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Objective: To study the changes of plasma fatty acids and lipophilic vitamins during normal pregnancy.
Design: Plasma fatty acid profile and the concentration of carotenoids, tocopherols and retinol were measured in healthy
women at the first and third trimesters of pregnancy, at delivery, and in cord blood plasma.
Results: Maternal plasma cholesterol and triglycerides increased from the first to the third trimester of gestation, while free fatty
acids progressively increased from the first trimester through the third trimester to delivery, suggesting an enhanced lipolytic
activity. Plasma levels of a- and g-tocopherols, lycopene and b-carotene also progressively increased with gestation, but values in
cord blood plasma were lower than in mothers at delivery. Retinol levels declined with gestational time and values in cord blood
plasma were even lower. The proportion of total saturated fatty acids increased with gestation, and it further increased in cord
blood plasma. Total n-9 fatty acids remained stable throughout pregnancy, and slightly declined in cord blood plasma, the
change mainly corresponding to oleic acid. Total n-6 fatty acids declined with gestation and further decreased in cord blood
plasma, and a similar trend was found for linoleic acid. However, arachidonic acid declined in women at the third trimester and
at delivery as compared to the first trimester, but was enhanced in cord blood plasma. The proportion of total n-3 fatty acids
remained stable throughout pregnancy at the expense of decreased a-linolenic acid at delivery but enhanced eicosapentaenoic
acid, with small changes in docosahexaenoic acid. The proportion of these n-3 fatty acids was similar in cord blood plasma and
maternal plasma at delivery.
Conclusions: Owing to the different placental transfer mechanisms and fetal capability to metabolize some of the transferred
fatty acids and lipophilic vitamins, the fetus preserves the essential compounds to assure their appropriate availability to sustain
its normal development and to protect itself from the oxidative stress of extrauterine life.
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Introduction
The dietary essential fatty acids (EFA), linoleic (18:2 (n-6),

LA) and a-linolenic acids (18:3(n-3), ALA), and their long-

chain polyunsaturated derivatives (LC-PUFA), are vitally

important structural elements of cell membranes and are

therefore of pivotal importance for the formation of new

tissue. Some of these LC-PUFA are precursors of prostaglan-

dins, playing important roles in pregnancy and delivery

(Hornstra et al, 1995). LC-PUFA occur in high concentrations

in the central nervous system (Elliot & Knight, 1972), and

the brain content of LC-PUFA—arachidonic acid (20:4 (n-6),

AA) and docosahexaenoic acid (22:6(n-3), DHA)—increases

progressively during brain organogenesis (Crawford et al,

1976). Although a maternal-fetal gradient in most polyunsa-

turated fatty acids (PUFA) has been reported (Friedman et al,

1978; Al et al, 1990, 1995; Otto et al, 1997; Min et al, 2001),

the percentage of ALA is almost undetectable in fetal plasma

and that of LA is nearly half of that in the mother. However,
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the proportions of AA and DHA are normally higher in the

fetus (Cetin et al, 2002). These findings suggest that although

the fatty acid mix delivered to the fetus is largely determined

by the fatty acid composition of the maternal blood, the

placenta is able to preferentially transfer AA and DHA to the

fetus by a combination of several mechanisms, as has

recently been reviewed (Haggarty, 2002). Furthermore,

although LC-PUFA synthesis from EFA precursors has been

demonstrated to occur in preterm infants as early as 26-week

gestation (Uauy et al, 2000), other reports have estimated

that the contribution of endogenous synthesis to the total

plasma LC-PUFA pool in term neonates is small (Demmel-

mair et al, 1995; Szitanyi et al, 1999).

The nutritional status of the mother during gestation has

been related to fetal growth, and supplementation with LC-

PUFA-rich oils during the last trimester of pregnancy, to

increase levels in neonates, has been advised (Van Houwe-

lingen et al, 1995; Connor et al, 1996). However, the

competitive desaturation of the n-3 and n-6 series by D6-

and D5-desaturases plays an important role in the desaturat-

ing and elongating pathways of the parent EFA (Uauy-

Dagach & Mena, 1995). Excessive dietary intake of certain

LC-PUFA has also been found to decrease the formation of

others (for a recent review, see Herrera, 2002).

Hyperlipidemia, characteristic of normal pregnancy dur-

ing late gestation, is associated with enhanced oxidative

stress (Uotila et al, 1991; Morris et al, 1998; Toescu et al,

2002), although this effect seems to be counteracted by

increased oxidative resistance of LDL (De Vriese et al, 2001).

The latter probably occurs due to the enhanced level of

vitamin E, although other antioxidant vitamins, like b-

carotene and vitamin A, remain, respectively, stable or

decreased during normal pregnancy (De Vriese et al, 2001).

Plasma levels of a- and g-tocopherols have consistently been

shown to be reduced in the cord blood of normal newborns

and in preterm infants compared to either maternal or

normal adult levels (Muller, 1994; Yeum et al, 1998; Kiely

et al, 1999). The transfer of vitamin E in perfused normal

term human placenta was found at a rate of only 10% of L-

glucose (Schenker et al, 1998), and a lack of a significant

improvement of the vitamin E status in neonates after a

short-term supplementation of pregnant women before

delivery has also been reported (Leger et al, 1998). This

strongly suggests that the transfer of vitamin E through the

placental barrier is low, despite the known risk of oxidant

damage occurring in newborns (Johnson, 1998). On the

other hand, vitamin A is an essential micronutrient for the

development and growth of the fetus (Clagett-Dame &

DeLuca, 2002), and low cord and maternal serum retinol

have been associated with poor vitamin A status, which in

turn may affect fetal growth (Gazala et al, 2003).

The aim of this study was to determine the plasma fatty

acid profile and concentration of tocopherols, carotenoids

and retinol during normal pregnancy. Furthermore, since in

most previous studies, one time point was used to collect

maternal blood, being either before delivery (Kiely et al,

1999; Min et al, 2001) or during labor (Al et al, 1990; Yeum

et al, 1998; Berghaus et al, 2000), it is not known whether

delivery itself modifies any of the studied variables. Thus, the

objective of this study was to measure these variables in the

first and third trimesters of pregnancy and at delivery, as well

as in cord blood samples.

Methods
Study sample

Healthy women (n¼52) aged 31.470.6 y were recruited at

the first prenatal visit in the outpatient clinic of Hospital San

Paolo, Milan. The Local Ethical Committee approved the

study protocol and, although informed consent was ob-

tained from each participant, there were a substantial

number of losses during the study. Maternal anthropometric

data were collected, together with smoking habits, and an

ultrasound exam performed for the dating of the pregnancy.

Average body mass index (BMI) was 21.6 (kg/m2) and seven

of the 52 women were smokers. These characteristics

reflected the normal pregnant population of the area, and

no significant differences were observed in terms of maternal

age, prepregnancy weight, height, weight gain in pregnancy,

nutritional status, social demographic characteristics and

smoking habits between the women who continued the

study compared to those who did not. Exclusion criteria

were: maternal diseases known to affect pregnancy, previous

pregnancies with adverse gestational outcomes and maternal

alcohol consumption. All women underwent uncomplicated

pregnancies and gave birth at 39.270.2 weeks to healthy

newborns, with normal birth weights (3206.0781.4 g). None

of the women were taking nutritional supplements that

contained specific fatty acids or lipid-soluble vitamins. A

nutritional questionnaire was given in order to analyze the

nutritional intake (Fidanza et al, 1995) corresponding to the

month before the interview. A fasting venous blood sample

was taken from each participant at the first trimester of

gestation (9.670.4 weeks gestation). Nutritional question-

naires and venous blood samples were also collected at the

third trimester of gestation (35.570.3 weeks gestation) from

some of the women (n¼32). Venous blood samples were also

collected from some of the mothers (n¼13) at delivery. Cord

blood was obtained immediately postpartum from the

umbilical vein after clamping of the cord (n¼21). Blood

was drawn into vacutainers containing EDTA, centrifuged

(1000� g at 41C, 15 min) within 15 min of collection, and

plasma stored at �801C until analyzed.

Analytical methods

a- and g-Tocopherol, retinol, lycopene and b-carotene were

analyzed simultaneously by an isocratic reverse-phase HPLC

method (Elinder & Walldius, 1992), with some modifica-

tions. Retinyl acetate and tocopherol acetate (Sigma Chemi-

cal Co., St Louis, MO, USA) were added as internal standards

for the analysis of carotenoids, retinol and tocopherol,
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respectively. Vitamins were measured with a Nova Pak

(150�3.9 mm) reversed-phase column (Waters) at 371C,

attached to a multiwavelength ultraviolet detector (164

Diodo Array, from Beckman). The recovery was always over

94%, and the coefficient of variation in all cases was less than

10%. Plasma cholesterol, triglycerides and free fatty acid

(FFA) concentrations were determined by commercial kits

(Menarini Diagnostic, Florence, Italy, for cholesterol and

triglycerides, and Wako Chemicals GmbH, Neuss, Germany,

for FFA). Lipids were extracted from 0.20 ml of plasma into

chloroform/methanol (2:1) (Folch et al, 1957). Fatty acids

were transesterified with acetyl chloride, and fatty acid-

methyl esters separated and analyzed on a Perkin-Elmer gas

chromatograph (Autosystem; Norwalk, CT, USA), as pre-

viously reported (Amusquivar et al, 2000). Fatty acids results

were expressed as a percentage (% w/w) of all detected fatty

acids, with a chain length of 12–24 carbon atoms in the

sample.

Statistical analysis

Results are expressed as means7s.e.m. Data from smoker

and nonsmoker women were pooled in the same group,

since no significant differences were detected for any of the

studied variables between them. Differences in plasma

variables of the mothers between the first and third

trimesters and delivery were evaluated by one-way ANOVA.

When statistically significant differences appeared (Po0.05),

the differences between each pair of groups were assessed by

Tukey’s multiple range comparison test. Although repeated-

measures ANOVA for the 13 participants that were studied at

all time points were also determined, they did not change

the results. Thus, only the one-way Anova applied to the

overall study is shown. Student’s t-test was used to compare

values between cord blood and either third trimester or

delivery. Before statistical comparisons, g-tocopherol, lyco-

pene and b-carotene, given their skewed distribution, were

log transformed. Correlations were tested using Spearman’s

analysis. All statistical analyses were performed using a

computer software package (Statgraphics Plus, version 5.0,

Statistical Graphics Corp.).

Results
There were no significant differences in the data obtained

from the evaluation of the nutritional intake at the first and

third trimesters of gestation, although there was a trend for

total intake to increase, equally distributed in carbohydrates,

lipids, proteins and vitamins (data not shown).

Table 1 shows concentrations of cholesterol, triglycerides,

FFA, tocopherols, retinol, lycopene and b-carotene, and

tocopherols and retinol adjusted for lipids in maternal

plasma levels at the first and third trimesters of gestation

as well as at delivery and in cord blood plasma. Maternal

plasma levels of both cholesterol and triglycerides increased

from the first to the third trimester of pregnancy, the change

Table 1 Plasma levels of cholesterol, triglycerides, free fatty acids and liposoluble vitamins in women throughout pregnancy and in umbilical cord
blooda,b

Maternal

First trimester (n¼52) Third trimester (n¼32) Delivery (n¼13) Cord (n¼21)

Cholesterol (mg/dl) 141.973.9a 246.279.7b 245.0713.3b 49.573.9***www

Triglyceride (mg/dl) 86.975.1a 222.5711.9b 227.9711.5 b 37.873.9***www

Free fatty acids (mmol/l) 270.0715.6a 342.8720.2a 671.6773.9b 214.0724.5***www

Absolute values (mmol/L)
a-Tocopherol 17.7270.72a 28.0171.46b 35.4373.13c 5.7070.45***www

g-Tocopherol 0.87970.054a 1.40870.131b 1.67470.150b 0.18970.032***www

Vitamin E 18.6070.75a 29.4171.56b 37.1073.25c 6.1770.51***www

Retinol 1.22070.052a 0.98570.055b 1.01870.086ab 0.60970.041***www

Lycopene 0.17070.010a 0.23470.030a 0.42170.044b 0.05070.018***www

b-Carotene 0.38670.037a 0.48370.060ab 0.78270.193b 0.07870.037***www

Adjusted values (mmol/mmol lip)c

a-Tocopherol 3.7670.11a 3.2570.16b 3.9170.21a 3.4570.19
g-Tocopherol 0.19070.012 0.16170.015 0.18770.015 0.10470.015*www

Vitamin E 3.9570.12a 3.4270.17b 4.1070.22a 3.6770.18
Retinol 0.26370.010a 0.11770.008b 0.11970.012b 0.38570.032***www

aValues are expressed as means7s.e.m., n¼number/group.
bTukey’s test was used to determine differences between the three groups of maternal plasma after one-way ANOVA. Different letters in a row indicate significant

differences (Po0.05). No superscript letters in a row indicate no significant differences. Statistical comparison between maternal plasma at third trimester and cord

blood plasma is shown by asterisk (*Po0.05; **Po0.01; ***Po0.001) and between maternal plasma at delivery and cord blood plasma, by the w symbol (wPo0.05;
wwPo0.01; wwwPo0,001), and was determined by the Student’s t-test (n.s.¼no significant differences (P40.05).
cExpressed as the ratio of plasma concentration/ lipids (cholesterolþ triglycerides)
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for triglycerides being greater than that for cholesterol. No

difference was found in these two variables among women

studied at delivery as compared to those studied at the third

trimester, and values for both cholesterol and triglycerides in

cord blood plasma were significantly lower than those found

in the plasma of the mothers. Plasma FFA levels were not

significantly higher in the third trimester compared to the

first, but they greatly increased at delivery, where values were

significantly higher than in either of the other two groups.

FFA levels in umbilical cord were significantly lower than in

both the third trimester and delivery mothers. Plasma levels

of a-tocopherol progressively increased from the first to the

third trimester of gestation and at delivery. However, values

in cord blood plasma were lower than in mothers, there

being statistical differences between these points. A similar

trend although with less striking changes was found for the

g-tocopherol levels, values being much lower than those of a-

tocopherol and differences between delivery and third

trimester not reaching statistical significance. Plasma levels

of vitamin E (corresponding to the sum of a- and g-
tocopherol values) changed similarly to those of a-tocopher-

ol, with values progressively increasing from the first to the

third trimester of gestation and at delivery, but with much

lower values found in cord blood plasma. Retinol levels

decreased from the first trimester of gestation to the third

trimester, with the values kept stable at delivery. However,

they were significantly lower in the cord blood plasma than

in the mothers. The plasma levels of both lycopene and b-

carotene progressively increased from the first to the third

trimester of gestation and to delivery, differences being only

significant between the third trimester and delivery. These

two variables appeared significantly lower in cord blood

plasma than in the mothers. Major differences among the

groups in a- and g-tocopherol as well as vitamin E values were

smaller when corrected by plasma lipids (cholesterolþ
triglycerides). However, values of both a-tocopherol and

vitamin E at delivery remained higher than at the third

trimester, while those of g-tocopherol in cord plasma

remained lower than those found in the mothers. Maternal

plasma retinol values corrected by plasma triglycerides were

found to be lower at the third trimester of gestation and at

delivery than those found at the first trimester, whereas

values in cord blood plasma were higher than in maternal

plasma at both the third trimester of gestation and at

delivery (Table 1).

As shown in Table 2, there was a progressive increase in the

proportion of total saturated fatty acids in maternal plasma

from the first trimester through to delivery, and with even

higher values in cord blood plasma. Total n-9 fatty acids,

mainly corresponding to oleic acid (18:1 (n-9)), were found

stable in the first and third trimesters of gestation and at

delivery, but significantly lower in cord than in the mothers’

plasma (Table 2). Total n-6 fatty acids declined from the first

to the third trimester and at delivery, and further decreased

in cord blood plasma (Table 2). The most abundant n-6 fatty

acid was LA, and although its proportion remained stable in

maternal plasma throughout gestation, it was significantly

lower in cord blood plasma. Dihomo g-linolenic acid (20:3

(n-6)) was lower in the third trimester and at delivery than at

the first trimester, whereas values in cord blood plasma did

not differ from those found in the mother at delivery. The

percentage of AA decreased from the first to the third

trimester of gestation, values remaining low at delivery,

whereas in cord blood plasma they were significantly higher

than found at either the third trimester or at delivery.

Despite the stability of the percentage of total n-3 fatty acids

Table 2 Plasma fatty acids composition (g/100 g fatty acids) in mothers at first, third trimester and at delivery and in cord blooda,b

Maternal

First trimester (n¼52) Third trimester (n¼32) Delivery (n¼13) Cord (n¼21)

Total saturated 34.6670.94a 38.3970.71b 40.5770.93b 52.9871.63***www

Total n-9 25.970.6 26.170.6 24.470.6 22.271.3***
Total n-6 33.670.7a 29.770.8b 28.770.9b 17.670.8***www

18:2 (n-6) 24.770.6 24.170.7 23.371.0 9.870.8***www

18:3 (n-6) 0.09370.025 0.07670.018 0.12770.052 0.14870.061
20:2 (n-6) 0.02770.014a 0.11770.035b 0.05570.040ab 0.00070.000***
20:3 (n-6) 1.5370.15a 0.7670.13b 0.2170.14b 0.2770.13***
20:4 (n-6) 7.1670.21a 4.6970.18b 4.9770.35b 7.3570.44***www

22:2 (n-6) 0.08670.059 0.00070.000 0.00070.000 0.04170.041
Total n-3 3.3670.13 3.0370.14 3.1870.39 3.6670.34
18:3 (n-3) 0.09370.023a 0.37970.080b 0.07970.054a 0.08570.065***
20:5 (n-3) 0.21770.080a 0.47570.139a 1.13770.417b 1.12270.281*
22:6 (n-3) 3.0570.13a 2.1870.10b 1.9670.13b 2.4570.21

aValues are expressed as means7s.e.m., n¼number/group.
bTukey’s test was used to determine differences between the three groups of maternal plasma after one-way ANOVA. Different letters in a row indicate significant

differences (Po0.05). No superscript letters in a row indicate no significant differences. Statistical comparison between maternal plasma at third trimester and cord

blood plasma is shown by asterisk (*Po0.05; **Po0.01; ***Po0.001) and between maternal plasma at delivery and cord blood plasma, by the w symbol (wPo0.05;
wwPo0.01; wwwPo0.001), and was determined by the Student’s t-test.
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among the groups (Table 2), major differences were found in

individual fatty acids. Thus, the percentage of ALA was

higher at the third trimester of gestation than in any of the

other groups studied, including the cord blood plasma,

whose values did not differ from those of the mothers at

delivery. The percentage of eicosapentaenoic acid (20:5 (n-3),

EPA) did not differ between the first and third trimesters of

gestation but significantly increased at delivery, with values

remaining at this same level in cord blood plasma. However,

the percentage of DHA decreased from the first to the third

trimester of gestation, while values remained stable at

delivery and in cord blood plasma.

A positive linear correlation was found when all individual

values of total saturated fatty acids in maternal plasma were

estimated against vitamin E levels (r¼0.4172, Po0.001),

whereas a negative correlation was found when the values of

total polyunsaturated fatty acids were calculated against

vitamin E levels (r¼�0.3372, Po0.01)

Discussion
Besides confirming previous findings in the maternal

hyperlipidemia, increment in plasma lipophilic antioxidant

vitamins during late pregnancy and changes in fatty acid

profile reveal some new aspects that deserve to be discussed.

The most significant corresponds to major differences found

in some of the studied variables at delivery as compared to

the third trimester. This includes plasma FFA levels, which

almost double at delivery, and would indicate a further

increase in adipose tissue lipolytic acitivity over the activity

already known to be enhanced during the third trimester of

pregnancy (Elliott, 1975). Interestingly, plasma levels of

those lipophilic vitamins known to be stored in adipose

tissue, a-tocopherol (Kardinaal et al, 1993; Burton et al,

1998), lycopene and b-carotene (Brody, 1994) as opposed to

those that are not, retinol (Olson, 2001) and g-tocopherol

(Handelman et al, 1994), also showed a significant increase

in women at delivery as compared to values at the third

trimester of pregnancy. This suggests that the proposed

enhanced breakdown of fat deposits taking place at the time

of delivery could also be responsible for such increases in

those antioxidant lipophilic vitamins in plasma. Due to the

low placental transfer of these compounds (Leger et al, 1998;

Schenker et al, 1998), it may be proposed that this enhanced

concentration of antioxidant lipophilic vitamins in maternal

plasma at the time of delivery assures their appropriate

availability for the fetus at the time of birth, when the risk

for oxidant damage increases and the demand for antiox-

idant protection is essential (Johnson, 1998).

In this study plasma levels of retinol, a-tocopherol, g-
tocopherol, lycopene and b-carotene were lower in cord

blood than in the mothers, which agrees with previous

findings (Yeum et al, 1998; Kiely et al, 1999). The role of

retinol and its metabolites in reproduction and embryonic

development have been clearly established (for a recent

review, see Clagett-Dame & DeLuca, 2002). Thus, the decline

in plasma retinol levels during late pregnancy found here

may reflect its enhanced utilization in favor of the fetus, as

suggested by the enhanced retinol/lipid ratio seen in cord

blood plasma. Transfer of retinol has been reported in

human placenta (Torma & Vahlquist, 1986; Dancis et al,

1992), and the capacity of retinoic acid synthesis and

catabolism by the embryo have been clearly established

(Clagett-Dame & DeLuca, 2002). Furthermore, numerous

genes are known to be regulated by all-trans retinoic acid

during development (Clagett-Dame & Plum, 1997; McCaff-

ery & Dräger, 2000). Thus, since retinol is the only vitamin A

form that supports reproduction and embryonic develop-

ment in full, preservation of fetal retinol levels at the

expense of a decline on the maternal side is of pivotal

importance for appropriate pregnancy outcome.

In agreement with previous reports (Godel, 1989; Dison

et al, 1993) tocopherol levels in cord blood plasma correlated

with cholesterol and triglyceride levels, allowing the lipid-

adjusted a-tocopherol and the total tocopherols (a- plus g-
tocopherol, vitamin E) to agree between cord blood plasma

and the mothers. As shown in other studies (Kiely et al,

1999), and distinct from what occurs with a-tocopherol,

lipid-adjusted values of g-tocopherol were lower in cord

blood plasma than in the mothers. Despite its abundance in

the diet, tissue content and plasma levels of g-tocopherol are

normally much lower than a-tocopherol (Mino et al, 1985).

This is mainly due to the presence of a-tocopherol transfer

protein (a-TTP) in liver (Sato et al, 1991), which preferentially

facilitates the incorporation of a-tocopherol, but not of g-
tocopherol or other forms of vitamin E, into very low density

lipoproteins (VLDL), which are released into the circulation

(Traber & Arai, 1999). The presence of a-TTP in uterus has

recently been demonstrated in mice (Kaempf-Rotzoll et al,

2002), playing an important role in supplying the placenta

and the fetus with a-tocopherol throughout pregnancy.

Although little is known about lipid-soluble vitamin pla-

cental transfer (Moriss et al, 1994), placental transfer of g-
tocopherol may depend, among other factors, on maternal

plasma concentration. Thus, lower levels than a-tocopherol

in maternal plasma would also reflect an even lower

placental transfer capacity for g-tocopherol, therefore ex-

plaining its decreased lipid-adjusted value in cord blood

plasma. Although the functional importance of g-tocopherol

has recently been recognized to be greater than previously

thought (Jiang et al, 2001), its low concentration in cord

plasma would indicate a limited role in adaptations to

extrauterine life in newborns.

Increments in lipophylic antioxidant vitamins during late

pregnancy could be associated with an increase in poly-

unsaturated fatty acids. In fact, although this study found

that the percentage of total n-3 remained unchanged

between the first and the third trimesters of gestation, and

that total n-6 fatty acids decline at the third trimester of

gestation, mainly due to the decline in AA, which agrees

with previous reports (Crastes de Paulet et al, 1992), this is
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not the case if these values are corrected by the actual fatty

acid concentration. We have previously shown that when

expressed as PUFA concentration per plasma volume, its

amount in the different lipoprotein lipid fractions was

higher in pregnant than in nonpregnant women (Herrera,

2002). Since among the different PUFA LA (18:2(n-6)) shows

the highest proportion, and it was found here that its

percentage value did not change between the first- and third-

trimesters in pregnant women, it is expected that its absolute

concentration is enhanced during late pregnancy when

corrected by the increase in plasma lipids (mainly triglycer-

ides) that takes place at this stage. The inverse linear

correlation found here between a-tocopherol and total

polyunsaturated fatty acids would suggest a relationship

between these two variables. Proportional declines of DHA

(22:6(n-3)) and AA (20:4(n-6)) in the mother during late

gestation contrast with their stable (in the case of DHA) or

even increased (in AA) values found in the fetus. This agrees

with the reported selective transfer of these LC-PUFA by the

placenta, carried out by multiple mechanisms yielding the

‘biomagnification’ of these fatty acids within the fetal

circulation (Haggarty, 2002). The synthesis of these fatty

acids from EFA precursors by the fetus cannot be ruled out as

contributing to the high proportion of AA and DHA in fetal

circulation. The capacity for the metabolic elongation and

desaturation of LA and ALA to form AA and DHA,

respectively, has been consistently demonstrated to occur

during the first days of life in humans, including very

premature preterm neonates (Demmelmair et al, 1995;

Carnielli et al, 1996; Salem Jr et al, 1996; Sauerwald et al,

1997; Szitanyi et al, 1999; Uauy et al, 2000), and it has also

been shown to take place in fetal baboons (Su et al, 1999,

2001). Placental transfer of EPA (20:5(n-3)) has not been

reported despite its growth inhibitor action (Sellmayer et al,

1996), its inhibitory effect on human placental membrane

binding of EFA (Dutta-Roy, 2000) and its effect in reducing

the availability of AA and its metabolites by a competition

effect on pathways of EFA metabolism (Dutta-Roy, 1994), all

of this denoting an important and active functional activity.

The synthesis of EPA (20:5(n-3)) from its EFA precursor (ALA,

18:3(n-3)) and/or by the retroconversion of DHA (22:6(n-3)

has been shown to take place in fetal rhesus monkeys

(Greiner et al, 1996), and thus the possibility exists that a

similar mechanism is acting in the human fetus, explaining

the similarity of its concentration in cord and maternal

plasma seen here.

In agreement with previous reports (Crastes de Paulet et al,

1992), the greatest proportion in maternal plasma fatty acids

corresponded to the saturated fatty acids. The enhanced

proportion of these fatty acids in cord blood plasma in

contrast to the limited placental transfer for saturated fatty

acids as compared to PUFA (Campbell et al, 1996; Haggarty

et al, 1997) would indicate an active lipogenesis in the fetus,

as demonstrated in previous studies (Dunlop & Court, 1978).

Similar reasoning could be used to justify the high propor-

tion of oleic acid in cord blood plasma, although slightly

lower than in the mothers during late gestation. Placental

transfer of oleic acid is also lower than that of PUFA

(Campbell et al, 1996; Haggarty et al, 1997), and therefore

its proportional abundance in the fetus may reflect an active

desaturation of stearic acid.

Although the present work has the limitation of the high

number of subject losses during the study, and studies of

larger sample size and carried out in multiple populations are

still needed, the studied population was sufficiently hetero-

genous and representative of healthy pregnant women. We

therefore propose that under normal conditions and besides

specific placental transfer mechanisms, both the enhanced

lipolytic activity and the circulating level of antioxidant

vitamins at delivery may actively contribute to the avail-

ability of both LC-PUFA and these vitamins to the fetus in

preparation for extrauterine life.
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