Trabajo realizado por el equipo de la Biblioteca Digital de CEU-Universidad San Pablo

Me comprometo a utilizar esta copia privada sin finalidad lucrativa, para fines de investigación y docencia, de acuerdo con el art. 37 de la M.T.R.L.P.I. (Modificación del Texto Refundido de la Ley de Propiedad Intelectual del 7 julio del 2006)
Internal standards in the estimation of acetyl-CoA in liver extracts

Emilio Herrera* and Norbert Freinkel.
Department of Medicine, Northwestern University Medical School, Chicago, Illinois 60611

SUMMARY The necessity for adding an internal standard to liver extracts during fluorimetric estimation of acetyl-CoA by the malic dehydrogenase-citrate synthase reaction is demonstrated. Addition of acetyl-CoA completely compensates for the inhibitory action of some tissue components. Values for hepatic acetyl-CoA in fed and fasted rats are given.

KEY WORDS acetyl-CoA — fluorimetric assay — rat — liver — fasting

Appreciation that the "steady-state" concentration of acetyl-CoA in tissues may influence the traffic along alternative metabolic pathways (1-3) has stimulated efforts to obtain measurements of this metabolite. Most have been based on the citrate synthase reaction coupled to the reduction of NAD, as proposed by Wieland and Weiss (2).

Malate + NAD⁺ = NADH + oxaloacetate
Oxaloacetate + acetyl-CoA = citrate + CoA (4)

However, Pearson has emphasized (5) that the coupled assay may seriously underestimate acetyl-CoA since reduction of NAD will be equivalent to the formation of citrate only if the concentration of oxaloacetate is low with respect to that of NADH prior to the addition of citrate synthase. He has derived a curve relating the amount of NAD reduced to the actual amount of acetyl-CoA reacting in the system, and has suggested that the published values for acetyl-CoA should be corrected appropriately.

To offset the limitations of partial reactions and arbitrary "correction factors" we have applied the principle of "internal standards," as recommended by Estabrook and Maitra (6) for the enzymatic estimation of many other metabolites. Internal standards have enabled us to measure acetyl-CoA in tissue extracts directly, despite failure of the citrate synthase reaction to go to completion and variable inhibitions by other tissue components.

Methods. Studies were performed with rats (240-280 g; Charles River Farm Breeding Laboratory, Brookline.

* Juan March Research Fellow and Fellow in Medicine, Thoen-dike Memorial Laboratory and III and IV Harvard Medical Services; Boston City Hospital and Department of Medicine, Harvard Medical School, Boston, Mass., 1965-66. Present address: Northwestern University Medical School, Department of Medicine, 503 East Chicago Avenue, Chicago, Ill. 60611.
to give a mercury vapor line as the source of activating light; emitted light was filtered by the 380 3,000 nm filter accompanying the instrument.

The following reaction mixture, in a final volume of 3 ml, was introduced into each cuvette: 0.2 μmole of NAD; 0.2 μmole of sodium malate; 0.5 μmole of HCl-Tris buffer (pH 8.0); 100 μg of malic dehydrogenase; and the extract from 50 - 150 mg of fresh, powdered liver. All chemicals were obtained from Sigma Chemical Co. (St. Louis, Mo.) and enzymes from Boehringer und Soehne (Mannheim, Germany; distributed by Calbiochem, Los Angeles, Calif.). Cuvettes were maintained at 34°C in the fluorimeter, and fluorescence was recorded continuously after appropriate adjustment of voltages and sensitivities to provide a measurable range of deflections. 50 μg of citrate synthase (EC: 4.1.3.7) was added when the malic dehydrogenase reaction had come to equilibrium, and the subsequent increment in fluorescence was recorded until a new plateau had been established. Internal standards were then employed to translate the changes in fluorescence to absolute values, as follows. To each cuvette, 25 μl of a standard solution of acetyl-CoA (i.e., usually equivalent to about 2.5 mmol of acetyl-CoA) was added, and the augmentation of fluorescence was noted. When a new plateau had been reached, we added another 25 μl of the acetyl-CoA standard to establish that the initial addition of internal standard had not disrupted any of the rate-limiting equilibria in the coupled assay. The unknown amount of acetyl-CoA in the tissue extract was calculated by ratio. The concentrations of acetyl-CoA in standard solutions were verified each day by addition of phosphotransacetylase to concentrated stock solutions in the presence of potassium arsenate and determination of the decrease of optical density at 232 nm (7).

Results and Discussion. Representative fluorimeter tracings with internal standards in the coupled assay are shown in Figs. 1 and 2. Fluorescence was not affected when citrate synthase was added to simple reaction mixtures of malate, NAD, and malic dehydrogenase (Fig. 1). However, the presence of excess malate and NAD profoundly influenced the increase in fluorescence caused by the subsequent addition of acetyl-CoA. As shown in Fig. 1, 2.58 mmol of acetyl-CoA elicited less than half as much of an increment in fluorescence in reaction mixtures containing 0.4 rather than 0.2 μmole of malate and NAD. Fluorimetric responses to added acetyl-CoA could also be reduced by “loading” the system with NADH; equilibrium was reached more slowly under such circumstances.

The above phenomena may have contributed to the variable increases in fluorescence that were observed when constant quantities of acetyl-CoA were introduced as internal standards in the presence of tissue extracts.
or the liver of any one animal, the magnitude of response to the internal standard decreased as the amount of tissue extract included in the reaction mixture increased (Fig. 2). However, this did not compromise analytical accuracy; simple proportional calculation was adequate, for the two halves of this experiment, 40.0 and 9.8 mmoles/g of liver, respectively.

Further efforts were directed towards defining optimum conditions for the preparation of tissue extracts. Whole livers from one set of animals were rapidly excised

TABLE 1 EFFECT OF FASTING* ON "STABLE-STATE" CONCENTRATIONS OF ACETYL-CoA IN RAT LIVER

<table>
<thead>
<tr>
<th>Days of fasting</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Ady weight, g</td>
<td>264.0 ± 6.2</td>
<td>238.4 ± 5.2</td>
<td>219.8 ± 6.3</td>
</tr>
<tr>
<td>Liver weight, g</td>
<td>10.6 ± 0.3</td>
<td>7.2 ± 0.5</td>
<td>6.8 ± 0.3</td>
</tr>
<tr>
<td>Acetyl-CoA, μmol/g liver</td>
<td>32.9 ± 3.2</td>
<td>47.0 ± 1.9</td>
<td>52.7 ± 4.8</td>
</tr>
<tr>
<td>Acetyl-CoA, μmol/liver</td>
<td>348.7 ± 33.9</td>
<td>338.4 ± 13.7</td>
<td>358.4 ± 32.6</td>
</tr>
</tbody>
</table>

* Male rats were deprived of food and permitted unlimited access to water.

Findings after 1 or 2 days of fasting are compared to values in ad lib animals; n denotes number of animals in each category. Significant changes are denoted by:

- a ($P < 0.05$);
- b ($P < 0.01$);
- c ($P < 0.001$).

and then frozen in liquid N$_2$ as described under Methods. While livers from a second set were frozen in situ by immersion of individual lobes in aluminum cups that were filled continuously with liquid N$_2$. Samples frozen by both techniques were broken into small pieces and either homogenized directly in chilled perchloric acid or after first being pulverized in mortars as described in Methods. Values for tissue levels of acetyl-CoA were not significantly different for excision-freezing as opposed to freezing in situ, but the subsequent handling of frozen pieces proved to be critical. About 60% of the acetyl-CoA in tissues was lost when frozen pieces were homogenized without preliminary pulverization. The loss presumably can be ascribed to destruction of intracellular acetyl-CoA during the thawing of the pieces before the perchloric acid had penetrated throughout, since the recovery of extracellular acetyl-CoA, added to frozen tissue prior to homogenization and extraction, ranged from 97.2 to 102.1%

In view of the above, excision-freezing and pulverization of tissues were incorporated into the standard analytical technique. The procedure was applied to measure "steady-state" concentrations of acetyl-CoA in the livers of male rats. Hepatic concentrations in fed animals (Table 1) increased significantly, after 1 or 2
days of starvation, but since liver weights were significantly reduced during this same interval, total hepatic acetyl-CoA was not altered significantly by fasting.

Previously published estimates of acetyl-CoA concentrations in the livers of fed rats have ranged from 17.2 to 35 micromoles/g wet weight (2, 3, 9); the present findings are therefore in concord with the higher values of others.

This work was supported in part by Research Grant AM 10699 and Training Grant AM 5071 from the United States Public Health Service.

Manuscript received 21 April 1967; accepted 14 June 1967.

References