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Abstract

In this paper, we establish sufficient conditions for the existence of optimal non-
linear approximations to a linear subspace generated by a given weakly-closed
(non-convex) cone of a Hilbert space. Most non-linear problems have difficulties
to implement good projection-based algorithms due to the fact that the subsets,
where we would like to project the functions, do not have the necessary geometric
properties to use the classical existence results (such as convexity, for instance).
The theoretical results given here overcome some of these difficulties. To see this
we apply them to a fractional model for image deconvolution. In particular, we
reformulate and prove the convergence of a computational algorithm proposed
in a previous paper by some of the authors. Finally, some examples are given.

Keywords: Non-linear approximation, Fractional Deconvolution, Image
Restoration, Weakly-closed non-convex cone.

1. Introduction

Unlike linear approximation, where there exists a solid theoretical back-
ground establishing conditions for existence, uniqueness and algorithmic issues,
non-linear approximation is a field with not so deep knowledge about the above
related concepts. The main drawback of the non-linear approximation theory is
given by the fact that most of the fundamental concepts used in the theory of
linear spaces cannot be generalized without losing their strength. Lack of the
vectorial structure of the spaces is in fact one of the main difficulties to obtain
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adequate results. There are also other features which are often lost, some of
them are geometrical (convexity, for instance) and other are algebraic (the use
of linear bases).

In the last years, sparsity helped to devise non-linear models by introducing
the concept of dictionaries as generators of the space, and then sacrificing the
concept of linear independence in the basis functions. The strategy of this kind
of optimal approximation consists first in finding a good dictionary and next
in searching a best approximation in this fitted subset. This is the principle
underlying in the so called greedy algorithms.

However, a dictionary is not a useful structure to solve most geometric prob-
lems. Lack of convexity is usually one of these problems: usually dictionaries
are not closed convex sets and hence results about the existence of best approx-
imations are not available. In image processing non-convexity is not an unusual
topic (see for example [8]). A recent result [5] provides an example of an opti-
misation framework over a class of dictionaries (weakly-closed non-convex cones
in reflexive Banach spaces).

In this paper, we provide theoretical results related to a class of non-linear
approximation problems with milder conditions to give a better theoretical foun-
dation in order to relax conditions for a class of nonlinear approximation prob-
lems. These conditions are verified in many practical problems.

Image processing, and, particularly, image restoration is one of the fields
where this theory can be applied. Both deconvolution and denoising of images
are better dealt with adaptive non-linear models than linear ones (leaving aside
computational aspects). In this context adaptative means that, besides the
different type of convolution kernels and noises, the process shall depend on
the known initial data, which are the own image features [1, 2, 3, 12, 6]. In
[9, 11], the authors propose a blind deconvolution model based on an iterative
fractional decomposition of the kernel, with a fractional parameter obtained by
the properties of the image itself. Though, in practice, this model converges
with high quality results, however, up to the authors knowledge no proof of
its convergence is known. Our purpose in this work is to revisit the model
introduced in [9, 11] in order to prove the convergence of the proposed algorithm
[9, 11], namely ALFA, by using the theoretical results stated in §3.

The structure of this paper is as follows: in §2, we introduce the notation,
definitions and basic preliminary results in order to simplify the main theorem
in the paper, which is shown in §3. In §4, we reformulate the blind deconvolution
model given in [9, 11] an also we prove the convergence of the algorithm proposed
in the aforementioned paper. We display also some examples of the application
of the model in §5. Finally, we will draw conclusions in §6.
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2. Definitions and preliminary results

In the following, V is a Hilbert space with inner product (·, ·) and associated
norm ‖·‖ . While V ∗ denotes the dual space of functionals with bounded dual
norm ‖·‖∗:

‖ϕ‖∗ = sup {|ϕ(v)| : v ∈ V with ‖v‖ ≤ 1} = sup {|ϕ(v)| / ‖v‖ : 0 6= v ∈ V } .

Next we introduce the weak convergence of a sequence in V. We say that a
sequence (zn)n∈N in a Hilbert space V converges weakly to v ∈ V, if limϕ(vn) =
ϕ(v) for all ϕ ∈ V ∗. In this case, we write vn ⇀ v.

A subset M ⊂ V is called weakly closed, if zn ∈ M and zn ⇀ z implies
z ∈ M . Note that ‘weakly closed’ is stronger than ‘closed’, i.e., M weakly
closed ⇒ M closed in the norm topology.

In this paper we focus on the following class of weakly-closed subsets of V .
From now on, we consider C a non-empty subset in V such that

(A1) C, is a cone, that is, if v ∈ C then λv ∈ C for all λ ≥ 0, and
(A2) C is weakly closed in V.

Example 1. Clearly, every closed and convex cone in V satisfies (A1) and
(A2).

Example 2. Falcó and Hackbusch [5] proved that for each r ∈ Nd the set Tr,
of tensors in Tucker format is a non-convex cone which is a weakly closed set
in any tensor Banach space with a norm not weaker than the injective norm.

Next, we will introduce a set C arising in the framework of the fractional
deconvolution model introduced in [9, 11]. As we will show below, conditions
(A1)-(A2) are the milestone to prove the convergence of a class of non-linear
approximation algorithms. In particular, as we will see below, the so-called
ALFA algorithm proposed in [9, 11] falls in the aforementioned class.

Let us consider the non-convex cone

C =
{
u ∈ L2[0, 1] : u(x) = αxβ where α ≥ 0 and β ∈ [0, 2]

}
.

Then the map Φ : R+ × [0, 2]→ L2[0, 1], given by Φ(α, β)(x) = αxβ , is contin-
uous because

‖Φ(α, β)− Φ(α′, β′)‖2L2[0,1]
≤ (α− α′)2

min(β, β′)2 + 1
.

Now, we assume that {un(x) = αnx
βn}n∈N ⊂ C converges weakly to u in L2[0, 1].

As a consequence the sequence {un}n∈N is bounded:

‖un‖2L2[0,1]
=

α2
n

β2
n + 1

≤ C,
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for some C ≥ 0 and for all n ∈ N. Also the sequence {(αn, βn)}n∈N is bounded
in the closed set R+ × [0, 2]. Hence there exists a convergent subsequence, also
denoted by {(αn, βn)}n∈N, to some (α, β) ∈ R+ × [0, 2]. Since

lim
n→∞

‖Φ(αn, βn)− Φ(α, β)‖L2[0,1] = 0,

we have that un − v, where v(x) = αxβ , converges to zero in L2[0, 1]. Thus
v = u, and C is weakly closed in L2[0, 1].

Now we want to characterize a projection on C with respect to a given inner
product (·, ·) on V , with associated norm ‖ · ‖.

A C-projection with respect to inner product (·, ·), with associated norm ‖ ·‖
is a map Π(·|C) : z ∈ V 7→ Π(z|C) ⊂ C defined by

Π(z|C) = arg min
v∈C
‖z − v‖2. (1)

Let be the map σ(·|C) : V → R defined by

σ(z|C) = max
w∈C
‖w‖=1

|(z, w)|. (2)

The following Proposition 1 proves that the maps Π(·|C) and σ(·|C) are well
defined.

Proposition 1. For each z ∈ V , there exists v∗ ∈ C such that

‖z − v∗‖2 = min
v∈C
‖z − v‖2 = ‖z‖2 − σ(z|C)2. (3)

Moreover, σ(z|C) = ‖v∗‖, and

(z − v∗, v∗) = 0. (4)

Proof. For each z ∈ V, we denote α := inf{‖z − w‖ : w ∈ C} ≥ 0. Clearly,
if z ∈ C then α = 0 and (3) trivially holds. On the other hand, assume that
z /∈ C and hence α ≥ 0. Let us choose any sequence wn ∈ C with ‖z − wn‖ ≥
‖z − wn+1‖ > α for all n ∈ N and

lim
n→∞

‖z − wn‖ = α.

Since (wn)n∈N is a bounded sequence in V , from the local sequential weak
compactness (see Chapter V.2. in [15]), there exists a weakly convergent sub-
sequence wni ⇀ v∗ ∈ V. Moreover, v∗ belongs to C because wni ∈ C and C is
weakly closed. Since also z −wni weakly converges to z − v∗, as a consequence
of the Banach-Steinhaus theorem (see Corollary 3.86 in [4]), we have

‖z − v∗‖ ≤ lim inf
n→∞

‖z − wni‖ ≤ α.
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Thus v∗ ∈ C together ‖z − v∗‖2 = α = minv∈C ‖z − v‖2 prove the first equality
in (3). The second equality in (3) follows from

min
v∈C
‖z − v‖2 = min

λ∈R+,w∈C
‖w‖=1

‖z − λw‖2

= min
λ∈R+,

‖z‖2 − 2λ(w, z) + λ2

= min
w∈C
‖w‖=1

‖z‖2 − (z, w)2

= ‖z‖2 − max
w∈C
‖w‖=1

(z, w)2 (5)

= ‖z‖2 − σ(z|C)2.

To prove the second part we consider the equality

1

2
(v, v)− (z, v) =

1

2
‖z − v‖2 − 1

2
‖z‖2.

This implies that for Jz(v) := 1
2 (v, v)− (z, v) the minimization problem

Jz(v
∗) = min

v∈C
Jz(v). (6)

is equivalent to
min
v∈C
‖z − v‖2,

and

min
v∈C

Jz(v) =
1

2
min
v∈C
‖z − v‖2 − 1

2
‖z‖2. (7)

If z = 0 then v∗ = 0 and the theorem clearly holds. Now, assume that z 6= 0.
From (7) and (5) we deduce

min
v∈C

Jz(v) = −1

2
max
w∈C
‖w‖=1

(z, w)2. (8)

Thus, v∗ ∈ C solves (6) if and only if v∗ = σ(z|C)w∗ for some w∗ ∈ C with
‖w∗‖ = 1. Therefore, the first statement follows. To prove the second one, from
(8) follows

Jz(v
∗) = −1

2
σ(z|C)2 = −1

2
‖v∗‖2, (9)

and by using (7) we obtain (3). Finally, from (9) we have that

(v∗, v∗)− (z, v∗) = 0,

and this follows (4).

A first consequence is the following:

Corollary 1. The map σ(·|C) defines a seminorm on V.
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3. Main Result

From now on, we will denote by U(C) = span C‖·‖ the closed linear subspace
generated by C. Now, we introduce the set

V(z|C) = {w ∈ C : ‖w‖ = 1 and σ(z|C) = |(z, w)|; for eachz ∈ V }.

Then the projector Π(·|C) can be written as

Π(z|C) = σ(z|C)V(z|C),

which means that for v∗ ∈ Π(z|C), there exists w∗ ∈ V(z|C) such that v∗ =
σ(z|C)w∗.

Proposition 1 allows us to construct a sequence {en}n≥0 ⊂ V by means of
the following iterative scheme. Let z0 = 0, and, for each n ≥ 1, take

en−1 = z − zn−1, and update (10)
zn = zn−1 + z(n) where z(n) ∈ Π(en−1|C). (11)

We observe that for n > 1,

zn =

n∑
i=1

z(i), z(i) ∈ Π(z − zi−1|C)

or, equivalently, by using Proposition 1,

zn =

n∑
i=1

σ(ei−1|C)w(i), w(i) ∈ V(ei−1|C).

We introduce the following definition of the C- rank

Definition 1. We define the C-rank of an element z ∈ V , denoted by rank(z|C),
as follows:

rank(z|C) = min{n : σ(en|C) = 0},

where by convention min(∅) =∞.

Now, we state the main result of this paper:

Theorem 1. For z ∈ V , the sequence {en}n>0 constructed in (10) satisfies that
limn→∞ en = e∗ and e∗ ∈ U(C)⊥. Moreover,

PU(C)(z) = z − e∗ =

rank(z|C)∑
i=1

σ(ei−1|C)w(i),
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where PU(C) is the orthogonal projection over U(C), and

‖en‖2 = ‖z‖2 −
n∑
i=1

σ(ei−1|C)2 =

rank(z|C)∑
i=n+1

σ(ei−1|C)2.

In consequence,

‖z − PU (z)‖2 = ‖z‖2 −
rank(z|C)∑
i=1

σ(ei−1|C)2.

Proof. In order to simplify notation, in this proof we will use σi = σ(ei−1|C),
for all i ≥ 0. Let us note that z(n) 6= 0 for 1 ≤ n ≤ rank(z|C) because, for such
n, we have σ(z − zn−1|C) > 0 by definition of C-rank. We have

‖en‖2 = ‖en−1 − z(n)‖2

= ‖en−1‖2 − ‖z(n)‖2 (by using (3))
= ‖en−1‖2 − σ2

n

Thus {‖en‖}rank(z|C)n=0 is a strictly decreasing sequence of non-negative real num-
bers.

We assume first that rank(z|C) = r < ∞. Then, σr = σ(z − zr|C) = 0 and
z(r+1) = 0 since

‖z − zr − z(r+1)‖2 = ‖z − zr‖2 − σ2
r = ‖z − zr‖2

We have
‖z − zr‖2 = min

v∈C
‖z − zr − v‖2 ≤ ‖z − zr − λv‖2 ,

for all λ ∈ R and v ∈ C. This implies that

(z − zr, v) = 0,

for all v ∈ C. Thus z − zr ∈ U⊥ and the first statement of the theorem follows.
On the other hand, we assume that rankσ(z) =∞. Then {‖en‖}∞n=0 is a strictly
decreasing sequence of non-negative real numbers, and there exists

lim
n→∞

‖en‖ = lim
n→∞

‖z − zn‖ = R ≥ 0.

Proceeding from (12) and using that e0 = z, we obtain

‖en‖2 = ‖z‖2 −
n∑
k=1

σ2
k.

In consequence,
∑∞
k=1 σ

2
k is a convergent series and limn→∞ σ2

n = 0. Thus, we
obtain also

lim
n→∞

σn = lim
n→∞

‖z(n)‖ = 0.
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For all n ≥ 1 and v ∈ C with ‖v‖ = 1, we have

(en−1, v)
2 ≤ max

w∈C: ‖w‖=1
(en−1, w)

2
= σ2

n,

and then
lim
n→∞

(en−1, v)
2

= 0. (12)

Assuming that {en}∞n=0 is convergent in the ‖ · ‖-norm to some e∗ ∈ V , since
the sequence is also weakly convergent to e∗ we obtain from (12) that

(e∗, v) = 0.

for all v ∈ C with ‖v‖ = 1. Thus, e∗ ∈ U⊥. To conclude the proof we claim
that {en}∞n=1 is a Cauchy sequence in V in the ‖ · ‖-norm. The following three
technical lemmas help us to show it.

Lemma 1. For each n,m ≥ 1, it follows that∣∣∣(em−1, z(n))∣∣∣ ≤ σmσn.
Proof. We have∣∣∣(em−1, z(n))∣∣∣ =

∣∣∣(em−1, σnw(n)
)∣∣∣ =

∣∣∣(em−1, w(n)
)∣∣∣σn ≤ σmσn

where we have used

σm = |
(
em−1, w

(m)
)
| = max

w∈C:‖w‖=1
| (em−1, w) | ≥ |

(
em−1, w

(n)
)
|,

Lemma 2. For every ε > 0 and every N ∈ N there exists τ ≥ N such that

στ

τ∑
k=1

σk ≤ ε. (13)

Proof. Since
∑∞
j=1 σ

2
j < ∞, for a given ε > 0 and N ∈ N, we choose n ≥ N

such that
∞∑

j=n+1

σ2
j ≤ ε/2.

Since limj→∞ σj = 0, we construct τ : N −→ N defined inductively by τ(1) = 1
and for all k ≥ 1,

τ(k + 1) = min
j>τ(k)

{
σj ≤ στ(k)

}
,

such that τ is strictly increasing and limk→∞ τ(k) = ∞. Observe that for all
k ≥ 1 and j satisfying τ(k) ≤ j < τ(k + 1), it follows that

στ(k+1) ≤ στ(k) ≤ σj .
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Thus, for all 1 ≤ j < τ(k + 1), we have

στ(k+1) ≤ σj .

Now, since limk→∞ στ(k) = 0, we can choose τ = τ(k + 1) > n large enough
satisfying

στ

n∑
j=1

σj ≤ ε/2.

Then

στ

τ∑
j=1

σj = στ

n∑
j=1

σj + στ

τ∑
j=n+1

σj ≤ ε/2 + στ

τ∑
j=n+1

σj

≤ ε/2 +

τ∑
j=n+1

σ2
j ≤ ε/2 +

∞∑
j=n+1

σ2
j

≤ ε.

This proves the lemma.

Lemma 3. For all M > N > 0, it follows that

‖eN−1 − eM−1‖2 ≤ ‖eN−1‖2 − ‖eM−1‖2 + 2σM

M∑
k=1

σk.

Proof. We have

‖eN−1 − eM−1‖2 = ‖eN−1‖2 + ‖eM−1‖2 − 2 (eM−1, eN−1)

= ‖eN−1‖2 + ‖eM−1‖2 − 2

(
eM−1, eM−1 +

M−1∑
k=N

z(k)

)

= ‖eN−1‖2 − ‖eM−1‖2 − 2

M−1∑
k=N

(
eM−1, z

(k)
)

≤ ‖eN−1‖2 − ‖eM−1‖2 + 2σM

M−1∑
k=N

σk (by using Lemma 1)

≤ ‖eN−1‖2 − ‖eM−1‖2 + 2σM

M∑
k=1

σk (by adding positive terms).

This ends the proof of the lemma.

To prove the claim: {en}∞n=1 is a Cauchy sequence in V in the ‖ · ‖-norm,
we proceed as follows. Since the limit of ‖en‖2 goes to R2 as n→∞, and it is
a decreasing sequence, for a given ε > 0 there exists kε > 0 such that

R2 ≤ ‖em−1‖2 ≤ R2 + ε2/2,
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for all m > kε. Now, we assume that m > kε. From Lemma 2, for each m + p
there exists τ > m+ p such that

στ

τ∑
k=1

σk ≤ ε2/4.

Now, we would to estimate

‖em−1 − em+p−1‖ ≤ ‖em−1 − eτ−1‖+ ‖eτ−1 − em+p−1‖.

By using Lemma 3 with M = τ and N = m and m+ p, we obtain that

‖em−1 − eτ−1‖2 ≤ R2 + ε2/2−R2 + ε2/2 = ε2,

and

‖em+p−1 − eτ−1‖2 ≤ R2 + ε2/2−R2 + ε2/2 = ε2,

respectively. In consequence {en}∞n=0 is a Cauchy sequence in the ‖·‖-norm and
it converges to e∗.

4. An Application to a Fractional Blind Deconvolution Model

The above results provide a theoretical background for a large class of non-
linear approximation problems. In this section, we will illustrate this through
a particular example modelling blind deconvolution, introduced in [9]. In order
to use Theorem 1 to prove the convergence of the blind deconvolution algorithm
proposed in [9], we need to rewrite in a more convenient setting the main aspects
of the model.

4.1. The Blind Deconvolution Problem

A problem arising frequently in image processing is that of recovering the
original image from a degraded one. It is well known that an image z0(x, y) gets
degraded due to different (natural or computational) causes, which can usually
be mathematically formulated as follows:

z1(x, y) = (K ∗ z0)(x, y) + n(x, y), (14)

where K(x, y) is an operator representing the deterministic degrading of the
image, and n(x, y), the stochastic additive errors (noise). In this section we are
going to consider a linear and shift invariant convolution operator, defined as
usual:

(K ∗ z0)(x, y) =

∫
R2

K(x− α, y − β)z0(α, β)dα dβ.

In [10], the authors develop a deconvolution model in the context of images
degraded by weather and time conditions (in particular, artistic restoration of
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paintings). Under these circumstances, stochastic errors can be neglected (be-
cause of the focus distance or exposal time for the acquisition of the image) and
the kernel can be considered almost quasi-Gaussian (below, we will introduce
what it is called quasi-Gaussian kernels), due to weather conditions such as hu-
midity, temperature, or time degradation. Hence, the convolution model is the
following:

z1(x, y) = (K ∗ z0)(x, y). (15)

Deconvolution problems consist on recovering the original image z0 from the
convolved (observed) one z1. The problem should be solved in the context of
Fourier transforms, due to the fundamental theorem of convolution:

K̂ ∗ z0(ξ, η) = K̂(ξ, η)ẑ0(ξ, η) = ẑ1(ξ, η),

where ẑ denotes the Fourier transformation of a function z ∈ L2(R2) defined by

ẑ(ξ, η) :=

∫
R2

ei(ξ·x+η·y)z(x, y) dx dy.

A naive way to deconvolve is to obtain ẑ0 by a simple division. In practice,
regularity of K implies that its Fourier transform decays fast, and this direct
deconvolution is unstable, not allowing the recovery of high frequencies of ẑ0.
In consequence, a regularizing term must be included in order to stabilize the
problem. It gets even more complicated when the kernel K is not known (blind
deconvolution), although some theoretical knowledge can be used. For instance,
in the above mentioned paper [9], it is considered that the degrading can be
modelled by a Lèvy distribution. This Lèvy distribution corresponds to a Green
function of a generalized heat equation of the form:

υt = −
n∑
i=1

λi(−∆)βiυ, 0 < t ≤ 1,

υ(x, y, t = 1) = z1(x, y), λi > 0, βi ∈ [0, 2].

 (16)

Carasso proposed the Slow Evolution Backward Constraint for blind decon-
volution using the Lévy Distribution [1, 2]. Several authors used the equation
(16) in a variety of real blurred images [14, 16, 17, 18].

Let us remark that the operator (−∆) is positive and, therefore, its powers
(−∆)β are well defined by

̂((−∆β)z)(ξ, η) = c(ξ2 + η2)β ẑ(ξ, η),

where c is a parameter introduced in order to normalize the transformation.
Recall that the Fourier transformation is an isomorphism (see VII in [7]). We
denote by ∨ the inverse Fourier transformation, that is,

(ẑ)∨ = (̂z∨) = z.
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Then the generalized heat equation (16) can be solved by using

υ(x, y, t) =
(
Kβn
αn(1−t) ∗ · · · ∗K

β1

α1(1−t) ∗ z1
)

(x, y),

via the fractional powers of the convolution kernel

Kβ
α(1−t) ∗ z :=

̂(
Kβ
α(1−t) ∗ z

)∨
=
(
k̂βα(1−t) · ẑ

)∨
, 0 ≤ t ≤ 1,

where
k̂βα(1−t)(ξ, η) = e−α(1−t)(ξ

2+η2)β α ≥ 0, β ∈ [0, 2].

In particular when t = 1, we have

Kβ
0 ∗ z :=

(
k̂β0 · ẑ

)∨
= (ẑ)

∨
= z,

for all β ∈ [0, 2]. In this framework, we assume that

υ(x, y, t = 0) = z0(x, y) =
(
Kβn
αn ∗ · · · ∗K

β1
α1
∗ z1

)
(x, y). (17)

We observe that the function (
Kβ1
α1
∗ z1

)
(x, y),

is equal to υ1(x, y) := υ1(x, y, t = 0) for

υ1(x, y, t) =
(
Kβ1

α1(1−t) ∗ z1
)

(x, y),

the solution of

∂tυ1 = −λ1(−∆)β1υ1,

υ1(x, y, t = 1) = z1(x, y).

Next, by proceeding inductively, we obtain that z0(x, y) =
(
Kβn
αn ∗ υn−1

)
(x, y)

is equal to υn(x, y) := υn(x, y, t = 0) for

υn(x, y, t) =
(
Kβn
αn(1−t) ∗ υn−1

)
(x, y),

the solution of

∂tυn = −λn(−∆)βnυn,

υn(x, y, t = 1) = z1(x, y).

Take υ0(x, y) := z1(x, y). It is well-known that each equation

υl(x, y) =
(
Kβl
αl
∗ υl−1

)
(x, y), (18)
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for 1 ≤ l ≤ n, is ill-conditioned and, hence in order to solve it numerically, it
needs to be regularized. Classic regularizations such as Tikhonov [13], or total
variation [3, 12], appear widely in the literature. In [9], to solve (18) the authors
propose to regularize that equation by using a fractional power of the Laplacian.
For each 1 ≤ l ≤ n, the regularized equation appears as

(−∆)βlυl + ψ k
βl
αl
∗
(
kβlαl ∗ υl − υl−1

)
= 0, (19)

here k denotes the complex conjugate of k, and υl is obtained from

υ̂l(ξ, η) =
k̂βlαl(ξ, η)υ̂l−1(ξ, η)

ε(ξ2 + η2)βl + |k̂βlαl(ξ, η)|2
, (20)

where ε =
c

ψ
and υ̂l was previously computed applying the Fourier transform

to the equation (19). The equation (15) is regularized by an operator based on
fractional powers (19), where parameters (ψ, β) are crucial: ψ relates high and
low frequencies, modulating the stochastic noise, and β controls the smoothing.
The solution of the regularize equation (20) allows us to recover high, middle
and low frequencies recursively by varying ψ (and, consequently, β), and using
each partial deconvolution as the starting image for the next one.

4.2. The Fractional Deconvolution Model

The above remarks lead us to consider a model based on an iterative frac-
tional decomposition of the kernel, in the sense of the greedy algorithms. The
decomposition will be obtained by logarithmic approximation, as follows. By
construction

ẑ0(ξ, η) = υ̂n(ξ, η) = exp(−αn(ξ2 + η2)βn) · · · exp(−α1(ξ2 + η2)β1)υ̂0(ξ, η).
(21)

Since
υ̂l−1(ξ, η) = exp(−αl(ξ2 + η2)βl) · υ̂l(ξ, η),

we have
log(|υ̂l−1(ξ, η)|) = −αl(ξ2 + η2)βl + log(|υ̂l(ξ, η)|),

for 1 ≤ l ≤ n. Then we can write

el(r) := αlr
βl = log(|v̂l(ξ, η)|)− log(|v̂l−1(ξ, η)|),

where r = ξ2 + η2, and hence

e ∈ C =
{
υ ∈ L2[0, 1] : υ(r) = γ′rβ

′
where γ′ ≥ 0 and β′ ∈ [0, 2]

}
.

13



Moreover, from (21), we have

z(ξ, η) := log |ẑ1(ξ, η)| − log |ẑ0(ξ, η)|

=

n∑
l=1

(log |υ̂l(ξ, η)| − log |υ̂l−1(ξ, η)|)

=

n∑
l=1

el(r) ∈ span C.

Since C is a weakly closed cone, it allows us to introduce the following version
of the fractional deconvolution algorithm. We will call it ALFA (Approximation
Laplacian Fractional Algorithm).

ALFA Approximation Laplacian Fractional Algorithm.

1: Given υ0 = z1 take υ̂0 and for each l ≥ 1 proceed until convergence as
follows.

2: Take υ̂l given by (20) and then compute αl, βl such that

Π(log(|υ̂l(ξ, η)|)− log(|υ̂l−1(ξ, η)|)|C) = el,

where el(r) = αlr
βl , that is, we solve

min
(αl,βl)∈R+×[0,2]

‖ log(|υ̂l(ξ, η)|)− log(|υ̂l−1(ξ, η)|)− el‖L2[0,1]

3: Set υ̂l(ξ, η) := υ̂l−1(ξ, η) · exp(αl(ξ
2 + η2)βl) take l = l + 1 and goto 2.

The interpretation from Theorem 1 of the fractional deconvolution algorithm
is the following. Let us consider the approximation of

z(ξ, η) = log |ẑ1(ξ, η)| − log |ẑ0(ξ, η)| ∈ L2(D),

where D =
{

(ξ, η) : ξ2 + η2 ≤ 1
}
, by a sum of functions υ ∈ C. The limit case

leads to two possibilities: if the process is finite, z lays in the space generated
by the cone and hence (21) holds; in the infinite case, it is in the closure of
such space. In any of these cases, the theoretical results in the previous section
show that this projection exists and it is the desired optimal approximation.
Theorem 1 allows us to obtain the optimal approximation to z and a stopping
criterion: when the residuals are approximately equal, or close to zero (under
certain thresholding), the algorithm provides a good approximation to z via
PU(C)(·)). Therefore, the fractional deconvolution method is convergent (thanks

14



Figure 1: Geometry of the proposed image restoration model.

to Theorem 1). From a geometrical point of view, the algorithm behaves as it
is shown in Figure 1.

The algorithm begins in a set with the basic structure (A1) and (A2), that
is, a weakly-closed cone C. Then the image is projected over C, originating an
optimal approach over this non-linear set. We remark that it is not a linear
projection in the usual sense, there exists an optimal approximating point over
this set, however it is not unique. Once computed the residual between two con-
secutive iterations, the algorithm tends to the orthogonal projection (Theorem
1), which is the optimal approximation in the span C‖·‖. The approximation to
the orthogonal projection up to a given tolerance as a stopping criteria has the
advantage that local errors do not get amplified, as it is proved in Lemmas 1, 2
and 3.

5. Examples

In this section we will display some examples in order to illustrate the above
results. Figure 2 shows the deconvolution process: the original image, the cor-
responding partial deconvolved images and their residuals (below). Convolution
kernel is obtained after diffusion of Dirac delta function by 80 iterations of the
heat equation. In the shown examples, a good quality deconvolved image is
obtained after six steps. The deconvolved image recovers many of the original
details which cannot be recovered by other models. We refer the reader to [9, 11]
for comparison purpose with other type of images and tests.

In Figure 2 (b)-(f) we see the sequence of gradual deblurring. In each step,
the algorithm recovers details,and among them, the textures. Adaptiveness of
the process is shown in table 1 where we see the evolution of the parameters.
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(a) Barabara’s image (b) Original Kernel (c) Blurred Image

(d) Step 1 (e) Step 2 (f) Step 3

(g) Step 4 (h) Step 5 (i) Step 6 (deconvolution)

Figure 2: (a) Original image (Barbara). (b)-(g) Deconvolved Image (6 steps)

In Table 1 we see the evolution of the parameters of the decomposed kernels
(equation (17)) and relative errors. The algorithm ends when the conditions
of Theorem 1 are achieved, that is to say, when the residuals of the greedy
algorithm are closer than a given tolerance; in this case the algorithm stops at
0.001281.

Finally, we show a real life application (restoration of a baroque painting)
in Figure 3. It is important to ensure that fractional decomposition (that is,
fractional projection) works in a multichannel context as it is that of colour
images. It is also interesting to remark that, in this example, as it is a real one,
the only assumption we can make is to consider that the image was blurred by
natural causes and, then, the kernel is a Gaussian or quasi-Gaussian blur. Let
us notice that the image shown is very spoiled and it has some other added
difficulties besides blurring. Most other models are not able to obtain good
deconvolution because the scratching of the image. As we can see, in our frac-
tional model, the image can be deconvolved while keeping these scratches, which
is often important in order to apply particular and local models for arranging
them.
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Iteration α β L2 Relative error
1 0.001796 0.798403 0.028453
2 2.408154 0.157319 0.018320
3 8.080902 0.113034 0.0081933
4 8.823571 0.105422 0.005986
5 10.52049 0.048073 0.001281
6 13.21462 0.01287 0.000295

Table 1: Parameters of the detected kernel, and relative errors for Barbara

6. Conclusion and Final Remarks

In this paper we have introduced some theoretical results for the convergence
of a class of non-linear approximation problems underlying in many greedy
algorithms. In particular, our results provides an alternative tool to the use of
convexity, which is usually not present in a non-linear framework.

In order to illustrate the strength of the results, we analyse an algorithm
related to image restoration. In general, image restoration and denoising are
situations where this theory can be applied: most of the models are used to
find good approximations to the original image that is recovered under some
restrictions. The theory is not only useful to prove the convergence of the
deconvolution algorithm, it also explains some features of the deconvolved image
(recovery of edges, for instance).

The computational examples show how partial (iterative) projections work:
the first steps are smooth and it is in the last ones, corresponding to the lower
exponents when details are obtained. The observed image is thus decomposed
in a quasi-gaussian kernel and versions of deconvolutions with different degrees
of smoothing (exponents). The model, hence, provides a frequency-regularity
analysis of the observed image, which is a non-linear multi-resolution scheme.

The fractional model introduced in this paper presents some of the non-
linear features that one can expect. For example, adaptiveness to the initial
conditions, and joint detection of the deconvolved image and the blurring kernel.
The deconvolved image is constructed by using the successive residuals of the
process. In consequence if the blurred image is in the subspace that we are
projecting, then the residual is just the null image (a black one). In other
words, in general, the image that we obtain is the best one, among all the
possible images.
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(a) Original image: Epiphany (b) Fractional Blind Deconvolution

(c) Estimated Residuals

Figure 3: Color Fractional Blind deconvolution. Theme: Epiphany, from the
altarpiece of Saint Bartholomew Church, Bienservida (Spain)

20


