‘s law, and was firstly derived for flows in porous media.

We can derive the PME by departing from the flow of gas in a porous
medium:

ρt +∇ · (ρv) = 0, (4.4)

where ρ is the gas density and v is the flow speed expressed as:

v = −∇p, (4.5)

where p reflects the pressure of the gas.

If we consider the isentropic evolution to relate the pressure and density
of a gas, we have:

p = p0ρ
γ, (4.6)

where γ is the isotropic coefficient.

Coming back to equation (4.4):

ρt = ∇ · (ρ∇p) = ∇ · (ρ∇(p0ρ
γ)) = c∆ργ+1,

ρt = c∆ργ+1.

(4.7)

Considering an isothermal expansion:

γ = 1, (4.8)

then, we have:
ρt = ∆ρm, (4.9)

for m = 2.

Self-similar Profile: This definition is based on the information provided
in the introduction of [41]. Selfsimilarity results when the symmetry of a
physical problem leads to a reduction in the number of the independent
variables. In this way a considerable simplification is achieved, that fre-
quently al1ows the analytical treatment of the problem. This simplification
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usually transforms a partial differential problem into an ordinary differential
one. The self-similar behavior appears in the intermediate asymptotics of
phenomena, when certain details of the initial or boundary conditions are
no longer relevant, so that the corresponding parameters can be ignored.

Travelling Wave: This definition is based on the information provided
in Chapter 2 of [42]. A travelling wave is a wave that advances in a par-
ticular direction, with the addition of retaining a fixed shape. Moreover, a
travelling wave is associated to having a constant velocity throughout its
course of propagation. Such waves are observed in many areas of science,
like in combustion, which may occur as a result of a chemical reaction. In
mathematical biology, the impulses that are apparent in nerve fibres are
represented as travelling waves.
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Annex I

This annex contains the Matlab codes (ODE45 Modulus) used to deter-
mine the solutions represented form Figure 1.2 to Figure 1.7:
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1 
 

function CRD 

     

    xinit = linspace (0, 60, 10000); 

    options = bvpset('RelTol', 10^(-6), 'Abstol', 10^(-6), 'Nmax', 

10000, 'Stats', 'off'); 

    solinit = bvpinit (xinit, @fguess); 

    sol = bvp4c(@dEqs, @res, solinit, options); 

    f = deval(sol, xinit); 

    plot(xinit,f(1,:), xinit,f(3,:), xinit,f(5,:), xinit,f(7,:)) 

    xlim([1 1.5]) 

    ylim([1.98 2]) 

    xlabel('xi') % Etiqueta el eje horizontal 

    ylabel('f_1, f_2, f_1m, f_2m') % Etiqueta el eje vertical 

    legend('f_1=u', 'f_2=v', 'f_1m', 'f_2m') % Pone una leyenda 

 

function F = dEqs( x, f ) 

%Differential equationsco 

 

F = [f(2); -4*f(2)-(2-f(1))*f(3)^(0.2); f(4); -

4*f(4)+f(3)*f(1)^(0.9); f(6); -4*f(6)-(2-f(5))*f(7); f(8); -

4*f(8)+f(7)*2^(0.9)]; 

 

function r = res( fa, fb ) 

r = [fa(1)-1; fa(3)-1; fb(1)-2; fb(3); fa(5)-1; fa(7)-1; fb(5)-2; 

fb(7)]; 

 

function finit = fguess (x) 

 

finit = [heaviside(-x);0; heaviside(-x); 0; heaviside(-x);0; 

heaviside(-x); 0] 
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Annex II

This annex contains the industrial applications of the solutions in this
thesis with the collaboration of Airbus Group.
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Scope of this memory 

 

The use of mathematical models to optimize the design in engineering for, both products and 

processes, has been one of the most active motivation for advances in mathematics. 
 

The engineering models for product design rely on the basis of the physical laws [12]. Any 

model, aiming to describe the sort of reality we pretend to characterize, shall be based on the 

universal laws of physics. This fact provides the confident for a solid problem understanding, 

since its formulation to the resolution path. 
 

Even when the physical laws are universal, any set of equations, describing an engineering 

design process or product; shall contain a certain number of parameters. The parameters are 

the key for applying the abstract vision of a problem to a particular situation we aim to 

understand. 
 

The process followed in this memory consists on modelling within the scope of the Partial 

Differential Equation (PDE) theory. The resulting PDEs are based on the physics and the 

engineering based experience. The set of equations is solved analytically making use of 

advanced PDE techniques originally developed for the thesis [2]. Finally, the model parameters 

are calibrated with data coming from real processes to derive the set of solutions of analytical 

interest that involves the physics behind. 
 

This memory is formed of two different parts in line with the results in [2]. The first part is 

devoted to the calibration of the reaction-diffusion coupled system (Section 1 in [2]) for an 

application related with the Aircraft inerting system. The second part is focused on calibrating 

the Porous Medium Equation model (Section 2 in [2]) for modelling an aircraft engine fire 

extinguishing process. 
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I. 1. Background 

 
On July 17, 1996, the Flight 800 of the Trans World Airlines (TWA) carried out by a Boeing 747- 

131, crashed in the Atlantic Ocean when approaching New York, having departure from Paris. 

The accident involved a high number of passenger’s deaths and injuries. 
 

The US National Transportation Safety Board determined that the most probable cause of the 

TWA flight 800 accident was an explosion in the Center Wing Tank that was empty of fuel, but 

full of fuel vapors in combination with air and a potential instant spark. The fuel vapor/air 

mixture could ignite provided enough ignition energy is given either by external or internal 

heating components or internal sparks generated by in-tank components. 
 

Figure 1a. Fuselage status after the accident and accident computational simulation. Both pictures are extracted 

from [11]. 

 

The Fuel Centre Wing Tank on a Boeing 747-131 is located aft of the forward cargo 

compartment and forward of the main landing gear bay in the lower fuselage. The Centre  

Wing Tank is below the main cabin floor and the dimensions are about 6,5 m wide and 6 m 

long and the height varies from about 1,37m to 1,82 m (see the next figure extracted from [1]). 
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Figure 1b. Cross-section of the Boeing 747-100 Wing center section 
 
 

 
During the accident investigation [1], it was concluded that one of the most probable root 

causes, explaining the accident, was related with the proximity of the heat generated by the  

air conditioning packs to the Centre Wing Tank. In the following figure, the relative position of 

both components is provided: 
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Figure 2. Top and side view of the Centre Wing Tank and Air Conditioning packs. 
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I. 2. Introduction 

 
As a result of the investigation on the TWA 800 flight accident [1], several design solutions 

were defined to avoid a similar event. One of these solutions, precluded in [11] and referred as 

inerting system, was envisaged to provide means for removing the oxygen presented in the 

Centre Tank ullage. 
 

The Inerting System is installed to reduce the probability of Fuel Tank fires and explosions 

should any heat or spark sources are given. In addition, and in military applications, the 

Inerting System is used to reduce the probability of explosions should the aircraft suffers battle 

damage (such us impact/structural penetration from bullets, or other high energy shrapnel). 
 

The inert condition, within the considered tank, is achieved by using a chemically unreactive 

gas, i.e. nitrogen, to reduce the oxygen concentration. As a piece of example, the oxygen level 

of an atmosphere considered inert for military applications is <9% by volume, while for civil 

applications; the maximum level of oxygen concentration is reduced to <7% by volume. 
 

The component within the Inerting system, that facilitates the separation of the oxygen and 

nitrogen, is a component known as Air Separation Module (ASM). An ASM consists of a 

canister that houses hollow semi-permeable fibers sealed in place at each end with an epoxy. 

The ASM contains an inlet chamber, nitrogen outlet chamber, and an oxygen exhaust chamber. 

Pressurized air is ported from the inlet duct to the inlet chamber where it is directed into 

thousands of very small diameter hollow fibres. The inlet air is, then, separated by the fiber 

membrane; the oxygen passes through the fiber wall radially, and is exhausted outboard. The 

nitrogen flow continues through the fiber membranes axially and exists the ASM (see the 

following figure) toward a pipe network ending in the fuel tank. 
 

 

Figure 3. Air Separation Module representation. 
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I. 3. Justification 

 
This document provides a new baseline modelization exercise, based on an original work [2], 

aiming to get further views, simplification and accuracy on the tank inerting process. 

The phenomena under study is related with the interaction between substances, i.e. the 

Oxygen and the Nitrogen, so that, an inert gas ullage is obtained to avoid tank fires and 

explosions. 
 

A simple model to determine the oxygen quantity in the fuel tank, when subjected to variable 

flight conditions and system performance schedules is provided in [1]. The model is one- 

dimensional and based on a discrete and algebraic mass balance for each time step  

considering the oxygen mass quantity going in and out the tank and the changing pressure and 

temperature in the ullage due to the variable flight conditions: 

𝒎𝑶𝟐(𝒕) = 𝒎𝑶𝟐(𝒕 − 𝟏) + 𝒎  ∙ 𝑰𝑮𝑶𝑭 − 𝒎  ∙ 𝑼𝑮𝑶𝑭(𝒕 − 𝟏) − (∆𝝆 ∙ 𝑽𝒕𝒂𝒏𝒌) ∙ 𝑼𝑮𝑶𝑭(𝒕 − 𝟏) + (∆𝝆 ∙ 𝑽𝒕𝒂𝒏𝒌) ∙ 𝟎. 𝟐𝟏. 
(Eq. 1) 

 

Where: 
 

UGOF(t-1) is the fraction of oxygen in the ullage gas. It is calculated by dividing the mass of 

oxygen in the tank at (t-1) by the mass of gas in the tank ullage: 

 

𝑈𝐺𝑂𝐹(𝑡 − 1) =
𝑚𝑂2(𝑡 − 1)

𝑚𝑡𝑎𝑛𝑘(𝑡 − 1)
      (𝐸𝑞. 2) 

 
 

In addition: 

 

 

𝑚𝑂2 
(𝑡) = Mass of oxygen in the tank at time t. 

𝑚  = Mass flow rate of inerting gas (in terms of t). 

IGOF = Fraction of Oxygen in inerting gas.  

∆𝜌 = Change in ullage density due to altitude change. 
 

𝑉𝑡𝑎𝑛𝑘 = Volume of tank ullage. 

The model in (Eq. 1) considers the oxygen mass per unit of time. Nonetheless, it disregards the 

substances diffusion process, which constitutes an important feature for a more realistic 

picture of the gas interacting phenomenon. 
 

In order to account for the mass diffusion, we consider the classical Fickian approximation. The 

fact of considering diffusion leads to deal the problem using differential equation techniques. 

This means that the algebraic equation in (Eq. 1) is replaced by a differential continuum 

problem, in which we pretend to determine each substance concentration. In [2], the
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following model has been obtained to simulate the interacting behavior of nitrogen (u) and      

oxygen (v): 

𝑢𝑡 = 𝛿∆𝑢 + 𝑐 ∙ ∇𝑢 + 𝑣𝑛 

𝑣𝑡 = 휀∆𝑣 + 𝑐 ∙ ∇𝑣 – 𝑢𝑚      (Eq. 3) 
𝑛, 𝑚 ∈ (0,1) 

 

Where: 
 

u = Nitrogen concentration per unit of volume, expressed between (0,1). 

v = Oxygen concentration per unit of volume, expressed between (0,1). 

And where 𝛿 and 휀 represent the diffusion coefficients between the interacting substances. 

They can be considered as constants, and can be determined according to the data provided in 

[3]: 

𝛿  =  휀  = 0,219 𝑐𝑚2/𝑠   at 20ºC 

The diffusion coefficient varies with the gas temperature. During flight the tank ullage can be 

considered to have a similar temperature with the Outside Air Temperature (OAT). This 

temperature value has not been provided in [1], nonetheless, we consider the following data 

obtained from an A400M flight, and considering similar tank dimensions compared to that in 

Figure 1b), in which the OAT reaches a value of -7ºC. 
 

 
Figure 4. The Outside Air Temperature (OAT) is close to 0ºC (red line) and reaches a value of -7ºC during a typical 

flight on an A400M. 

 

We highlight the fact that the Boeing 747 aircraft operates as a higher airspeed compared to 

the A400M which, in turns, provides a recovery temperature of approximately 3ºC. Therefore, 

it is deemed as a sensible hypothesis to continue discussions to assume that the diffusion 

coefficients can be determined at 0ºC, in accordance with the following expression extracted 

from [3]: 

 

𝐷𝑇1

𝐷𝑇2

= (
𝑇1
𝑇2
)
3/2
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Where:  
 

𝐷𝑇1 
= 0,219 

 

𝑐𝑚2 

𝑠 
   ; 𝑇1 = 20º𝐶 = 293 𝐾; 𝑇2 = 0º𝐶 = 273 𝐾 

 

So that:  
 

𝐷𝑇2 
= 0,196 

 

𝑐𝑚2 

𝑠 
= 𝛿 = 휀 

 

In addition, we shall discuss the importance of modelling with a differential equation (as the 

(Eq.3)) instead of an algebraic one (as proposed by (Eq.1)): 

The differential equation permits to consider the physics involved in the inerting process, 

constituted by the gas substances movement due to diffusion, convection and gases in and 

out. A complete discussion of the physics involved, together with the required mathematical 

background, is provided in Section 1.1 of [2]. It is relevant to highlight that the algebraic model 

in (Eq.1) is simple and based on a mass balance that disregards the main physics involved for 

the basic modelization. 
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I. 4. Model parameters calibration with flight test data. 

 
The model in (Eq. 3) is constituted of three different parameters (n,m,c) that need to be 

determined making use of real flight testing activities. For this purpose, we consider the flight 

test data compiled in Figure 19 of [5], and that is summarized in the following figure: 

 

 
Figure 5. Single membrane (or ASM) inerting flight test average tank oxygen concentration for both empty tank 

test and consumed fuel load. 

 

For the model parameters obtaining process, we consider the case of an empty tank in view of 

the following rationale: 
 

An empty tank is defined as that with low level of fuel and high level of fuel vapors. It is usual 

that the inerting system is constituted by several ASMs to increase the inerting capacity and 

reduce risk times. An empty tank has higher level of oxygen that shall be replaced by nitrogen 

to ensure the inert condition. In addition, we consider a test case with a single ASM acting, 

which means that only one ASM is available to filter the nitrogen and remove the oxygen. This 

is, indeed, conservative and will lead to the most demanding configuration for the single 

inerting ASM that, in turn, will lead to provide higher times to get the inert condition. 
 

The flight test data in Figure 5 considers only homogeneous mean oxygen values, therefore 

this data is useful to define the values of the parameters n and m. Hence, the system in (Eq.3) 

is reduced to: 

𝑢𝑡 = 𝑣𝑛 

𝑣𝑡 = −𝑢𝑚       (Eq. 4) 
𝑛, 𝑚 ∈ (0,1) 
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For this purpose and for each time step, the time derivatives (𝑢𝑡, 𝑣𝑡) are determined 

considering that the substances concentration are expressed between the interval (0,1) and 

the time is expressed in minutes. The time derivatives are determined for different discrete 

times and represented versus the value of each substance, with the intention to determine the 

optimal curve fitting. The results comparing 𝑢𝑡 with 𝑣 are compiled in the following figure: 

 
 
 

Figure 6. Representation of 𝒖𝒕 (nitrogen time derivative) with 𝒗 (oxygen concentration) for a total of 12 different 

times extracted from the flight test data compiled in Figure 5 and extracted from [5]. 

 
 
 

The optimal curve fitting adjusting the proposed data is of the form: 
 

𝑢𝑡 ~𝑣
0.586 

 

Then, we conclude that:  
 

𝑛 = 0.586 
 

The same representation can be performed to compare 𝑣𝑡 with 𝑢. Note that 𝑣𝑡 < 0 as the 

oxygen concentration decreases during the tank inerting process: 
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Figure 7. Representation of 𝒗𝒕 (oxygen time derivative) with 𝒖 (nitrogen concentration) for a total of 12 different 

times extracted from the flight test data compiled in Figure 5 and extracted from [5]. 

 

In this case, the optimal curve fitting provides the following value: 
 

𝑣𝑡  ~ − 𝑢
0.025 

 

Then:  
 

𝑚 = 0.025 
 

It is particularly relevant to observe that the parameters obtained (𝑛, 𝑚), based on flight test 

data extracted from [6], are indeed between (0,1) as initially appointed in the model 

conditions expressed in (Eq.3). 
 

The next parameter to obtain is the convective term, 𝑐. For this purpose we shall consider the 

expression outlined in Section 1.1 of [2] 

𝑐 = 
𝑚  

𝜌𝐴𝑇 
 

Where: 
 

𝐴𝑇 = Transversal area of the fuel tank. 

𝑚  = inerted gas flow rich in nitrogen that is pour into the tank. 
 

𝜌 = gas density in the fuel tank which mainly constitute of nitrogen at the selected altitude and 

temperature. 

The Nitrogen Enriched Air (NEA) reaching the fuel tank can be extracted from [5] (see the 

following figure): 
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Figure 8. Involved mass flows for the single membrane test. The cruise phase (stabilized flight) is get at t = 40 min 

and the descend phase starts at t = 78 min. (see figure 14 in [5]). 

 

It is to be noted that the NEA flow is kept stable during the flight and increases during the 

descend phase. For our purposes, we can consider the flight cruising phase (which is get at t = 

40 min), in which the NEA flow value is given by: 

 

𝑁𝐸𝐴 𝑓𝑙𝑜𝑤 = 4,5 𝑆𝐶𝐹𝑀 = 0,044 𝑘𝑔/𝑚𝑖𝑛

The substance density is a mixture of the predominant nitrogen and remaining oxygen. For our 

estimation we consider an average value of 95% of nitrogen and 5% of oxygen during the cruise 

phase (stabilized flight) 

𝜌 = 0,95 𝜌𝑛𝑖𝑡𝑟𝑜𝑔𝑒𝑛 + 0,05 𝜌𝑜𝑥𝑦𝑔𝑒𝑛 = 0,343 𝑘𝑔/𝑚3 

 

For the determination of the area 𝐴𝑇, we consider that the fuel tank is almost of rectangular 

shape, as discussed and represented in the figure 1a, with the a mean height of 1,5 m and a 

mean wide of 6 m: 

 𝐴𝑇= 1,5 𝑚 𝑥 6 𝑚 = 9 𝑚2 

 

Then and finally, 𝑐 can be determined as: 
 

𝑐= 0,014 𝑚/𝑚𝑖𝑛 
 

 

Summing-up, the postulated set of equation compiled in (Eq.3) and demonstrated in Section 

1.1 of [2] to model the interaction process between nitrogen and oxygen in a fuel tank, when 

submitted to the introduction of NEA flow, adopts the form: 
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𝑢𝑡  =   𝛿 ∆𝑢 + 𝑐 ∙ ∇𝑢 + 𝑣𝑛 

𝑣𝑡  =    휀 ∆𝑣 + 𝑐 ∙ ∇𝑣 − 𝑢𝑚 

 
 

Where: 
 

𝑛 = 0,586;    𝑚 = 0,025;    𝑐 = 0,014
𝑚

𝑚𝑖𝑛
; 

    휀 = 𝛿 = 0,196 𝑐𝑚2/𝑠 
 

 
        (Eq. 5) 

 

 

The existence and uniqueness of regular solutions to the problem (Eq.5) has been proof in 

Sections 1.3, 1.4 and 1.5 of [2]. 
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0 

0 

0 

0 

 

 

 

I. 5. Compatibility conditions. 

 
The Lemma 1.6 in [2] provides a compatibility condition to ensure that the convection will not 

jeopardize the condition of having an increasing function for the nitrogen concentration (u) 

and a decreasing concentration of oxygen (v). The conditions to be met are: 

𝑣𝑛  ≥ 2𝑐 ∙ ∇𝑢0 

 
∫ 𝑢𝑚 ≥ ‖𝑐‖𝑣0 

 

 
Where the sub-index “0” represents the initial condition. We notice that, initially, the air is a 

homogeneous mixture of 80% of nitrogen and 20% of oxygen; therefore: 
 

∇𝑢0  = 0 
 

then, we have:  
𝑣𝑛 ≥ 2𝑐 ∙ ∇𝑢0 = 0 

 

In addition: 𝑣𝑛 = 0.20.586 = 0,389, so that we meet the first compatibility condition, as: 
 

0,389 ≥ 0 
 

Operating for the second compatibility condition and considering that the integral is extended 

to the wing tank volume we have: 

 
∫ 𝑢0

𝑚 = 0,800,025. 𝑉𝑡𝑎𝑛𝑘 = 0,800,025. 6,5 ∙ 6 ∙ 1,5 = 58,17 

 
In addition, ‖𝑐‖𝑣0 = 0,014 ∙ 0,2 = 0,0028 

Then: 

 
∫ 𝑢0

𝑚 = 58,17 ≥ ‖𝑐‖𝑣0 = 0,0028  

 
As both compatibility conditions are met, we can ensure that the convection is relatively weak 

and will allow the diffusion and reaction/absorption terms to interact during the gas evolution 

process while complying with: 
 

𝑢𝑡  ≥ 0,   𝑣𝑡  ≤ 0 
 

During the complete evolution process. 
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I. 6. Solutions calibration 

 
It is, now, our aim to provide a clear view of the solutions obtained in [2] for the model set in 

(Eq. 5) subjected to constant initial data: 
 

𝑢0 = 0,8; 𝑣0  = 0,2 

The initial concentrations correspond to the level of nitrogen and oxygen in the standard 

atmosphere. 

The Section 1.8 in [2] provides a set of solutions for the (Eq.5) independently of the spatial 

variable and, hence, under the hypothesis of homogeneous distribution of solutions. 

Previously, we shall recall that the provided solutions are a sub-solution for the nitrogen 

concentration and a super-solution for the oxygen concentration: 
 

𝑢𝑠  =  𝑢0 + 𝜇𝑡 
 

 
𝑣s 

 
= 𝑣0 − 

𝐾 

𝜇(𝑚 + 1) 

 
(𝑢0 + 𝜇𝑡)𝑚+1 

 

Where the parameter 𝜇 is obtained based on a sub-evolution bound for the oxygen 

concentration: 

𝑣𝑠   = 𝜇1⁄𝑛 
 

And K is a scaling factor to be assessed. 
 

𝑣𝑠 can be determined based on the data from Figure 5. Previously, we remark that in case the 

flight would have continued in the cruising phase, the oxygen concentration would have 

reached an asymptote at a level of 2% of tank volume, in view of the curvature in Figure 5 in 

the proximity of t = 70 min. The sudden growth in the oxygen concentration experienced at t= 

80 min is due to the descend phase, in which the atmospheric air, rich in oxygen, enters into 

the tank via the tank venting system due to the increasing pressure conditions during a 

constant descend. 
 

Then, and considering 𝑣𝑠 = 0.02, we have: 
 

𝜇  = 0,1 
 

The solutions adopt the form:  

𝑢𝑠 = 0,8 + 0,1𝑡 
 

𝑣𝑆 = 0,2 − 9,75 𝐾 (0,8 + 0,1 ∗ 𝑡)1,025    (Eq.6) 
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The scaling constant K is determined based on one single data in Figure 5. For example, we 

consider the following point: 

 t = 40 𝑚𝑖𝑛 
 

 𝑣𝑠  =  0,08 
 

Then,  
𝐾 = 

0,08 − 0,2 

−9,75(0,8 + 0,1 ∗ 40)1,025 

 
 
= 2,465 ∙ 10−3 

 

These postulated solutions are valid for a time interval (0,T), where: 

 

𝑇 = |
(𝜇(𝑚 + 1))

1
𝑚+1(𝑣0 − 𝜇1/𝑛)

1
𝑚+1 − 𝑢0

𝜇
| = 7,8 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 = 0,13min   (𝐸𝑞. 7) 

 

 

Therefore, the solutions are applicable in time steps of 7,8 seconds length. To permit the 

application of the solutions to the complete time domain (up to t=80 min) the solutions shall 

be applicable in a timely discrete manner with sept amplitudes of 0,13 min. 
 

The following figure represents the solution obtained in (Eq.6) compared to actual discretes 

values obtained from Figure 5. 

 

 
Figure 9 The black line represents the (Eq.6) discretized every 0,13 min as per (Eq.7). The blue points are discrete 

from Figure 5. It can be observed that the (Eq.6) fits very closely the flight test data in Figure 5. 

 
 

 

From Figure 9, it is possible to check that the (Eq.6), represented by the black line, fits closely 

the flight test data represented by the blue dots. This result permits to validate our approach 

and to confirm that the set of solutions obtained in Section 1.8 of [2] are, indeed, suitable 

solutions for the fuel tank inerting process described in the Sections I.1 and I.2 of this memory. 
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I. 7. Solutions in the Travelling Waves domain 

 
The solutions named as Travelling Waves are formed of a front and a tip (see Figure 10). The 

front carries the information transition in the media from one state to other. This kind of 

behavior exhibited by the travelling wave solutions can be applied to the propagation of the 

NEA gas within the fuel tank. Indeed, we can think that the NEA constitutes a propagating  

front that shifts the tank ullage concentration by reducing the oxygen and increasing the 

nitrogen. 

 

 
 

Figure 10. Travelling wave propagating in the media 

 
 

In the inerting problem, we aim to modelize, we have a stationary solution towards the 

evolution tends for sufficiently large time; in our case, we consider 80 minutes (according to 

Figure 5 and previous to start the descend phase) as sufficiently large time to consider the 

stationary solutions: 
 

𝑢  = 0,98 
 

𝑣  = 0,02 
 

The model, in the travelling wave domain, has been obtained in Section 1.9 of [2]. In  addition, 

we make use of the calibrated model parameters obtained along this memory: 

𝑢𝑡 = 휀∆𝑢 + 𝑐 ∙ ∇𝑢 − 𝑣𝑛 (𝑢 − 0,98) 

𝑣𝑡  =  𝛿∆𝑣 + 𝑐 ∙ ∇𝑣 − 𝑢𝑚𝑣 
       

Where: 
 
 

𝑛 = 0,586;    𝑚 = 0,025;     𝑐 = 0,014 𝑚/𝑚𝑖𝑛 
 
 

The diffusion coefficients are expressed in terms of 𝑚2 𝑚𝑖𝑛⁄  instead of 𝑐𝑚2 𝑠⁄  as reflected in (Eq.5): 

 

휀 = 𝛿 = 13,14 ∙ 10−4  
𝑚2

𝑚𝑖𝑛
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The travelling wave problem results from the following change of the independent variable: 
 

𝜉  = 𝑥 − 𝑎𝑡 
 

Where “a” represents the travelling wave propagation speed. 
 

In the case of study, the convection can be interpreted as a flow in the same direction of the 

travelling wave propagation, then the change of variables adopt the form: 

 
 

 𝜉 = 𝑥 − (𝑎 + 𝑐)   (Eq.8) 
 

 

It is our intention, now, to determine the travelling wave propagation speed. For that purpose, 

we shall consider that, when the variable 𝜉 = 0, the travelling wave has completed the 

propagation in the tank domain. To understand this approach, we propose the following 

argument in view of Figure 12: 

 

The front and the tip of the wave moves according to the propagation speed (𝑎 + 𝑐), 

therefore, when the variable 𝜉 = 0, the wave has run the complete domain: 

0 = 𝑥 − (𝑎 + 𝑐)𝑡 
 

𝑥  = (𝑎 + 𝑐)𝑡 
 

Then, the travelling wave speed can be determined as: 
 

𝑎 =  
𝑥

𝑡
− 𝑐 

 

Once the travelling wave has completed the propagation in the tank, we shall reach an inerted 

level. We can, then, make use of the data in Figure 5. In particular, we consider that at t = 80 

min, the travelling wave has reached all tank areas to provide the lowest value, measured in 

flight, for the oxygen concentration. In addition, we consider that “x” is a typical tank 

dimension obtained as the geometric mean of the tank shape: 
 

𝑥 = 
3
√6,5  ∙ 6 ∙ 1,5 = 3,88 𝑚 

 

𝑎 =  
𝑥

𝑡
− 𝑐 =  

3,88

80
− 0.014 = 0,061 

𝑚

𝑚𝑖𝑛
 

 
 

Once the travelling wave speed has been established, the travelling wave model is run in a 

Matlab code making use of the ODE45 module. The code can be consulted in Annex I. The 

results in the travelling waves variable 𝜉 are compiled in the following graph: 
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Figure 11. Travelling wave structure. The blue solution represents the evolution of the nitrogen within the tank 

evolving from 0,8 (80% in volume) up to filling the whole tank 1 (100%). The red solution represents the oxygen 

density that evolves from 0,2 (20% in volume) down to cero. Note that the horizontal axis represents the 

variable 𝜉, while f1=u and f2 = v. 

 

The main advantage when modelling in the travelling wave domain is the consideration of the 

diffusion given by the wave front and tip. This is a positive approach compared to the model 

based on a massic balance (Eq 1). 
 

Based on the results in Figure 11, it is possible to determine the time required to inert at any 

level in the figure. 

Let assume a military aircraft with a similar fuel tank and flying under similar operational 

conditions compared to the A320 used for our model calibration as per [5]. It is allowed a level 

up to 9% of oxygen to ensure that military aircrafts operating in a conflictive area do not 

explode as a consequence of a high energy bullet impacting the wing. A value of 0.09 of oxygen 

corresponds, according to Figure 11: 

 

𝜉  = 0,004 𝑚𝑒𝑡𝑒𝑟𝑠 
 

Then, the time to get the inerted condition under the similar operational conditions compared 

to the A320 can be get as: 

 

𝑡 =
𝑥 −  ξ

𝑎 + 𝑐
=  

(3,88 − 0,004)𝑚

(0,061 + 0,014)
𝑚
𝑚𝑖𝑛

≈ 52 𝑚𝑖𝑛 

  
 

Globally, we can ensure that a time of t = 52 min, the tank will reach a value of 9% of oxygen in 

all place area. This value is overly pessimistic compared to the value provided in Figure 5, in 

which the value of 9% of oxygen is get at t = 44 min. Nonetheless, we shall argue that the value 

of oxygen in Figure 5 is only provided for a single location where the oxygen sensor is
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placed. Therefore, the modeled value of t = 52 min, shall be seen as an approximation  in  

which the diffusion acts as per the travelling wave front and tip and in which scattering is 

considered to reach a homogeneous oxygen concentration of 9% in the tank. 
 

It is particularly relevant to observe that the scale for the tank dimension is much higher than 

the scale of the travelling wave spatial variable 𝜉. This fact can be explained in view of the 

travelling wave features as expressed in Figure 12. The front and the tip represent the diffusion 

acting along the wave, so that 𝜉 represents a dimension of the wave interface where the front 

and the tip are confined. This interpretation is based on the change of variable in (Eq.8) where 

𝜉 is the difference between the tank dimension 𝑥 and the moving wave (𝑎 + 𝑐)𝑡: 

 

 
Figure 12: When the travelling wave completes the spatial domain the variable   locates a small fraction of the 

space where the wave front and tip are confined. This space area is of the order of 𝟏𝟎−𝟑 m. 
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PART II: The Fire Extinguishing model through a Porous Medium Equation (PME) 
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II. 1. Background 

 
The aircraft turbomachinery, used as propellant and to produce energy or air, are the main 

source of aircraft fires as a result of one or multiples failures [6]. The following figure illustrates 

the aircraft zones where fire ignition is more likely to occur. Engine failures are found to be the 

most frequent cause of flammable fluid ignition. 

 

 
Figure 13. Fires in aircraft split by zones in non-combat aircrafts on the U.S. Navy between 1977 and 1993 [6]. 

 

As illustrated, it is obvious that the control of engine and auxiliary power units fires are very 

relevant to ensure the survivability of the accidental aircraft and the minimization of hazards. 

The engine nacelles are very complex areas full of bleed and hydraulic pipes, electrical 

harnesses and computers. Figures 14 and 15 aim to provide a simple view to illustrate the 

tightness of the nacelle area where the discharge agent flows. 
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Figure 14. Engine nacelle of a typical fighter aircraft. 
 

 

Figure 15. Aircraft engine nacelle fire suppression system installation and fire extinguisher bottle. 
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II. 2. Justification 

 
One of the most frequently used models for fire extinguishing certification in aircrafts is 

provided by the Part 1/6 Section 4 (leaflet 86) in [8], and is based on a purely time evolution 

with no spatial dependency: 

𝑐(𝑡) = 
𝐵

 
𝐵 + 𝐴 

 
[1 − 𝑒−𝑡(𝐴+𝐵)], (𝐸𝑞. 9) 

 

where: 
 

       𝐴 = 
𝑊𝑎

𝑉 ∙ 𝜌
 

 

       𝐵 =  
𝑊ℎ

𝑡𝑑
⁄

𝑉 ∙ 𝜑
 

𝑊𝑎 = 𝐴𝑖𝑟 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒, 

𝑉 = 𝑓𝑖𝑟𝑒 𝑧𝑜𝑛𝑒 𝑣𝑜𝑙𝑢𝑚𝑒, 
 

𝜌 = 𝐴𝑖𝑟 𝐷𝑒𝑛𝑠𝑖𝑡𝑦, 
 

𝑊ℎ = 𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑔𝑒𝑛𝑡, 

𝑡𝑑 = 𝑇𝑖𝑚𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑡𝑜 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒, 

𝜑 = 𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 𝑎𝑔𝑒𝑛 𝐷𝑒𝑛𝑠𝑖𝑡𝑦. 
 

A pure time evolution process is a hard simplification. Intuitively, we can think that the 

complex configuration of the engine nacelles, together with the discharge nozzle located at 

fixed positions, lead us to consider the spatial distributions as relevant. Unfortunately, the 

model provided in (Eq. 9) does not consider the space as a variable. 
 

Our intention is to make use of the Porous Medium Equation (PME), as derived in Section 2.1 

of [2], to model with a non-linear spatial diffusion. This approach aims to be representative of 

the real physics involved in the discharging process. The PME is particularly interesting as it 

presents a finite propagation speed in the diffusion front, this feature can be used to model 

the propagating agent in the domain of interest (see Section 2.3.2 in [2] for a discussion about 

the finite propagation induced by a PME). 
 

Our modelization efforts are focused on the Airbus military aircraft A400M and, in particular, 

our aim is to use flight test data to calibrate the model parameters according to the following 

governing expression (see Section 2.1 in [2]): 
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𝑢𝑡  = ∆𝑢𝑚  + |𝑥|𝜎𝑢𝑝   (𝐸𝑞 10) 
 

Where:  
 

𝑚 > 1;   𝜎 > 0;   0 < 𝑝 < 1. 
 

Modelling with a non-linear diffusion (∆𝑢𝑚) and a non-linear reaction (|𝑥|𝜎𝑢𝑝) makes the 

process more complex, nonetheless it provides a unique form of modelling considering the 

physics, that shall be interpreted as a previous step to correctly scope the engineering 

activities. 
 

The homogeneous PME equation:  
𝑢𝑡 = ∆𝑢𝑚 

 

exhibits a set of properties that are particularly useful to model the nature of a fire 

extinguishing process. The exercise presented along this document consists on modelling the 

propagation of the extinguishing agent to determine the concentration of the agent in each 

part of our domain of interest. One the most relevant properties is the non-existence of the 

positivity condition that is typical when modelling with the classical Gaussian diffusion given by 

the expression: 
 

𝑢𝑡  = ∆𝑢 

A complete discussion about the novelties of the PME is provided in Section 2.3 of [2]. 
 

In addition to the non-linear diffusion, the governing equation presents a reaction term of the 

form 

|𝑥|𝜎𝑢𝑝 

which pretends to introduce the following realistic aspects: 
 

- Agent saturation: Once the extinguisher agent discharges into the domain, the process 

is fast due to the fact that no agent exists in the media; nonetheless, during the 

discharge the agent concentration increases leading to reduce the rate of change in 

the concentration. This fundamental principle is introduced by the term 𝑢𝑝 (𝑝 < 1). 

 
- Agent heterogeneous distribution: The discharge nozzles are located in different  

places all over the engine cowl and nacelle, the discharging process is far from an 

homogeneous process. Therefore, we shall consider that the rate of time-change in  

the agent concentration varies with the position. This is the objective when 

introducing the term |𝑥|𝜎, 𝜎 > 0. 
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Figure 16. Example of a typical Fire extinguisher lay-out. Note that the nozzles are located heterogeneously. 
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II. 3. A400M Engine cowl description 

 
The A400M aircraft has four propeller driven engines: 

 

 

Figure 17. A400M aircraft. We can see the four propellers. 

 

The engine shall be protected against fire hazards for which a fire detector and extinguishing 

system is provided. 

The engine declared fire zones is divided into four sections. The division criterion responds to 

the following simple conceptions: 
 

- Areas where sensible equipment are installed. 

- The number of sections is homogeneously distributed along the domain. 
 

 

Figure 18. A400M propeller driven engine representation. The fire zone is split into four areas. 
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The following table provides a list of the sensitive equipment installed in each section area: 
 

 

Table 1. Engine areas covered by the section. PGB stands for Propeller Gear Box. Each of the parameters (from 1 to 
12) corresponds to the position of the entry to the sensors used to measure the extinguishing agent volumetric 

concentration. 
 
 

 The following figures provide the details of each sensor location per section: 
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Figure 19. Section A sensors entry positions 
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Figure 20. Section B sensors entry positions 
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Figure 21. Section C sensors entry positions 
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Figure 22. Section D sensors entry positions 
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II. 4. Flight test data 

 
The flight test, that we will use to calibrate the model in (Eq. 10), was performed in Seville and 

consisted on a simple procedure for the chief pilot to activate the fire extinguishing procedure, 

which release the extinguishing agent based on a Halon compound. The extinguishing system 

is designed to be capable to extinguish a fire in the most critical condition (i.e, the agent bottle 

at lowest temperature and highest dynamic pressure or ventilation in the engine cowl) which 

is: 
 

- 150 ft (Low altitude cruise). 

- Mach 0.45. 

- ISA – 70ºC. 

- Bottle temperature = -55ºC. 

 

 
Figure 23. Engine Fire extinguishing design point within A400M flight operational envelope 
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Figure 24. Flight test results. Volumetric concentration for each position time evolution 
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One important comment to highlight is related with the ambient temperature. The flight tests 

were performed in Seville during winter period, then the temperature was set at ISA-7,4ºC 

which corresponds to 7,6ºC. The design point temperature at ISA – 70ºC (i.e. -55ºC) was not 

possible to get, this ambient condition is only possible in the artic pole for which no resources 

to perform the campaign were get. Nonetheless, the results are valid for our model calibration 

purposes. 

 
 

II. 5. Model calibration 

 
The model parameters calibration will be done as per a longitudinal flow line according to the 

offsets defined. The sensors entry 2, 4, 8 and 10 are located in an almost longitudinal axis, 

then, the defined offsets are sufficient for the location purposes: 
 

Sensor configuration 1 Offset (m) Maximum Volumetric 
concentration (%) at t = 15 
sec 

2 1,200 7,5 

4 2,000 10,5 

8 2,800 14,5 

10 3,600 23,5 
 

Table 2. Sensor volumetric measurements at t = 15 sec. The t = 15 sec is selected to fix a common reference time 

for model parameter obtaining. 
 

During the testing condition, it is possible to consider that the reaction term (|𝑥|𝜎𝑢𝑝) is more 

relevant than the non-linear diffusion (∆𝑢𝑚). This assumption is sensible as the discharging 

time is qualitatively fast. Under the assumption, Section 2.6.1 in [2] provides a solution of the 

form: 
 

𝑢 = |𝑥|𝜎⁄(1−𝑝)(1 − 𝑝)1⁄(1−𝑝)(𝑡 − 𝜏)1⁄(1−𝑝) (𝐸𝑞. 11) 
 

Which is used, together with the table 2 data, to determine the values for 𝜎 and 𝑝. Previously, 

the data in table 2 is represented in the following figure: 
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Figure 25. Halon concentration (H) expressed per unit, as function of the offset (x in meters). 

 

Figure 25 data is adjusted to a potential law of the form: 
 

𝑢 = 0,1461|𝑥|0,3277 

Which can be compared to the expression (Eq.11) that adopts the specific form according to 

data in the figure 24. 

𝑢 = |𝑥|𝜎⁄(1−𝑝)(1 − 𝑝)1⁄(1−𝑝)(15 − 12)1⁄(1−𝑝). 

Where the discharge time is considered at 𝑡 = 15 𝑠𝑒𝑐 and the beginning of the discharge 

process is set at 𝜏 = 12 𝑠𝑒𝑐. Then, we have: 

(1 − 𝑝)1⁄(1−𝑝)(15 − 12)1⁄(1−𝑝) = 0,1461. 
 

after resolution:  
 

𝑝 = 0,78 
 

And:  
 

𝜎⁄(1 − 𝑝) = 0,3277 
 

𝜎 = 0,072 
 

It is particularly relevant to observe that the model calibration provides a value for 𝑝 ∈ (0,1) 

and 𝜎 > 0, which was a priori assumption to model the saturation in the media due to the 

increasing population of the extinguishing agent (see Section II.2 of this memory). 
 

Under the assumption that the reaction predominates over the diffusion, Section 2.6.1 in [2], 

provides the following condition to be met among the different parameters: 

𝑚𝜎 + 2(1 − 𝜎)𝑝 + 𝜎  < 2 
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We obtain:  
 

𝑚 < 6,67 
 

For simplification purposes, we admit the following value for m: 
 

𝑚  = 2 
 

The existence of global solutions requires a certain condition to be met for the involved 

parameters (see Theorem 2.6.2.1 in [2]): 

 

 

𝑝 <  𝑠𝑖𝑔𝑛+ (1 − 
𝜎(𝑚 − 1)

2
)

 

This condition is met, ensuring then the existence of solutions: 

 

0,78 <  (1 − 
0,072(2 − 1)

2
) = 0,964 

 

Therefore, the solution describing the behavior of the halon concentration exits as per the 

model (Eq. 10) along the line given by the sensor configuration 2-4-8-10. This solution adopts 

the form: 

𝑢 = |𝑥|0,32770,00102 (𝑡 − 12)4,5     (𝐸𝑞. 12) 
 

Where:  
 

0 < 𝑢 < 1 
 

Is the concentration of halon expressed per unit; 
 

𝑥 is expressed in meters; 

t is expressed in seconds. 

Our next intention is to obtain the propagation front that results when considering the 

diffusion carried by the PME. For this purpose we consider the results as per Theorem 2.6.2.2 

in [2]. Particularly, the positivity of the solution (i.e. the existence of halon concentration) is 

provided in the frame: 

𝑢(𝑥, 𝑡) > 0, 𝑤ℎ𝑒𝑛 |𝑥| < 𝑐2(𝑥)𝑡𝛽 
 

Where, 
 

 𝜎(𝑚−1) 

𝑐2(𝑥) =  𝑐𝑠𝑢𝑝𝑝|𝑥| 2(1−𝑝) 
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And, 

 

𝑐𝑠𝑢𝑝𝑝 =
(−𝛼 + 𝛽)

𝜎(𝑚−1)
2(𝑝−1)

(
(𝑚 − 1)𝛽

2𝑚 )

1
2

= 0,775 

 

𝛼 = 
𝜎 + 2

𝜎(𝑚 − 1) + 2(𝑝 − 1)
= −5,63 

 
 

𝛽 = 
𝑝 − 𝑚

𝜎(𝑚 − 1) + 2(𝑝 − 1)
= 3,33

After compilation of results, we have: 
 

𝑢 > 0, 𝑤ℎ𝑒𝑛𝑒𝑣𝑒𝑟 |𝑥| < 0,738  ∙  𝑡3,92 

Therefore, the shifting front is given by the expression 
 

|𝑥| = 0,738  ∙  𝑡3,92 

 
And represented in the following figure: 

 

 
Figure 26. The propagating front, represented by the continuous line, is the effect of the diffusion and absorption 

while moving along the flow line characterized in Table 2. 
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Based on the results compiled in Figure 24, it is possible to determine the requested time to 

ensure that the halon concentration reaches the complete domain. For this purpose, we 

consider the engine cowl domain: 

 
 

 

 
Figure 27. Engine cowl geometry. The blue line represents the length of the flow line characterized by the data in 

Table 2. 

 

When the diffusion and reaction have made the halon concentration to propagate along the 

engine cowl, we have 

|𝑥| = 4,012 𝑚 

 
And the time required to ensure the propagation has reached the entire engine cowl is given 

by the graph in Figure 26: 

𝑡  = 1,4 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 
 

Note that this time obtained via the results of Theorem 2.6.2.2 in [2], matches perfectly with 

the flight test data compiled in Figure 24. Indeed, according to this figure, the discharge 

process reaches all domain areas in 1,3 seconds. In this short period, all sensors are measuring 

a certain quantity of concentration and, in the half of them, the extinguisher established 

concentration reaches the level of 6% (represented by the horizontal red line in the following 

figure) which is considered as a sufficient value to extinguish any engine fire (see the 

requirements CS 25.1195(b) & (c) in [9]). Therefore, we can ensure that for the assessed value 

of 𝑡 = 1,4 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 the propagating extinguisher front is well established and positivity of 

solutions can be shown. 
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Figure 28. Representation of the beginning of the discharge process and the propagating front established. 

 

As pointed, the requirements CS 25.1195(b) and (c) in [9] establish that a minimum level of 6% 

of halon is required to extinguish a fire. We can determine the minimum time required to get 

the 6% value thanks to the following expression from (Eq. 12): 

 

∆𝑡 =  (
𝑢

|𝑥|0,3277 0,00102
)

1
4,5⁄

This expression is tailored for u = 0,06 and |𝑥| = 4,012 𝑚. Then, we have: 
 

∆𝑡  = 2,24 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 
 

This value obtained, thanks to the solutions in Section 2.6.1 of [2], matches with the flight test 

data in Figure 28. According to this data, at t = 2,24 seconds, the sensors 2-4-8-10 are 

measuring above 6%. 
 

The same process can be repeated for other sensor configuration. Let consider, now, the 

measuring line given by the following table: 
 

Sensor configuration 2 Offset (m) Maximum Volumetric 
concentration (%) at t = 15 
sec 

1 1,200 6,2 

4 2,000 10,3 

7 2,800 14 

10 3,600 22 
Table 3. Sensor volumetric measurements at t = 15 sec. The t = 15 sec is selected to fix a common reference time 

for model parameter obtaining. 

 

The data in Table 3 can be represented as per the following figure: 



 

45 
 

 
 

Figure 29. Halon concentration (H) expressed per unit, as function of the offset (x in meters) for the set of sensor 

configuration in Table 3. 

 
 

 

The data is adjusted to the following power law: 
 

𝑢  = 0,2551 |𝑥|0.4345 

Which can be compared to the expression (Eq.10) that adopts the specific form: 
 

𝑢 = |𝑥|𝜎⁄(1−𝑝)(1 − 𝑝)1⁄(1−𝑝)(15 − 12)1⁄(1−𝑝). 

Where the discharge time is considered at 𝑡 = 15 𝑠𝑒𝑐 and the beginning of the discharge 

process is set at 𝜏 = 12 𝑠𝑒𝑐. Then, we have: 

(1 − 𝑝)1⁄(1−𝑝)(15 − 12)1⁄(1−𝑝) = 0,2551 
 

after resolution:  
 

𝑝 = 0,76 
 

And:  
 

𝜎⁄(1 − 𝑝) = 0,4345 
 

𝜎  = 0,10 
 

Under the assumption that the reaction predominates over the diffusion, Section 2.6.1 in [2], 

provides the following condition to be met among the different parameters: 

𝑚𝜎 + 2(1 − 𝜎)𝑝 + 𝜎  < 2 
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We obtain:  
 

𝑚 < 7,32 
 

For simplification purposes, we admit the following value for m: 
 

𝑚  = 2 
 

We check , now, the parameters condition to ensure the existence of global solutions as per 

Theorem 2.6.1.1 in [2]: 

 

 

𝑝 <  𝑠𝑖𝑔𝑛+ (1 − 
𝜎(𝑚 − 1)

2
)

 

This condition is met, ensuring the existence of solutions 

 

0,76 <  (1 − 
0,1(2 − 1)

2
) = 0,95 

 
 

Therefore, the solution describing the behavior of the halon concentration exits as per the 

model (Eq. 10) along the line given by the sensor configuration 1-4-7-10. This solution adopts 

the form: 

𝑢 = |𝑥|0,4345 0,00261 (𝑡 − 12)4,2 

 

Where:  
 

0 < 𝑢 < 1 
 

Is the concentration of halon expressed per unit; 
 

𝑥 is expressed in meters; 

t is expressed in seconds. 

As we did before, our next intention is to obtain the propagation front that results when 

considering the diffusion carried by the PME. For this purpose we consider the results as per 

Theorem 2.6.2.2 in [2]. Particularly, the positivity of the solution (i.e. the existence of halon 

concentration) is provided in the frame: 

𝑢(𝑥, 𝑡) > 0, 𝑤ℎ𝑒𝑛 |𝑥| < 𝑐2(𝑥)𝑡𝛽 

Where, 
 

 𝜎(𝑚−1) 

𝑐2(𝑥) =  𝑐𝑠𝑢𝑝𝑝|𝑥| 2(1−𝑝) 
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And, 
 

𝑐𝑠𝑢𝑝𝑝 =
(−𝛼 + 𝛽)

𝜎(𝑚−1)
2(𝑝−1)

(
(𝑚 − 1)𝛽

2𝑚
)

1
2

= 0,717 

 

𝛼 = 
𝜎 + 2

𝜎(𝑚 − 1) + 2(𝑝 − 1)
= −5,52 

 
 

𝛽 = 
𝑝 − 𝑚

𝜎(𝑚 − 1) + 2(𝑝 − 1)
= 3,26

 
 

After compilation of results, we have: 
 

𝑢 > 0, 𝑤ℎ𝑒𝑛𝑒𝑣𝑒𝑟 |𝑥| < 0,757  ∙  𝑡4,075 

Therefore, the shifting front is given by the expression 
 

|𝑥| = 0,757  ∙  𝑡4,075 

And represented in the following figure: 
 
 
 

 

Figure 30. The propagating front, represented by the continuous line, is the effect of the diffusion and absorption 

while moving along the flow line characterized in table 3. 
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III. Conclusion 

 
The main objective that has scoped our study has been to model in engineering making use of 
advanced mathematical principles. It has been shown, for the two models involved and dealt 
in Sections I and II of this report, that solutions exist and such solutions have been obtained 
and tailored for a real scenario. The governing equations, extensively studied in [2], have been 
calibrated making use of testing activities in Airbus aircraft platforms. Once the set of 
equations has been derived and made particular, the solutions obtained in [2] have been 
applied with success.  At this point, we can conclude that our approach provides a set of 
solutions for each of the models derived that can be used to understand, assess and predict 
during any design activity.  
 
The main added value of our approach is that the results are based on an analytical concept. 
This implies that any solution is valid provided it is applied within the correct scope. As no 
numerical mesh-type models are given, it is not necessary to introduce efforts for assessing 
the correctness of the numerical exercise via errors propagating principles, complex 
calibration and interpretation of results. 
 
Additionally, the work performed along this memory permits to answer the following 
questions frequently asked by the design engineers. 
 

 For the inerting system model (Section I), these questions can be formulated as: 
 

o How is the oxygen time evolution in the fuel tank?  The answer to this 
question has been provided along Section I.6 of this document for an Airbus 
A320 aircraft. 
 

o What is the required time to ensure an inert fuel tank ullage? The answer to 
this question has been provided along Section I.7 of this document for an 
Airbus A320 aircraft.   

 
 

 For the fire extinguising model (Section II), the key questions can be summarized as: 
 

o What is the required time to ensure that the propagating extinguisher is 
capable of extinguish an engine fire? The answer to this question has been 
provided along Section II.5 of this document for an Airbus Military A400M 
aircraft. 
 

o How is the extinguisher propagating front in areas of the engine nacelle? The 
answer to this question has been provided along Section II.5 of this document 
for an Airbus Military A400M aircraft 
 

 
We stress the fact that the work performed has permitted to answer the above reflected 
questions. In addition, we shall highlight that the simple questions have led to a set of novelties in 
the PDE theory, i.e. we have dealt with equations not previously treated permitting to ensure an 
academic path for our work [2].  
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We, finally, conclude that our objectives have been fulfilled for both the industrial and the 
academic perspectives. 
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ANNEX I 

 

function CRD 

 
xinit = linspace (0, 60, 10000); 
options = bvpset('RelTol', 10^(-6), 'Abstol', 10^(-6), 'Nmax', 10000, 

'Stats', 'off'); 
solinit = bvpinit (xinit, @fguess); 
sol = bvp4c(@dEqs, @res, solinit, options); 
f = deval(sol, xinit); 
plot(xinit,f(1,:), xinit,f(3,:)) 
xlim([0 0.02]) 
%ylim([0 0.025]) 
xlabel('xi') % Etiqueta el eje horizontal 
ylabel('f_1, f_2') % Etiqueta el eje vertical 
legend('f_1=u', 'f_2=v') % Pone una leyenda 

 

 
function F = dEqs( x, f ) 
%Differential equationsco 
%The Function F is the vectorial representation of the equations (1.286) 
and (1.290) in [2] with n = 0.568; m = 0.025; (a+c) = 0.075 and delta = 
epsilon = 10E-4.  

 

 
F = [f(2); (-0.075*f(2)-(1-f(1))*f(3)^(0.586))*100000; f(4); (- 
0.075*f(4)+f(3)*f(1)^(0.025))*100000; f(6); (-0.075*f(6)-(1- 
f(5))*f(7))*100000; f(8); (-0.075*f(8)+f(7)*1^(0.025))*100000]; 

 

 
function r = res( fa, fb ) 
r = [fa(1)-0.8; fa(3)-0.2; fb(1)-1; fb(3); fa(5)-0.8; fa(7)-0.2; fb(5)-1; 
fb(7)]; 

 

 
function finit = fguess (x) 

 

 
finit = [heaviside(-x);0; heaviside(-x); 0; heaviside(-x);0; heaviside(- 
x); 0] 
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