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In this note we revisit an example introduced by T. Jäger in which a Strange Non-
chaotic Attractor seems to appear during a pitchfork bifurcation of invariant curves in
a quasi-periodically forced 1-d map. In this example, it is remarkable that the map is
invertible and, hence, the invariant curves are always reducible.

In the first part of the paper we give a numerical description (based on a precise
computation of invariant curves and Lyapunov exponents) of the phenomenon. The
second part consists in a preliminary study of the phenomenon, in which we prove that
an analytic self-symmetric invariant curve is persistent under perturbations.
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1. Introduction

In this note we focus on the existence of pitchfork bifurcations of invariant curves
in a quasi-periodically forced model introduced by T. Jäger in [5]. Here we use a
rescaled version of this map, namely{

xn+1 = arctan(axn) + b sin θn,

θn+1 = θn + ω,
(1)

where θ ∈ T = R/(2πZ), ω satisfies a Diophantine condition and a > 0. To simplify
notation, let us define ϕ(x, θ) = arctan(ax)+b sin θ. Note that this dynamical system
satisfies several important properties:

(a) For each θ, ∂xϕ(x, θ) > 0 and hence ϕ( · , θ) is invertible and (1) has monotone
fibre maps: ϕ(x, θ) < ϕ(y, θ) if x < y.

(b) For each θ, ϕ( · , θ) has negative Schwarzian derivative: ∂3
xϕ
∂xϕ
− 3

2(∂
2
xϕ
∂xϕ

)2 < 0.

(c) The map (1) is invariant by the symmetry S : (x, θ) 7→ (−x, θ + π).
(d) ϕ(R,T) is bounded.

∗Corresponding author. Email: malmaraz@uchceu.es
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Figure 1. Invariant curves for a = 1.25 and b = 0.75 (left), b = 1.14 (centre) and b = 1.15 (right). The
horizontal axis shows the angle θ and the vertical axis the value x. Attracting curves are displayed in blue

and repelling ones in red.

We stress that property (a) is not satisfied by other classical examples of quasi-
periodically forced 1-D maps such as the quasi-periodically forced logistic map.

There are some previous results for this type of maps. For instance, in [5], corollary
4.3, it is proved that one of the following is true:

(1) There exists an invariant graph self-symmetric by S which is a (continuous)
curve if its Lyapunov exponent is negative.

(2) There exist three invariant graphs, one of them is self-symmetric by S and
the other two are “mirror” images under S. If one of these three graphs is
continuous, then so are the other two. If the graphs are not continuous, the
essential closure (see definition 2.4 in [5]) is the same for all of them.

Direct numerical simulations show evidence that for some range of values of pa-
rameters, a pitchfork bifurcation occurs (see Figure 1). It is remarkable that, for
other ranges of parameters, a strange set seems to appear at the bifurcation point
(see Figure 2). It is known that sometimes invariant curves can be dramatically
wrinkled so that they look as a strange set when they are still smooth (see [9] for
concrete examples). In this case, careful numerical magnifications of the attracting
sets in Figure 2 suggest that all these sets are in fact smooth invariant curves. Still,
it is an open question (that cannot be solved by pure numerical simulations) if the
merging of the branches of the pitchfork bifurcations takes place on a non-smooth
invariant set. We intend with this paper to provide some results and numerical tools
which are able to offer an insight into this question.

The system has two parameters (a and b), and the pitchfork bifurcation appears
when a is fixed to a moderate value and b moves on a suitable range. In this bi-
furcation, there are three invariant curves (two stable, one being the image of the
other by the symmetry S, and one unstable which is self-symmetric) that merge
and become a stable self-symmetric invariant curve, as seen in Figure 1. Now let us
focus on the self-symmetric invariant curve that goes from unstable to stable when
the bifurcation takes place. As long as it exists, this self-symmetric curve can be
labelled by the parameters (a, b) so let us denote by Λ(a, b) its Lyapunov exponent:
if xa,b : T→ R is a parametrization of this curve, then

Λ(a, b) =
1

2π

∫ 2π

0
log

∣∣∣∣∂ϕ∂x (xa,b(θ), θ)

∣∣∣∣ dθ,
where we recall that ϕ(x, θ) = arctan(ax) + b sin θ. As usual, we will refer to the
value λ = exp Λ as Lyapunov multiplier.

2



June 15, 2016 skew

-3

-2

-1

 0

 1

 2

 3

 0  1  2  3  4  5  6

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0  1  2  3  4  5  6

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0  1  2  3  4  5  6

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0  1  2  3  4  5  6

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0  1  2  3  4  5  6

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0  1  2  3  4  5  6

Figure 2. Invariant curves for a = 6.8. Upper row: b = 1.62 (left), b = 1.82 (centre) and b = 1.8204 (right).

Lower row: b = 1.8205 (left), b = 1.84 (centre) and b = 2 (right). Attracting curves are displayed in blue

and repelling ones in red. The axis are the same as in Figure 1.

Hence, for a given (and small) value of a, we call b(a) the value of b corresponding
to the merging of the three invariant curves, such that for the parameter values
(a, b(a)) the map only has a self-symmetric invariant curve with zero Lyapunov
exponent. Now, let us focus on the curve (a, b(a)) of the parameter space that is
well defined as long as there is a (smooth) pitchfork bifurcation. To simplify future
computations, let us parametrize this curve using the arclength parameter of the
(a, b) plane, so we write it as s 7→ Γ1(s) = (a(s), b(s)), being s the arclength pa-
rameter. Moreover, we can extend this definition to self-symmetric invariant curves
corresponding to parameters (a, b) such that the Lyapunov multiplier of the curve
is a given value λ. Therefore, we consider the curve on the parameter space (a, b),
that we write as s 7→ Γλ(s) = (a(s), b(s)), corresponding to parameters for which
the self-symmetric invariant curve has Lyapunov multiplier λ.

In Section 2 we compute the curves of the parameter space defined by the image
of Γλ, for different values of λ. The goal is to display the regions of the parameter
space for which there are regular invariant curves, to isolate regions on which strange
invariant sets could appear. Section 3 is devoted to the proof of the persistence of
self-symmetric invariant curves. This section also serves as a theoretical support for
the computational methods of Section 2.

2. Numerical continuation of invariant curves

Here we focus on the numerical computation of invariant curves with a prescribed
Lyapunov exponent. Let us start by explaining the computation of invariant curves
(the numerical method we will use here is based on the method developed in [7],
which is based on the results in [8]). The considered dynamical system is{

xn+1 = arctan(a xn) + b sin θn,

θn+1 = θn + ω,

3
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and we stress that the computational method is valid for general 1D maps with
quasi-periodic forcing. The goal is to compute a smooth curve θ 7→ x(θ) such that,
for all θ ∈ T, it satisfies x(θ + ω) = arctan(ax(θ)) + b sin θ. The curve θ 7→ x(θ)
will be represented by its (truncated) Fourier series, and the truncation value will
be selected to have a prescribed accuracy (this will be discussed later with more
detail). Note that the self-symmetric condition implies that the average of the curve
must be zero, so we will not include the first Fourier coefficient in the expansions.

2.1. Computation of an invariant curve

The computational method is based on a Newton iteration in the space of Fourier
coefficients. As in any Newton procedure, we start from a set of Fourier coefficients
that correspond to an approximate invariant curve θ 7→ x0(θ). By approximate, we
mean that a norm of the map

θ 7→ r0(θ) = x0(θ + ω)− arctan(ax0(θ))− b sin θ,

is small. As x0 is given by a (finite) set of Fourier coefficients, the Fourier coefficients
of the composition arctan(ax0(θ)) are obtained by computing a (finite) table of
values of x0, {x0(θj)}j , and then applying a Fast Fourier Transform (FFT) to the
values {arctan(x0(θj))}j . Hence, given the Fourier coefficients of x0, it is not difficult
to compute the coefficients of r0, with a complexity of O(N logN), where N denotes
the number of Fourier coefficients. The next step is to look for a map h such that
x1 = x0 + h is a better approximation to the invariant curve. To find h, let us
linearise at x0,

θ 7→ r1(θ) = x1(θ + ω)− arctan(ax1(θ))− b sin θ,

= x0(θ + ω) + h(θ + ω)− arctan(a(x0(θ) + h(θ)))− b sin θ,

= h(θ + ω)− p(θ)h(θ)− q(θ) +O2(|h(θ)|),

where the term O2 denotes the Taylor remainder, and

p(θ) =
a

1 + (ax0(θ))2
, q(θ) = arctan(ax0(θ)) + b sin θ − x0(θ + ω).

Skipping the second order term O2(h), we have that h satisfies the affine equation

h(θ + ω) = p(θ)h(θ) + q(θ). (2)

To find h we use that the linear dynamical system{
hn+1 = p(θn)hn,

θn+1 = θn + ω,
(3)

is reducible: there exists a change of coordinates of the form h = c(θ)y (that is,
linear in h) such that the transformed system is reduced to constant coefficients,{

yn+1 = λyn,

θn+1 = θn + ω,

4
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where λ = p(θ)c(θ)/c(θ+ω) does not depend on θ. Not all the linear quasi-periodic
systems are reducible, but the one considered here is (the reason is that p is smooth
and has no zeros, see [9] for the details). The computation of the reducing transfor-
mation c(θ) follows from

log λ = log p(θ) + log c(θ)− log c(θ + ω), ∀θ ∈ T. (4)

If we denote as {pk}k the Fourier coefficients of log ◦p and {dk}k the ones of log ◦c,

pk :=
1

2π

∫ 2π

0
log(p(z))e−ikz dz, ck :=

1

2π

∫ 2π

0
log(c(z))e−ikz dz.

then (4) can be easily solved by expanding it in Fourier series: The coefficient c0 is
undetermined (so we take it equal to zero), log λ = p0 (note that p0 is the Lyapunov
exponent of (3)), and

ck =
pk

eikω − 1
, k 6= 0. (5)

Once c has been found, we can apply the change h = c(θ)y to the affine equation
(2) so that it takes the form

y(θ + ω) = λy(θ) + q̂(θ),

where q̂(θ) = q(θ)/c(θ). Note that this last equation can be easily solved using the
Fourier coefficients of the involved functions:

yk =
q̂k

eikω − λ
, k 6= 0,

and y0 = 0 (the case k = 0 follows from the symmetries of the problem, see Section 3
for the details). Then, we recover h(θ) = c(θ)y(θ) and we can complete the step of
the Newton method, x1 = x0 + h.

Note that, in this process, the amount of computations is very low. An invariant
curve is stored as an array (of length N) of Fourier coefficients or as an equispaced
table of values (again of length N), the conversion from one format to the other can
be done in a fast and efficient way using FFTs, with a complexity of O(N logN)
operations. Each of the previous steps can be done very efficiently (in O(N) oper-
ations) if the maps are stored in the right format (for instance, the computation
of a table of values of p(θ) = a/(1 + (ax0(θ))

2) is immediate if one has a table of
values of x0, and the computation of c through expression (5) is also trivial if one
has the Fourier coefficients of p). Hence, a single step of Newton method requires
O(N logN) arithmetic operations and O(N) computer memory. This allows to use
large values of N (for instance, larger than 106) which is required to approximate
wrinkled invariant curves.

2.1.1. Error control

Error estimates can be easily obtained in the following form. Given an approxima-
tion x̃ to an invariant curve, let us define r̃(θ) = x̃(θ + ω)− arctan(ax̃(θ))− b sin θ.
Then, we can estimate the value maxθ |r̃(θ)| by evaluating r̃ in a mesh finer than

5
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the one used to compute x̃. If this value is larger than a prescribed threshold (say,
10−10), then the value of N is enlarged and the computation is repeated with this
new N . For more details about these error estimates, see [3, 6].

2.2. Continuation

We are not interested in the computation of a single invariant curve but in the
computation of families of self-symmetric invariant curves. More concretely, let Ω
to be an open set of the parameters (a, b) for which there exists a self-symmetric
invariant curve (as we will se in Section 3, if a self-symmetric invariant curve exists
for a value (a, b), it exists for a neighbourhood of it). We are interested in curves
of the parameter space, s 7→ Γλ(s) = (a(s), b(s)), corresponding to parameters for
which the self-symmetric invariant curve has Lyapunov multiplier λ.

As it has been mentioned before, we will focus on the system,{
xn+1 = arctan(a xn) + b sin θn,

θn+1 = θn + ω,

where ω = (
√

5 − 1)π is the golden mean. Our goal is to provide a numerical
approximation to the coefficient s = (s1, s2, . . .) of the Fourier series of a self-
symmetric invariant curve with a given Lyapunov exponent,

x(θ, s) =
∑

k∈N\{0}

ske
(2k−1)θ i +

∑
k∈N\{0}

ske
(1−2k)θ i. (6)

This function must verify the equation for being an invariant curve,

F (θ, a, b, s) = x(θ + ω, s)− arctan(ax(θ, s))− b sin θ = 0 for all θ ∈ T, (7)

and the Lyapunov multiplier equal to a given value λ. The approximation of the
invariant curve can be calculated truncating the Fourier series and finding the so-
lution of the system given by equation (7) for values of θ on an equally distributed
mesh, with an extra equation asking the Lyapunov multiplier to be equal to λ. This
is equivalent to find the zeros of the following function,

(s, a, b) 7→ (F ( · , a, b, s), L(a, b, s)− log λ), (8)

where now s denotes a truncated list of 2m coefficients, and L is the approximation
to the Lyapunov exponent obtained by numerical integration (using the trapezoidal
rule) of the log of the derivative of the map along the curve,

L(a, b, s) =
π

m

2m−1∑
j=0

log

∣∣∣∣ a

1 + a2 x(θj , s)2

∣∣∣∣ .
Newton method can be used to find numerically the zeros of (8). For the sake
of efficiency, we will use the reducibility of the invariant curves: Note that as we
approximate the curve by N = 2m Fourier coefficients, the linear system that
appears at each step of the Newton method is of dimension N , which is prohibitive

6



June 15, 2016 skew

for large values of N . On the other hand, when the linear behaviour around the
(approximated) curve is reduced to constant coefficients, this linear system has a
diagonal matrix, which is solved in only N operations.

As example of continuation, let us fix the parameter a and let us take b as the
continuation parameter. Hence, the unknowns are the parameter b and the 2n coeffi-
cients s. At Newton step n, the correction of xn and bn are denoted by hx = xn+1−xn
and hb = bn+1 − bn, and they satisfy

hx(θ + ω)− ahx(θ)

1 + (axn(θ))2
− hb sin θ = −xn(θ + ω) + arctan(axn(θ)) + bn sin θ,

π

m

2m−1∑
j=0

−2a2xn(θj)

1 + (axn(θj))2
hx(θj) = log λ− L(a, bn, xn).

We can use Lemma 3.7 to obtain a function c such that it reduces the linear part
to constant coefficients, a

1+(a xn(θ))2
c(θ) = λnc(θ + ω). Defining hy(θ) = hx(θ)/c(θ),

the previous system becomes

hy(θ + ω)− λnhy(θ)−
hb sin θ

c(θ + ω)
=
−xn(θ + ω) + a arctan(axn(θ)) + bn sin θ

c(θ + ω)
, (9a)

π

m

2m−1∑
j=0

−2a2xn(θj)c(θj)

1 + (axn(θj))2
hy(θj) = log λ− L(a, bn, xn). (9b)

The following step consists in isolating the value hb. For this, the equation (9a)
is decoupled in two equations with solution rb and r0 such that hbrb + r0 is the
solution of (9a) for any value hb by the superposition principle,

rb(θ + ω)− λnrb(θ) =
sin θ

c(θ + ω)
,

r0(θ + ω)− λnr0(θ) =
−xn(θ + ω) + a arctan(axn(θ)) + bn sin θ

c(θ + ω)
.

These equations can be approximated by the same schema as Lemma 3.9 to obtain
a good numerical approximation to their solution. Substituting hbrb + r0 in the
integral (9b), we obtain a linear equation for hb so that it can be isolated,

hb =
log λ− L(a, bn, xn)− π

m

∑2m−1
j=0 z(θj)r0(θj)

π
m

∑2m−1
j=0 z(θj)rb(θj)

,

where z(θj) = −2a2xn(θj)c(θj)
1+(axn(θj))2

. This value hb and hy(θ) = hbrb(θ)+r0 are the solution

of equations (9). All these ideas above can be implemented applying a Fast Fourier
Transform in a sequential way. For this algorithm only some vectors need to be
stored, being the memory used of order the size of the terms in the Fourier series.
In contrast solving directly the zeros of the function (8) with a Newton method, a
complete matrix of size the number of terms in the Fourier series must be entered
in memory, being quite memory-demanding for this reason.
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Figure 3. Summary of the computation of self-symmetric invariant curves with zero Lyapunov exponent.

The continuation of invariant curves with zero Lyapunov exponent has been per-
formed and the results are displayed on Figure 3(a), being this continuation a regular
curve on the parameter plane (a, b). The situation changes at the endpoint of this
curve where algorithm is stopped since continuation cannot be performed since the
error is too big. Note that the length of the invariant curves during this continuation
seems to have a vertical asymptote when approaching this point, see Figure 3(b).
The last computed invariant curve with zero Lyapunov exponent is shown in Fig-
ure 3(c), where nearly 49× 106 Fourier coefficients have been used in the computa-
tion. Although the curve is still analytic, it shows a graph very similar to a typical
non-rectifiable curve. Consequently, continuation of analytic self-symmetric invari-
ant curves is ended and an invariant symmetric curve with unbounded variation
is suggested to appear at the limit. Figure 4 shows curves of parameters (a, b) for
which there is a self-symmetric invariant curve with a given (not necessarily zero)
Lyapunov exponent. The zone without curves is due to the fact that, when the error
is larger than 10−7, the computation is stopped.
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Figure 4. Plot in the space of parameters (a, b). The blue curves at the bottom part of the plot correspond

to values of (a, b) with an invariant self-symmetric curve with positive Lyapunov exponent. The green curves
in the upper part correspond to invariant self-symmetric curves with negative Lyapunov exponent. The short

magenta curve in between contain the values of (a, b) for which the system has a self-symmetric invariant
curve with zero Lyapunov exponent.

3. Persistence of self-symmetric invariant curves

In this Section we focus on discrete dynamical systems which can be written as an
odd function φ = φ(x) plus a quasi-periodic forcing ψ = ψ(θ) with the symmetry
ψ(θ + π) = −ψ(θ), {

xn+1 = φ(xn) + ψ(θn),

θn+1 = θn + ω,
(10)

where ω satisfies a Diophantine condition: If γ and τ are positive numbers, we
assume that ω verifies that

|kω − 2πm| ≥ γ

|k|τ
, ∀(m, k) ∈ Z× (Z \ {0}). (11)

An analytic function θ ∈ T 7→ x(θ) ∈ R is said to be an invariant curve of (10) if

x(θ + ω) = φ(x(θ)) + ψ(θ), for all θ ∈ T. (12)

We introduce the translation operator Tω defined as Tω(x)(θ) = x(θ+ω). With this
notation, invariant curves satisfy the functional equation

Tωx = φ ◦ x+ ψ.

This system is invariant with respect to the symmetry S : (x, θ) 7→ (−x, θ + π).
Hence, if x(θ) is a invariant curve of (10), then −x(θ+π) is also an invariant curve.
A self-symmetric invariant curve of (10) with respect to the symmetry of the system

9
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1

2

(θ, x(θ))

(θ + π,−x(θ))

θ

θ + π

0 2πππ/2 3π/2

θ

x

Figure 5. The symmetry of the system (θ, x) 7→ (θ + π,−x) implies that given an invariant curve, there is
an invariant curve associated by means of this transformation.

satisfies that x(θ) = −x(θ + π) for all θ ∈ T.
Several spaces of analytic functions are needed. If ρ > 0, the space Hρ denotes

the set of real analytic and 2π-periodic functions defined on the (closed) complex
strip Kρ := {z ∈ C s.t. |Im (z) | ≤ ρ}, endowed with the sup norm: if x ∈ Hρ,
‖x‖ρ = max

z∈Kρ
|x(z)|. Other notation for spaces are given by S −

ρ which denotes the

set of real analytic functions f such that f(z + π) = −f(z) for all z ∈ Kρ, and S +
ρ

denotes the set of functions π-periodic on Kρ.
The results in this section are based on KAM methods, see [1, 2, 4, 8].

Theorem 3.1. Let R, I and ρ be positive numbers and U := (−R,R) + i(−I, I).
Let ω be a positive number which fulfills the Diophantine condition (11). Let φ be a
odd analytic function on U such that the derivative is not a negative real number,
i.e., φ′(U) ⊆ C\]−∞, 0] and φ(−z) = −φ(z) for all z ∈ U . Let ψ belong to S −

ρ .

Then, there exists a constant C
[3.1]
ω such that if there exists x0 ∈ S −

ρ with
x0(Kρ) ⊆ U and δ with 0 < δ < ρ such that

‖Tωx0 − φ ◦ x0 − ψ‖ρ < d
exp(−δ−τ−1C [3.1]

ω (1 + ‖ log ◦φ′‖C 0(U)))

1 + ‖φ′′‖C 0(U)

(13)

where

d :=
1

2
min{R− max

z∈Kρ
|Re(x0(z))|, I − max

z∈Kρ
|Im(x0(z))|, 1},

then there exists x ∈ Sρ0−δ with Tωx = φ ◦ x+ ψ.

Here we focus on the particular case φ(x) = f(ax) and ψ = bg(θ), where a > 0
and b are parameters.

Corollary 3.2. Let f be an analytic function on R such that, for all x ∈ R,
f ′(x) > 0 and f(−x) = −f(x). Let g be an analytic function on R which verifies,
for all θ ∈ T, g(θ + π) = −g(θ). Moreover, we assume that ω is a Diophantine
number.

If there exist x0 analytic function on R and values a0 ∈ R+ \ {0} and b0 ∈ R such
that x0(θ + ω) = f(a0 x0(θ)) + b0 g(θ) and x0(θ + π) = −x0(θ), then there exist a

10
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neighbourhood of (a0, b0) and ρ > 0 such that for all (a, b) in that neighbourhood
there exist an analytic function xa,b ∈ S −

ρ which verifies

xa,b(z + ω) = f(a xa,b(z)) + b g(z)

for all z ∈ Kρ.

According to this corollary, invariant analytic curves are persistent under some
symmetric conditions. It is known (see [9] for a detailed discussion) that invariant
curves with non-zero Lyapunov exponent are persistent in the case of invertible
skew-product. The main point of the present result is that it does not require any
condition on the Lyapunov exponent of the curve so, in particular, it can be zero.

It is possible to prove that the solutions provided by the corollary depend on the
parameters a and b in a continuous way, but we have consider that this is a mere
technicality whose proof can be easily done by the reader.

The scheme of the proof follows closely the numerical method used in Section 2.
Or, in other words, the numerical method can be seen as a computer implementation
of the proof of Theorem 3.1. In Section 3.1 we give estimates for the solution of
the linearized equation that appears at each step of the Newton method, and in
Section 3.2 is devoted to the convergence of the Newton scheme.

3.1. Affine skew products

This section is devoted to the study of the affine skew products that appear at each
Newton iteration. These skew products are given by the equations{

xn+1 = p(θn)xn + q(θn)

θn+1 = θn + ω
(14)

where ω is Diophantine (11), q belongs to S −
ρ and p is a 2π periodic function and

belongs to the set of nonnegative functions on Kρ in Hρ, i.e.

Pρ := {p ∈Hρ : p(Kρ) ⊆ C\]−∞, 0]}.

In fact, in the context of this paper, as p(θ) = φ′(x(θ)) where φ is real analytic, odd,
and x is self-symmetric (x(θ+π) = −x(θ)), we have that p is a π periodic function.

To simplify the notation most of the results are written using operators. We recall
that the translation operator Tω : x ∈ Hρ 7→ Hρ is defined by Tωx(z) = x(z + ω)
for all z ∈ Kρ. The invariant curves of (14) verify the equation Tωx = p · x + q
where p ∈Pρ ∩S +

ρ , q ∈ S −
ρ and ω Diophantine. As usual, the supremum norm of

functions on Kρ will be denoted by ‖ · ‖ρ.
During the following sections, several constants mainly depending on the fre-

quency ω are defined, in order to be able to trace the constants in inequalities,
the superscripts are indicating the lemma where the constant is defined and the
subscripts point out the dependencies of the constant.

The following are technical lemmas that are similar to the ones in Section 4 of [1]
used to prove KAM theory. They are used in a similar way for the proof of the main
result that the one done by Arnold in 1963, but some of them are more specific to
prove the theorem presented here (see also [8]). The proof of these lemmas can be
found in the appendices

11
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Lemma 3.3. If f real 2π–periodic analytic function on Kρ, then∣∣∣∣ 1

2π

∫ 2π

0
f(z)e−ikz dz

∣∣∣∣ ≤ ‖f‖ρe−|k|ρ.
Lemma 3.4. Let ρ > 0, δ ∈ (0, ρ) and {fk}k∈Z be a sequence of analytic functions on
Kρ−δ. If for all δ there exists a sequence {Mk(δ)}k∈Z of positive real numbers with
‖fk‖ρ−δ ≤Mk(δ) and

∑
k∈ZMk(δ) is convergent, then f(z) =

∑
k∈Z fk(z) converges

to an analytic function on the interior of Kρ, K̊ρ and ‖f‖ρ−δ ≤
∑

k∈ZMk(δ) for all
δ ∈ (0, ρ).

Lemma 3.5. If ω ∈ R verifies the Diophantine condition (11) and λ > 0, then

1

|eikω − λ|
≤ π

γ
|k|τ ∀k ∈ Z \ {0}, (15)

Lemma 3.6. Let τ , δ be positive real numbers. Then the series
∑

k∈Z\{0} |k|τe−|k|δ

is convergent and there exists a constant C
[3.6]
τ depending on τ such that∑

k∈Z\{0}

|k|τe−|k|δ ≤ C [3.6]
τ δ−τ−1 (16)

The affine equation (14) is solved by reducing the linear part p to constant coef-
ficients. Next lemma contains the estimates for such reduction.

Lemma 3.7. If p ∈ Pρ, then for all δ > 0 there exists a function c ∈ Hρ−δ such
that

p(z)c(z) = λ c(z + ω)

for all z ∈ Kρ−δ where λ = exp( 1
2π

∫ 2π
0 log(p(z)) dz). Moreover, there exists a con-

stant C
[3.7]
ω such that

max

{
‖c‖ρ−δ,

∥∥∥∥1

c

∥∥∥∥
ρ−δ

}
≤ exp(C [3.7]

ω ‖ log ◦p‖ρδ−τ−1).

Proof. Let us consider the principal value of the logarithm defined on C\]−∞, 0].
The function log ◦p is analytic on Kρ, because of the condition p(Kρ) is a subset of
C\] −∞, 0]. Since log ◦p ∈ Hρ, there exists a sequence {pk}k∈Z ⊆ C such that for
all z ∈ Kρ,

log(p(z)) =
∑
k∈Z

pke
ikz, with pk :=

1

2π

∫ 2π

0
log(p(z))e−ikz dz.

Note that p0 = log λ. This sequence has exponential decay according to Lemma 3.3,
|pk| ≤ e−kρ‖ log ◦p‖ρ. Expanding in Fourier series, it is easy to check that the

12
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equation log(p(z)) + d(z) = p0 + d(z + ω) has the following formal solution

d(z) := d0 +
∑

k∈Z\{0}

pk
eikω − 1

eikz,

for any d0 ∈ C. For the sake of simplicity we choose d0 = 0. Let us see that this
series defines an analytic function on a suitable domain. Using Lemma 3.5 and the
decay of the analytic functions on Kρ provided by Lemma 3.3 we have that, for all
z ∈ Kρ−δ,∣∣∣∣ pk

eikω − 1
eikz

∣∣∣∣ ≤ π

γ
|k|τ‖ log ◦p‖ρe−|k|ρe|k|(ρ−δ) =

π

γ
‖ log ◦p‖ρ|k|τe−|k|δ.

Since the series
∑

k∈Z\{0} |k|τe−|k|δ is convergent for any δ > 0, applying Lemma 3.4,

d is an analytic function on K̊ρ, and the bound provided by Lemma 3.6,

‖d‖ρ−δ ≤
π

γ
‖ log ◦p‖ρ

∑
k∈Z\{0}

|k|τe−|k|δ ≤ π

γ
‖ log ◦p‖ρC [3.6]

τ δ−τ−1

= C [3.7]
ω δ−τ−1‖ log ◦p‖ρ,

being C
[3.7]
ω = π

γC
[3.6]
τ . So, c(z) = ed(z) is an analytic function on K̊ρ such that

ep0c(z + ω) = p(z)c(z) and, moreover,

|c(z)| ≤ e|d(z)| ≤ exp(C [3.7]
ω ‖ log ◦p‖ρ δ−τ−1), ∀z ∈ Kρ−δ.

As 1/c(z) = e−d(z), we can bound the norm of 1/c with the same estimates as c.

The following lemma is to find the invariant curve of an affine system after its
linear part has been reduced to a constant

Lemma 3.8. Let ρ and λ be positive numbers and ω a Diophantine number, see
(11). If q ∈ Hρ such that

∫ 2π
0 q(z) dz = 0 then, for all δ > 0 with 0 < δ < ρ, there

exists a unique x ∈Hρ−δ such that
∫ 2π
0 x(z) dz = 0 and

x(z + ω) = λx(z) + q(z), ∀z ∈ Kρ−δ (17)

Moreover, there exists a constant C
[3.7]
ω such that

‖x‖ρ−δ ≤ C [3.7]
ω δ−τ−1‖q‖ρ.

If q ∈ S −
ρ , then x ∈ S −

ρ−δ.

Proof. There exists a sequence {qk}k∈Z ⊆ C such that q(z) =
∑

k∈Z\{0}

qke
ikz for all

z ∈ Kρ with qk := 1
2π

∫ 2π
0 q(z)e−ikz dz. Let us define formally the solution of (17)

13
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x(z) :=
∑

k∈Z\{0}

qk
eikω − λ

eikz

Because of Lemma 3.5 for a Diophantine number and the exponential decay of
analytic functions (Lemma 3.3), it is possible to estimate the term of the series∣∣∣∣ qk

eikω − λ
eikz

∣∣∣∣ =
|qk||eikz|
|eikω − λ|

≤ π

γ
|k|τ‖q‖ρe−ρ|k|e|k|(ρ−δ) =

π

γ
‖q‖ρ|k|τe−|k|δ,

for z ∈ Kρ−δ. The series
∑

k∈Z\{0} |k|τe−|k|δ is convergent. By Lemma 3.4, the series

defining x(z) converges on K̊ρ and the following bound is given

‖x‖ρ−δ ≤
π

γ
‖q‖ρ

∑
k∈Z\{0}

|k|τe−|k|δ ≤ π

γ
‖q‖ρC [3.6]

τ δ−τ−1 = C [3.7]
ω δ−τ−1‖q‖ρ,

being C
[3.7]
ω = C

[3.6]
τ π/γ, we have chosen C

[3.7]
ω instead of C

[3.8]
ω , since it is the same

constant of the previous lemma. Indeed, the series is a solution of the equation

x(z + ω)− λx(z) =
∑
z∈Z

qke
ikω

eikω − λ
eikz −

∑
k∈Z

λqk
eikω − λ

eikz +
∑
k∈Z

qke
ikz = λx(z) + q(z)

for all z ∈ K̊ρ. Moreover, for q ∈ S −
ρ the term with even indices are null. So the

series x(z) either and x ∈ S −
ρ−δ for all δ ∈ (0, ρ).

Uniqueness: We assume x1 and x2 are two solutions for (17). The difference
between them is y(z) := x1(z) − x2(z) verifies the equation y(z + ω) = λg(z) for

all z ∈ Kρ−δ and
∫ 2π
0 y(z) dz = 0. Since, y is continuous and

∫ 2π
0 y(z) dz = 0, there

exists a z0 ∈ [0, 2π] such that y(z0) = 0. With the equation y(z + ω) = λy(z) and
the periodicity of y, we get y(z + kω + j 2π) = 0. As z0 + Zω + 2πZ is a dense set
in R, we conclude that y(z) = 0 for all z ∈ Kρ−δ.

Lemma 3.9. Let ρ be a positive number, ω ∈ R such that verifies (11) p ∈Pρ∩S +
ρ ,

q ∈ S −
ρ , then for all δ > 0 there exists an unique function x ∈ S −

ρ−δ such that

x(z + ω) = p(z)x(z) + q(z), ∀z ∈ Kρ−δ. (18)

The solution of (18) is denoted by η(p)q in the following sections. Moreover, there

exists a constant C
[3.9]
ω fulfilling the following estimate:

‖η(p)q‖ρ−δ ≤ exp(C [3.9]
ω (1 + ‖ log ◦p‖ρ)δ−τ−1)‖q‖ρ. (19)

Proof. The number ω̃ = 2ω verifies |k(2ω) − 2πm| ≥ γ

|2k|τ
=

γ̃

|k|τ
with γ̃ = γ2−τ

and C
[3.5]
ω̃ = C

[3.5]
ω 2τ and, analogously, C

[3.7]
ω̃ = C

[3.7]
ω 2τ .

The function z 7→ p(z/2) is analytic on K2ρ and it does not take negative or zero
values. So, that function belongs to P2ρ and by Lemma 3.7 for δ > 0 , there exist

14
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c ∈H2ρ−δ and λ > 0 such that λc(z + 2ω) = p(z/2)c(z) for all z ∈ K2ρ−δ and

max{‖c‖2ρ−δ, ‖
1

c
‖2ρ−δ} ≤ exp(C

[3.7]
ω̃ ‖ log ◦p‖ρδ−τ−1) = exp(C [3.7]

ω ‖ log ◦p‖ρ2τδ−τ−1).

We define the function d ∈ S −
ρ−δ/2 by the quotient

d(z) :=
q(z)

c(2(z + ω))
, ∀z ∈ Kρ−δ/2.

Indeed, d is analytic since c is not vanished on K2ρ−δ, 2π–periodic and

d(z + π) =
q(z + π)

c(2(z + π + ω))
=

−q(z)
c(2(z + ω))

= −d(z), ∀z ∈ Kρ−δ/2.

By Lemma 3.8 there exists a function y ∈ S −
ρ−δ such that y(z + ω) = λy(z) + d(z)

and

‖y‖ρ−δ ≤ C [3.7]
ω (

δ

2
)−τ−1‖d‖ρ−δ/2 ≤ C [3.7]

ω 2τ+1δ−τ−1 exp(C [3.7]
ω ‖ log ◦p‖ρ2τδ−τ−1)‖q‖ρ

The function x(z) := c(2z)y(z) belongs to Hρ−δ and verifies

x(z + π) = c(2(z + π))y(z + π) = c(z)(−y(z)) = −x(z),

x(z + ω) = c(2(z + ω))y(z + ω) = λc(2z + 2ω)y(z) + c(2z + 2ω)d(z) =

= p(2z/2)c(2z)y(z) + q(z) = p(z)x(z) + q(z),

and the estimate for all z ∈ Kρ−δ

|x(z)| ≤
(

max
z∈K2ρ−δ

|c(z)|
)
|y(z)|

≤ exp(C [3.7]
ω ‖ log ◦p‖ρ2τδ−τ−1)C [3.7]

ω 2τ+1δ−τ−1 exp(C [3.7]
ω ‖ log ◦p‖ρ2τδ−τ−1)‖q‖ρ

≤ C [3.7]
ω 2τ+1δ−τ−1 exp(C [3.7]

ω ‖ log ◦p‖ρ2τ+1δ−τ−1)‖q‖ρ.

taking C
[3.9]
ω = C

[3.7]
ω 2τ+1 and using that t ≤ et for t positive real numbers, the

estimation (19) is proved.
Uniqueness: Analogous to the uniqueness in the Lemma 3.8.

Lemma 3.9 means that there exists a functional η : Pρ → L (S −
ρ ,S

−
ρ−δ) such

that η(p)q with p ∈ Pρ and q ∈ S −
ρ−δ is the only function such that Tω(η(p)q) =

p·(η(p)q)+q. Checking the linearity of the function η(p) is trivial and the continuity
is got using Cauchy’s inequality.

3.2. Conditions for the convergence of Newton method

The key of the main theorem in this paper is to find a solution of the equation of the
invariant curve by Newton method scheme, once a good enough approximation to
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the solution is provided. The difficult point is to prove is that the quadratic conver-
gence of the Newton method overcomes the slight loss of the exponential decay of
the Fourier coefficients produced for each iteration. These techniques are analogous
to the conventional KAM theory. However, an adaptation to the framework of this
paper is needed, being that the aim of this section.

The proof of the following lemma can be found in the Appendix.

Lemma 3.10. Let U an open set on C and φ an analytic function on U . If x1 and
x0 belong to the set Uρ := {x ∈Hρ : x(z) ∈ U ∀x ∈ Kρ} then,

‖φ ◦ x1 − φ ◦ x0 − (φ′ ◦ x0) · (x1 − x0)‖ρ ≤
1

2
‖φ′′‖C 0(U)‖x1 − x0‖

2
ρ. (20)

The function whose zeros are invariant curves of is F (x) = Tωx−φ◦x−ψ. Taking
the derivative in an adequate functional space, we obtain DF (x)h = Tωh−(φ′◦x)h.
The Newton method scheme is given by the equation DF (xn)(xn+1−xn) = −F (xn).
Expanding both terms, an equation of the type studied by Lemma 3.9 is obtained:

Tωxn+1 − (φ′ ◦ xn)xn+1 = Tωxn − (φ′ ◦ xn)xn − Tωxn + φ ◦ xn + φ, (21)

being φ and ψ such that Lemma 3.9 can be applied.

Proof of Theorem 3.1. The exponential decay for every iteration decreases a small
amount, δk. The sum of all of the partial loss of exponential decays must be the over-
all decreasing in the exponential decay, δ. The analyticity width in the k iteration
is denoted by ρk,

δk :=
δ

(π
2

6 − 1)(k + 1)2
and ρk := ρk−1 − δk with k ≥ 1.

Indeed, using that

∞∑
k=1

1

k2
=
π2

6
, we have that

∞∑
k=1

δk =
δ

π2

6 − 1

∞∑
k=1

1

(k + 1)2
= δ. A

exponential decay converges to zero faster that δk, hence the series δ−τ−1k 2−k−1 is
convergent

∞∑
k=1

δ−τ−1k 2−k+1 = (π2/6− 1)τ+1δ−τ−1
∞∑
k=1

(k + 1)2(τ+1)2−k+1 = Sδ−τ−1,

where S := (π2/6− 1)τ+1
+∞∑
k=1

(k + 1)2(τ+1)2−k+1.

For simplicity in the notation we define α = C
[3.9]
ω (1+‖ log ◦φ′‖C 0(U)) and C

[3.1]
ω =

C
[3.9]
ω S. With this notation the condition (13) becomes ‖Tωx0 − φ ◦ x0 − ψ‖ρ <
d

1+‖φ′′‖ exp(−δ−τ−1Sα).

We define recursively the following sequence xn which are the solutions of (21)
for all the iterations

xn+1 = xn − η(φ′ ◦ xn)(Tωxn − φ ◦ xn − ψ). (22)

16
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In order to check that xn ∈Hρn is well-defined, we are going to prove by induction
for n ≥ 0 that

(H-1)n xn(Kρn) ⊆ U

(H-2)n ‖xn+1 − xn‖ρn+1
≤ d2

n

1 + ‖φ′′‖C 0(U)

exp

(
−α2n

∞∑
k=n+2

δ−τ−1k 21−k

)

The condition (H-1)0 is one of the hypothesis of the lemma and (H-2)0 is proved by
means of Lemma 3.9 and condition (13)

‖x1 − x0‖ρ1 = ‖η(φ′ ◦ x0)(Tωx0 − φ ◦ x0 − ψ)‖ρ1 ≤
≤ exp(δ−τ−11 C [3.9]

ω (1 + ‖ log ◦φ′ ◦ x0‖ρ))‖Tωx0 − φ ◦ x0 − ψ‖ρ ≤

≤ exp(δ−τ−11 α)
d

1 + ‖φ′′‖C 0(U)

exp(−δ−τ−1Sα) ≤

≤ exp(δ−τ−11 α)
d

1 + ‖φ′′‖C 0(U)

exp(−

( ∞∑
k=1

δ−τ−1k 2−k+1

)
α) ≤

≤ d

1 + ‖φ′′‖C 0(U)

exp(−

( ∞∑
k=2

δ−τ−1k 2−k+1

)
α)

Obviously, we have also the estimate ‖x1 − x0‖ρ1 ≤ d.
We assume that (H-1)n and (H-2)n. Because of (H-2)n, we have that xn+1 ∈Hρn+1

with the definition given for the sequence δn. Now, we prove that (H-1)n and (H-2)n
imply (H-1)n+1.

From the hypothesis (H-2)k with k ≤ n is hold that ‖xk+1 − xk‖ρn+1
≤ d2

k

for
k ≤ n. With this, we have the estimate for all z ∈ Kρn+1

|Re(xn+1(z))| ≤
n∑
j=0

|Re(xn+1−j(z))− Re(xn−j(z))|+ |Re(x0(z))| ≤

≤
n∑
j=0

‖xn+1−j − xn−j‖ρn+1
+R− 2d

≤
n∑
j=0

d2
n−j

+R− 2d ≤
∞∑
j=1

dj +R− 2d ≤ d
∞∑
j=0

(
1

2
)j +R− 2d ≤ R.

The imaginary part has a similar estimation and it is proved in analogous way.
Since φ′(U) ⊆ C \ (−∞, 0] and φ′ is an even function, Lemma 3.9 implies that

φ′ ◦ xn+1 belongs to Pρ ∩S +
ρ and we have that

‖xn+2 − xn+1‖ρn+2
= ‖η(φ′ ◦ xn+1)(Tωxn+1 − φ ◦ xn+1 − ψ)‖ρn+2

(23)

≤ exp(C [3.9]
ω (1 + ‖ log ◦φ′ ◦ xn+1‖ρn+1

)δ−τ−1n+2 )‖Tωxn+1 − φ ◦ xn+1 − ψ‖ρn+1

≤ exp(αδ−τ−1n+2 )‖Tωxn+1 − φ ◦ xn+1 − ψ‖ρn+1
.

We have the following relation, applying the shift operator to the definition of the

17
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sequence (22),

Tωxn+1 = Tωxn − Tωη(φ′ ◦ xn)(Tωxn − φ ◦ xn − ψ) =

= Tωxn − (φ′ ◦ xn) · η(φ′ ◦ xn)(Tωxn − φ ◦ xn − ψ)− Tωxn + φ ◦ xn + ψ =

= (φ′ ◦ xn) · (xn+1 − xn) + φ ◦ xn + ψ.

So, Tωxn+1−φ◦xn+1−ψ = −φ◦xn+1+φ◦xn+(φ′ ◦xn) ·(xn+1−xn) and, returning
to the estimation (23), we have that

‖xn+2−xn+1‖ρn+2
≤ exp(αδ−τ−1n+2 )‖φ ◦xn+1−φ ◦xn− (φ′ ◦xn+1) · (xn+1−xn)‖ρn+1

.

Now, Lemma 3.10 implies that

‖xn+2 − xn+1‖ρn+1
≤ exp(αδ−τ−1n+2 )

1

2
‖φ′′‖C 0(U)‖xn+1 − xn‖2ρn+1

.

and, by the induction hypothesis (H-1)n, we conclude that

‖xn+2 − xn+1‖ρn+1
≤ exp(αδ−τ−1n+2 )

1

2
‖φ′′‖C 0(U)

(
d2

n

1 + ‖φ′′‖C 0(U)

exp(−α
∞∑

k=n+2

δ−τ−1k 2n+1−k)

)2

≤ d2
n+1

1 + ‖φ′′‖C 0(U)

exp(−α
∞∑

k=n+3

δ−τ−1k 2n+2−k)

The sequence {xn}n∈N is Cauchy in C 0(Kρ0−δ), since

‖xn − xm‖ρ0−δ ≤
n∑

k=m+1

‖xk − xk−1‖ρk <
n∑

k=m

(
1

2
)2
k−1

(24)

and the series
∑∞

k=0(
1
2)2

k−1

converges. Therefore, xn converges to a continuous func-
tion x on the compact Kρ0−δ ∩ ([−jπ, jπ] + iR) for any j ∈ N. Taking limits on

(24) ‖xn − x‖ρ0−δ <
∑∞

k=n(12)2
k−1

and xn converges to x for any compact on K̊ρ.

Therefore, x is analytic on K̊ρ.
The function x ∈ S −

ρ−δ because it is the limit of a sequence in a closed set. The
equation Tωx = φ ◦ x+ ψ is fulfilled due to be the solution of the Newton method
scheme.

Proof of Corollary 3.2. We can assume a0 = 1. Obviously, the set x0(R) =
x0([0, 2π]) is compact, and there exists A > 0 such that x0([0, 2π]) is a subset
of [−A,A]. Since, the function f is analytic in [−A,A], we can extend the defined
function f to a set U1 = [−A− ε, A + ε] + i[−ε, ε] where the function f is analytic
and the real part of the derivative is nonnegative, i.e. Re(f ′(z)) ≥ 0 for z ∈ U1.
Moreover, there exists a M > 0 such that the function and the two first derivatives
are bounded by M , i.e. |f(z)| ≤M , |f ′(z)| ≤M and |f ′′(z)| ≤M for all z ∈ U1.

There exists ρ > 0 and ε > 0 such that the function x0 and g are extended to an
analytic function and the set x0(K2ρ) is included in the set

U = [−A− ε/2, A+ ε/2] + i[−ε/2, ε/2]

18
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and there is a positive number L > 0 such that |g(z)| < L for all z ∈ K2ρ. Let us
define a constant depending on the function f via M and ε, the shift ω and the
band where the initial solution is analytical, ρ

C :=
ε

4

exp(−(ρ/2)−τ−1C
[3.1]
ω (log(4M/3) + 2π + 1)

1 + 16M/9

The function z ∈ K2ρ 7→ x0(z + ω) − f(x0(z)) − b0g(z) is analytic and is vanished
along real axis. Therefore, x0(z+ω) = f(x0(z))+b0g(z) for all z ∈ K2ρ. Analogously,
for the other conditions x0(z + π) = −x0(z) and g(z + π) = −g(z) for all z ∈ K2ρ.

If |a− 1| ≤ max( C
2M‖x0‖ρ , 1/3) and |b− b0| ≤ min( C2L , 1/2), then the range of a x0

is included in U1 where f is defined, since the absolute value of the imaginary part
of a x0(z) is less than 2ε/3. On the other hand,

|x0(z + ω)− f(a x0(z))− b g(z)| = |f(x0(z)) + b0g(z)− f(a x0(z))− b g(z)|
≤ |f(x0(z))− a f(x0(z))|+ |(b− b0)g(z)|
≤ |1− a|M‖x0‖ρ + |b− b0|L ≤ C

is verified for all z ∈ Kρ. We apply Lemma 3.1 with φ(z) = f(a z) and ψ(z) = b g(z).

‖ log ◦φ′‖U ≤ log(|a|M) + 2π ≤ log(4M/3) + 2π

and 1 + ‖φ′′‖C 0(U) ≤ 1 + |a|2M ≤ 1 + 16M/9. Then

C ≤ ε

4

exp(−(ρ/2)−τ−1C
[3.1]
ω (‖ log ◦φ′‖U + 1)

1 + ‖φ′′‖C 0(U)

so, there is x ∈ S −
ρ such that x(z + ω) = f(a x(z)) + b g(z).

4. Conclusions

One of the main contributions of this note is to depict numerical grounds which point
out the appearance of non-analytical invariant curves, reaffirming the conjecture of
the existence of SNAs for this system and establishing the boundaries of the region
where these curves might dwell. Nevertheless, a rigorous proof is still required and
we hope that this work will provide different perspectives on this question.

On the other hand, in this context the introduction of reduction techniques for
continuation constitutes a tool which makes possible thorough studies of invariant
curves in forced 1-D maps. Lastly, the persistence of properties, e.g. analyticity, for
symmetric curves is another path to penetrate in the knowledge of these maps.
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[6] À. Jorba, Numerical computation of the normal behaviour of invariant curves of n-
dimensional maps, Nonlinearity 14 (2001), pp. 943–976.
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Appendix A. Proofs of technical lemmas

Proof of Lemma 3.4. The series
∑
fk is uniformly convergent on the compact

Kρ−δ ∩ ([−jπ, j)π] + iR) for any j ∈ Z, since fk is bounded by a a convergent
series on that compact. Being δ > 0 arbitrary, the functional series converges com-
pactly on K̊ρ. Therefore, f(z) is an analytic function on the interior of Kρ and the
given bound.

Proof of Lemma 3.5. Considering angles with the minimum absolute value, i.e. the
interval (−π, π). As | sin θ| ≥ 2|θ|/π > |θ|/π if θ ∈ [−π

2 ,
π
2 ] and |λ− eiθ| ≥ 1 ≥ |θ|/π

20
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if θ ∈ [−π,−π
2 ] ∪ [π2 , π], we have that

|eiθ − λ| ≥ 1

π
min
m∈Z
|θ − 2mπ|, ∀θ ∈ R. (A1)

Using equation (11), the following estimate follows:

|eikω − λ| ≥ 1

π
min
m∈Z
|kω − 2πm| ≥ 1

π

γ

|k|τ
.

Consequently, with the last equation and the bound for the power xτ is concluded

1

|eikω − λ|
≤ π

γ
|k|τ ≤ π

γ
(
τ

eδ
)τe|k|δ

being the constant given in the lemma C
[3.5]
ω := π

γ ( τe )τ .

Proof of Lemma 3.10. By Taylor’s Theorem, we have

φ(x1(z))− φ(x0(z))− φ′(x0(z))(x1(z)− x0(z)) =∫ 1

0
(1− s)φ′′(x0(z) + s(x1(z)− x0(z)))(x1(z)− x0(z))2 ds.

So, we have the estimate

|φ(x1(z))− φ(x0(z))− φ′(x0(z))(x1(z)− x0(z))| ≤
1

2
‖φ′′‖C 0(U)‖x1 − x0‖

2
ρ,

for all z ∈ Kρ and (20) holds.

Proof of Lemma 3.6. Let us consider the real function f(x) := xτe−xδ. Its derivate
is f ′(x) = e−xδxτ−1(τ − δ x). Obviously, the function reaches the maximum on
x = τ/δ and f(τ/δ) = (τ/(δe))τ . Hence, xτ ≤

(
τ
eδ

)τ
exδ for all x > 0. Applying this

inequality with x = k, the following bound guarantees the convergence of the series

|k|τe−|k|δ ≤
(

2τ

eδ

)τ
e−|k|δ/2,∑

k∈Z\{0}

|k|τe−|k|δ ≤
(

2τ

eδ

)τ ∑
k∈Z\{0}

e−|k|δ/2 ≤
(

2τ

eδ

)τ 2

eδ/2 − 1
.

Using the inequality t ≤ et − 1 for all t positive, we get the estimation

∑
k∈Z\{0}

|k|τe−|k|δ ≤
(

2τ

eδ

)τ
2

2

δ
= 2

(τ
e

)τ (2

δ

)τ+1

= C [3.6]
τ δ−τ−1,

where C
[3.6]
τ = 2τ+2

(
τ
e

)τ
.
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