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Maternal-Fetal Transfer of Lipid Metabolites 

Changes in maternal lipid metabolism during gestation control 
the availability of lipid metabolites to the fetus,even though some 
components do not directly cross the placental barrier.This is the 
case of maternal plasma lipoproteins, the profile of which during 
pregnancy differs markedly from that seen In nonpregnant sub
jects. Although no evidence exists for their transfer to the fetus, 
placental cells have lipoprotein receptors that allow the uptake 
and release of their lipid components to the fetus. Other products 
of maternal lipid metabolism, however, such as free fatty acids 
(FFA), glycerol, and ketone bodies, are able to cross the placenta 
and become available to the fetus without prior modification. 
Although the efficiency of transfer across the placenta differs for 
each of these metabolites, the major force controlling their actual 
transfer is the maternal/feta! concentration gradient. 

HYPERLIPOPROTEINEMIA IN PREGNANCY 
AND ITS ROLE AS A SOURCE OF FAm ACIDS 
FOR THE FETUS 
Maternal hypertriglyceridemia is one of the most striking 
changes that takes place in lipid metabolism during gestation. 
The increase in plasma triglycerides during pregnancy is greater 
than increases in phospholipids and cholesterol, 1• 2 and more 
triglycerides are found in all the lipoprotein fractions. 3-6 As 
shown in Figure 39-1, although both triglycerides and choles
terol in very low density lipoproteins (VLDLs), low density 
lipoproteins (LDLs), and high density lipoproteins (HDLs) are 
higher in pregnant women in the third trimester of gestation 
than in the same women during postlactation, the triglyc
eride/cholesterol ratio remains stable in VLDL despite significant 
increases in both LDL and HDL. An examination of different HDL 
subclasses indicates that the rise in triglyceride-enriched HDL2b 

is mainly responsible for the changes in HDL levels, whereas the 
small HDL3 fractions become less abundant.7 

The mechanisms responsible for these changes in the mater
nal lipoprotein profile during pregnancy are summarized in 
Figure 39-2.The increased adipose tissue lipolytic activity during 
late gestation8 - 10(which is mediated by an insulin-resistant con
dition 11) enhances the availability of substrates for triglyceride 
synthesis in the liver. This action, together with the stimulating 
effect of estrogen on VLDL production12 and the decreased 
extrahepatic lipoprotein lipase (LPL) activity,7- ''· 14 is in part 
responsible for the augmented circulating levels ofVLDL in the 
woman in late pregnancy. This change in LPL activity corre
sponds to its decrease in adipose tissue because, as seen in the 
rat, this is the body tissue that normally has the highest LPL 
activity and is the only tissue that shows an intense decrease 

during late gestation. 15- 19 The decreased adipose tissue LPL 
activity is also a consequence of the insulin-resistant state 
present during late pregnancy. 11 • 20 Although the abundance of 
VLDL could justify an enhanced conversion to lipoproteins of 
higher density, the specific enrichment in triglycerides of the 
latter seems to be the result of two additional mechanisms (see 
Fig. 45-2): (1) augmented activity of the cholesteryl ester trans
fer protein (CETP),7 • 21 which mediates the transfer of triglyc
erides from triglyceride-rich lipoproteins such as VLDL to the 
higher density lipoproteins LDL and HDL, and (2) decreased 
activity of hepatic lipase,7• 13 which reduces the conversion of 
triglyceride-rich HDL2h into the lipid-poor HDL3 . The decreased 
hepatic lipase activity might be a response to an increase in estro
gens during late gestation because these hormones are known to 
inhibit hepatic lipase activity and mRNA expression. 1,. 22-24 

The events just summarized are responsible for the sustained 
hyperlipoproteinemia in the mother during gestation. Because of 
the impermeability of the placenta to lipoproteins, the precise 
role that these changes may have on feta! development is as yet 
unknown; however, the reduction of maternal hyperlipopro
teinemia in animals by treatment with hypolipidemic drugs has 
negative effects on feta! development. 25-26 

Essential fatty acids (EFAs) derived from maternal diet, which 
are transported in maternal plasma as triglycerides in triglyc
eride-rich lipoproteins, must become available to the fetus, 
despite the lack of a direct placental transfer of maternal lipopro
teins. This transfer occurs thanks to the presence of lipoprotein 
receptors in the placental trophoblast cells that lie at the inter
face with maternal blood.These cells are therefore positioned to 
bind maternal lipoproteins and mediate their metabolism and 
subsequent transfer of the EFAs they deliver to the feta! circula
tion. VLDl/apo E receptor (VLDLR) as well as LDL receptor 
(LDLR) and LDLR-related proteins are expressed in human pla
cental tissue. 27-36 

Placental tissue expresses lipoprotein lipase (LPL) activity37- 42 

as well as phospholipase A2
43. 44 and intracellular lipase 

activities. 45- 47 Maternal triglycerides in plasma lipoproteins are 
therefore hydrolyzed and taken up by the placenta, where their 
re-esterification and intracellular hydrolysis facilitate the diffu
sion of released fatty acids (FAs) to the fetus and their sub
sequent transport to feta! liver. In fact, by using cultured 
placental trophoblast cells, it has been shown that esterified 
cellular lipids provide a reservoir of FAs that can be released into 
the medium.48 

Once released into feta! plasma, placental transferred FAs bind 
to a specific oncofetal protein, the a-fetoprotein49- 51 and are 
rapidly transported to feta! liver.Those FAs taken up by feta! liver 
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Figure 39-1. Plasma lipoprotein lipids in women in the third trimester of pregnancy and at postlactation. Asterisks indicate 
significant differences between the two groups. 
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are esterified and released back into circulation in the form of 
triglycerides. This is consistent with the significant linear corre
lation found for certain long chain polyunsaturated fatty acids 
(LCPUFAs) between maternal plasma and cord plasma triglyc
erides during late gestation in humans.52 A linear correlation has 
also been found between maternal and feta! plasma triglycerides 
in the rat. 14· 53 This relationship may have important implications 
in newborn weight, because a direct relationship between 
maternal triglycerides and newborn weight has been found in 
humans. 54- 56 

® 

Figure 39-2. Proposed control of 
major pathways of very low density 
lipoprotein (VLDL) and high density 
lipoprotein (HDL) metabolism during 
late pregnancy. FFA = free fatty acids; 
LPL = lipoprotein lipase; HL = hepatic 
lipase; CETP = cholesteryl ester 
transfer protein; LCAT = lecithin 
cholesterol acyl transferase; 
TG = triglycerides; EC = esterified 
cholesterol; FC = free cholesterol; 
PL = phospholipids. 

MATERNAL LIPID METABOLISM AND PLACENTAL 
TRANSFER OF FREE FAm ACIDS, GLYCEROL, 
AND KETONE BODIES TO THE FETUS 
During the first part of gestation, the maternal body accumulates 
fat>7-59 as the result o" combined effects of hyperphagia,60, 61 

enhanced lipogenesi . · · and unmodified or even increased extra
hepatic LPL activity., 63 The tendency to accumulate fat ceases 
during late gestation57,58,64,65 because maternal lipid metabolism 
changes to a catabolic condition. This is evidenced by increased 



Figure 39-3. Summary of major changes in maternal 
lipid metabolism at late gestation. FFA = free fatty 
acids;TG-RICH LP = triglyceride-rich lipoproteins; 
Glyc = glycerol. (Adapted from Herrera E, et al: Biol 
Neonate 51:70-77, 1987. S. Karger AG, Basel.) 

adipose tissue lipolysis9- 17• 66 and reduced uptake of circulating 
triglycerides, 67 secondary to the reduction in adipose tissue LPL 
activity,7 ,13- 15, 18,19 reviewed earlier in this chapter.These changes, 
together with hepatic overproduction of triglycerides 68, 69 and 
the enhanced absorption of dietary lipids, 70 are responsible for 
the marked progressive increase in maternal circulating triglyc
erides occurring during late gestation.3, 4,71 ,72 The major changes 
in the maternal lipid metabolism are summarized in Figure 39-3, 
which diagrams the changes in adipose tissue, liver, and intestinal 
activity that are responsible for the physiologic increase in cir
culating FFA, glycerol, and triglyceride-rich lipoproteins (VLDL 
and chylomicrons). Under fed conditions, maternal ketosis is no 
different from that in nonpregnant subjects, but it increases 
markedly under fasting conditions.73, 74 

With the exception of glycerol used in gluconeogenesis75, 76 

and the LPL-mediated circulating triglyceride uptake by the 
mammary gland before labor, 18• 70, 77, 78 no part of the increase in 
circulating lipid components in the fed mother during late ges
tation seems to benefit her metabolic needs directly. This 
increase, however, may benefit the fetus because this gestational 
period coincides with the rate of maximal feta! accretion, a time 
when the substrate, metabolic fuel, and essential component 
requirements of the fetus are greatly enhanced. The lipid com
ponent may also constitute a "floating" fuel store for both mother 
and fetus, easily accessible under conditions of food deprivation, 
and this may explain the well-known finding of enhanced keto
genesis in the mother under fasting conditions.73, 79-81 This 
hypothesis is supported by data demonstrating an increased 
arrival of FFA in the liver as a result of the greatly enhanced 
adipose tissue lipolysis8-9,66 and by studies reporting an increase 
in liver LPL activity, 16,82,83 which facilitates maternal liver use of 
circulating triglycerides as ketogenic substrates. 

The enhanced availability of ketone bodies to fasted maternal 
tissues allows them to be used as metabolic fuels and may spare 
other more limited and essential substrates, such as amino acids 
and glucose, for transport to the fetus. The fetus also receives 
maternal ketone bodies through the placenta, and their use plays 
an important role in the feta! metabolic economy under condi
tions of maternal food deprivation. Augmented lipolytic activity 
also increases maternal circulating glycerol levels. 16, 75 Glycerol 
can be used as an efficient gluconeogenic substrate75,76, 84,85 and 
therefore contributes to the maintenance of glucose production 
for feta! and maternal tissues. Metabolic adaptations found in the 
mother during starvation are summarized in Figure 39-4. The 
transfer of glucose, ketone bodies, and amino acids is empha-
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MATERNAL LIPID METABOLISM 
AT LATE GESTATION 

sized in this figure because, quantitatively, they are the major 
substrates crossing the placenta in this condition. 

Understanding FAs, glycerol, and ketone body placental 
transfer as well as their respective metabolic fates in the fetus 
provides a clearer insight into the effect on the fetus of 
these persistently elevated maternal circulating lipid levels. 
Figure 39-5 compares plasma levels of these metabolites in 
virgin as well as 24-hour-fasted late pregnant rats and their 
fetuses. It can be seen that although feta! FFA and glycerol levels 
are much lower than in their mothers, the concentration of 
ketone bodies is similar. These maternal/feta! concentration dif
ferences probably reflect the efficiency or magnitude of the pla
cental transfer process. 

Maternal/feta! nutrient transfer through the placenta may be 
accomplished by means of different mechanisms, including facil
itated diffusion, active transport, and simple diffusion.86-88 The 
rate of transfer by simple diffusion seems to be a common mech
anism for FAs and related moieties. It is a direct function of the 
concentration gradient and decreases with the molecular size 
and hydrosolubility.89 However, in the case of placental transfer, 
other factors also participate:9°, 9 1 uterine and umbilical blood 
flows, intrinsic placental metabolism, and structural characteris
tics. As may be expected, some of these factors, such as blood 
flow, contribute analogously to the transfer of any nutrient, 
but other factors differ with each nutrient and require specific 
consideration. 

Fatty Acids 
The fetus requires not only essential FAs from the mother to 
support growth92 and brain development,93 but also nonessential 
lipids, which, stored in feta! body fat, become an important sub
strate during early postnatal life.94 This is especially true in 
species such as the guinea pig and human, in which body fat at 
term represents a substantial percentage of body weight (10% in 
guinea pigs and 16% in humans),95 and de nova FA synthesis by 
feta! tissues cannot fulfill feta! requirements. 

Either FFA bound to albumin or esterified FAs transported in 
lipoproteins are the potential sources of the FAs in the maternal 
side that cross to the placenta, Early studies in sheep96 that meas
ured venous-arterial differences across the umbilical circulation 
of the fetus in utero and across the maternal uterine circulation 
showed no significant passage of FFA to the fetus and led to the 
conclusion that FFAs did not appear to constitute a significant 
part of the metabolic fuel supplied there by the mother.96 Later 
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studies demonstrated, however, that the net flux of FAs from 
mother to fetus across the placenta varies greatly among species. 
For example, in species with both maternal and feta! layers in the 
placenta, such as the sheep, pig, and cat, the net transfer of FA to 
the fetus is generally small.97- 100 

In contrast, in species such as the rabbit, 101 guinea pig, 102. 10:1 

primate, 104 and rat 10', 106 (in which the placental barrier is 
formed by only a few layers of feta! origin), the amount of FAs 
crossing the placenta exceeds even that needed to fulfill lipid 
storage requirements. 107 In these species, the FA mixture enter
ing feta! circulation from the placenta reflects the maternal 
FFA concentrations of the different FAs.97 Furthermore, mater
nal dietary manipulation with different oil-enriched diets leads 
to corresponding changes in the FA composition of the 
fetus. 108, 109 These observations, therefore, constitute indirect 
evidence for the transplacental passage of FAs from mother to 
fetus. 

In humans, although in a smaller proportion than lipoprotein 
triglycerides, maternal plasma FFAs are an important source of 
polyunsaturated FAs (PUFA) to the fetus. 110• 111 Current evidence 
suggests that cellular uptake of FFA occurs through a process of 
facilitated membrane translocation involving a plasma mem
brane FA-binding protein (FABPpm). 112•11 :l It has been shown that 
FABP""' is present in human placental membranes 114, 11 , and is 

Figure 39-4. Maternal response to starvation. 
Enhanced adipose tissue lipolysis increases the 
availability in the liver of glycerol to be used as a 
preferential substrate for gluconeogenesis and of 
free fatty acids (FFAs) for ketone body synthesis. 
By this mechanism, the mother conserves other 
gluconeogenic substrates, such as alanine, and 
ensures the adequate availability of fuels and 
metabolites to the fetus. ATP = adenosine 
triphosphate (From Herrera E, et al: Biol Neonate 
51: 70-77, 1987. S. Karger AG, Basel.) 

Figure 39-5. Concentration of free fatty acids, ketone 
bodies, and glycerol in plasma of 48-hour starved virgin 
rats and 48-hour starved 19-day pregnant rats and thier 
fetuses. (From Herrera E, et al: Biol Neonate 51: 70-77, 
1987. S. Karger AG, Basel.) 

responsible for the preferential uptake of LCPUFAs by the 
human placenta. 114· 116 The preference for human placental trans
fer from the maternal to the feta! circulation has been reported 
as docosahexaenoic=> a-linolenic=> linoleic=> oleic=> arachi
donic acid. 117 Arachidonic acid was, however, the FA with the 
highest accumulations in the placenta, 117 and more recently it 
has been shown that this process of arachidonic uptake by pla
cental syncytiotrophoblast membranes is highly dependent on 
adenosine triphosphate (ATP) and sodium, 118 implying an active 
transport mechanism for this FA. A selectivity in the LCPUFA pla
cental transfer may also be exerted at the level of cellular metab
olism, given that a certain proportion of arachidonic acid is 
converted to prostaglandins, 111 a selective incorporation of 
certain FAs into phospholipids has been found in the ovine pla
centa, 119 and even selective placental FA oxidation120 - 121 and 
lipid synthesis122-123 may occur. 

The combination of all these processes determines the actual 
rate of placental FA transfer and its selectivity. Through these 
mechanisms, the placenta selectively transports arachidonic acid 
and docosahexaenoic acid from the maternal to the feta! com
partment, resulting in a proportional enrichment of these 
LCPUFAs in circulating lipids in the fetus. 124 This occurs during 
the third trimester, when the feta! demands for neural and 
vascular growth are greater. 12,- 121 



12 

8 
3'; 

., ~ 

.c 
cii 
2 
Cl 

C: 4 .E 

0 
E 
C: 

0 -" 

... 
14C - PALMITIC ACID VLDL 14c -TRIOLEIN 

Prob. vs. 0: <0.05 >0.05 

Figure 39-6. Estimation of placental transfer of palmitic acid 
and VLDL-triolein in the 20-day pregnant rat. Placental transfer 
to the fetus was determined by measuring the radioactivity 
appearing in fetuses after infusing 14C-labeled substrates 
through the left uterine artery and making proper correction of 
the data for specific activity dilution of the tracer and uterine 
blood flow, as previously described (see ref. 137). 

Although, as commented on earlier, current evidence indicates 
that FAs are selectively transferred across the placenta, essential 
and nonessential FAs may also use a common transfer mech
anism. Using in situ perfused guinea pig or rabbit placentas, 
several investigations have demonstrated that, within the 
physiologic range, the net FFA transfer to the fetus correlates 
with maternal plasma levels of FFA and that this transfer is regu
lated by the transplacental concentration gradient. 128- 13° 

Furthermore, during maternal fasting, increased amounts of 
maternal FFA cross the placenta into feta! circulation and are 
incorporated into feta! stores. 13 1 These observations suggest that 
the transfer of several FFA across the placenta is mainly by diffu
sion. Other factors affecting this transfer process are the uterine 
and umbilical blood flow rates128•130 and the feta! plasma albumin 
concentration.128, " 2· 133 In this respect, the increase in albumin 
levels throughout the third trimester in the human fetus 134 may 
increase its FFA supply. 

The authors have studied the placental transfer of palmitic 
acid in the 20-day pregnant rat by infusing radioactive carbon 
( 14C)-labeled palmitic acid through the left uterine artery for 
20 minutes. The amount of label appearing in the placentas and 
fetuses from the left uterine horn was contrasted with that 
found in those from the right horn. 135 Although the left uterine 
horn received the tracer directly, it reached the right horn after 
dilution in the mother's circulation. Therefore, the amount of 
substrate transferred to the fetus can be calculated as a function 
of the values for the concentration of the metabolite studied in 
maternal plasma, the difference of radioactivity in fetuses 
between the left and right uterine horns, and the left uterine 
blood flow. 136- 139 As shown in Figure 39-6, the estimated FFA 
transfer was above 7 nmol/min x g feta! body weight, a value 
that is lower than the level previously found for other com
pounds in earlier studies: glucose, 127 nmol/min x g feta! body 
weight; alanine, 23 nmol/min x g feta! body weight, but higher 
than that of glycerol, 1 nmol/min x g feta! body weight. 139When 
the 14C-labeled lipids that had been retained in the placentas 
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after (l-14C)-palmitate infusion were measured, it was found that 
the value was 99 ± 38 nmol/min/g, which is much higher than 
that found in the fetus. Of those 14C-labeled lipids incorporated 
into the placenta, 49 ± 3% corresponded to esterified FAs, indi
cating that a certain proportion of the FFA that reach the pla
centa is actively esterified. It is not known whether FA 
esterification participates in the FFA transfer process, but an 
active placental capacity to form esterified FAs from maternal 
FFA has also been described in other species140-141 as well as in 
humans_4s, 142 

As already noted, maternal plasma triglycerides in triglyceride
rich lipoproteins may be considered as an alternative source of 
FAs for the fetus. We have recently found that the concentration 
of PUFA in plasma VLDLs in pregnant women during the third 
trimester of pregnancy is much greater than that in FFA53 and 
previous evidence indicates that maternal circulating triglyc
erides contribute somewhat to plasma feta! FAs of the rat, 143 

rabbit,39 guinea pig,41 , 144 and human. 145 The authors applied the 
in situ uterine artery infusion technique135 described above to 
test the potential transfer ofVLDL-14C-triolein across the placenta 
and its incorporation into fetal lipids. During the 20-minute 
study, no significant differences were noted in radioactivity 
incorporated into fetuses from the left horn as compared to 
those from the right horn (see Fig. 39-6).Therefore, it was con
cluded that lipoprotein triglycerides are not a significant direct 
FA source for placental transfer to the fetus. 

Glycerol 
As a result of the active lipolytic activity of maternal adipose 
tissue, plasmatic glycerol levels are consistently elevated during 
late gestation. 17• 7•;, 76 Therefore, the values for plasma glycerol are 
generally higher in the mother than in the fetus (see Fig. 39-5), 
but there are some interspecies differences. The maternal/feta! 
glycerol gradient is greater in those species with an epithelio
chorial placenta (ruminants)96, 146 than in those with a hemocho
rial placenta. 147- 149 

The available experimental data on placental glycerol transfer 
in any species are scarce.Although the molecular characteristics 
of glycerol should facilitate easy placental transfer (low weight 
and uncharged molecule), glycerol transfer is notably lower than 
for other metabolites with similar molecular characteristics such 
as glucose or L-alanine. 139 ,150-151 In contrast with the carrier-medi
ated process used for these two metabolites, placental glycerol 
transfer is accomplished by simple diffusion. 146, 152 In the sheep 
fetus, glycerol uptake is low, accounting for no more than 1.5% 
of the total oxygen consumption of the fetus.96 In humans, it has 
not been possible to detect a transfer of glycerol from mother to 
fetus despite its favorable gradient. 147 When comparing different 
substrates, and by using the in situ infused placental technique 
in the rat, the authors have found that the transfer of glycerol is 
much lower than that of glucose and alanine and similar to that 
of FFA. 139 The authors have also found that the fetal-placental 
unit converts glycerol into lactate and lipids, 149 and this rapid use 
may actively contribute to maintaining the high glycerol gradient 
consistently found between maternal and feta! blood.81 , 147- 150 

Accelerated turnover of maternal glycerol seems to be 
influenced by the high liver glycerol kinase activity, which facili
tates its rapid phosphorylation and subsequent conversion into 
glucose.75, 76,84 ,85 Although this mechanism indirectly benefits the 
fetus by providing glucose (see Fig. 39-4), it may limit the avail
ability of sufficient glycerol molecules for transfer to the fetus. 
Figure 39-7 summarizes studies that support this hypothesis. 
Hepatectomy normally results in increased plasma glycerol 
levels because of a reduction in glycerol use secondary to ab
sence of the liver, the major receptor organ for this metabolite. 15-1 

In the case of pregnant rats, hepatectomy and nephrectomy 
produce significant but smaller increases in plasma glycerol 
levels than in nonpregnant animals. This difference cannot be 
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interpreted as reduced lipolytic activity in the pregnant rat 
because plasma FFA, the other lipolytic product, increases more 
than in nonpregnant animals. It might, however, be interpreted as 
the result of an augmented transfer of glycerol to the fetus 
because glycerol levels in feta! plasma increase significantly after 
maternal hepatectomy and nephrectomy. 154 

Therefore, placental glycerol transfer seems to be limited by 
the effective, rapid use of this substrate for gluconeogenesis by 
the liver and kidney cortex of the mother. Although the fetal
placental unit actively uses glycerol (which helps to maintain a 
favorable transfer gradient), its quantitative and physiologic roles 
in the fetus, except as a preferential substrate for feta! liver 
glyceride glycerol synthesis, 149 seem to be limited under normal 
conditions. Under conditions of markedly elevated maternal 
glycerol levels, however, the placental transfer of glycerol could 
become an important source of substrates for the fetus. 

Ketone Bodies 
Although plasma levels of ketone bodies in the fed pregnant 
mother late in gestation are unchanged under physiologic con
ditions; with fasting73, 79, 80- 155· 159 or diabetic3, 160, 161 conditions, 
they are greatly elevated as a result of increased adipose tissue 
lipolytic activity and enhanced delivery of FFA to the liver. As 
noted earlier, when the supply of glucose is limited (e.g., hypo
glycemia or reduced insulin levels or sensitivity, or both), ketone 
bodies are used by some maternal tissues (e.g., skeletal muscle) 
as alternative substrates. Ketone bodies can also cross the pla
cental barrier and be used as fuels and lipogenic substrates by 
the fetus. 162· 165 

Maternal ketonemia in the poorly controlled pregnant diabetic 
patient, with or without acidosis, has been associated with an 
increased stillbirth rate, an increased incidence of congenital 
malformations, and impaired neurophysiologic development in 
the infant. 164, 166, 167 These effects are thought to be secondary to 
placental transfer of maternal ketone bodies to the fetus. 168 

In addition to size and lipid solubility, molecular charge has 
an important effect on placental membrane permeability. At 
pH 7.4, most molecules of the two main ketone bodies, 
~-hydroxybutyrate and acetoacetate, are present in dissociated 
or ionized form, which retards their diffusion across the pla
centa. Despite this, in all species studied (human,157 , 158 , 169, 110 

rat,79, 80, 171 and sheep156, 168), increments in maternal ketone 
bodies are accompanied by increments in feta! plasma levels, 
indicating efficient placental transfer; feta! liver ketogenesis is 
practically negligible .172 

Placental transfer of ketone bodies occurs either by simple 
diffusion or by a low specificity carrier-mediated process; 146, m 
the efficiency of which varies among species. Although the 
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Figure 39-7. Effect of hepatectomy-nephrectomy on 
plasma free fatty acid and glycerol in virgin (V) and 
20-day pregnant rats (P). Experimental details are as 
indicated in ref. 154. 

maternofetal gradient for ketone bodies is higher than 1 O in 
sheep, 156, 168 in humans it is about 2, 147 and in rats it is close 
to 179, 80, 171 (see Fig. 39-5), indicating that the amount of ketone 
bodies crossing the placenta is much lower in ruminants than in 
nonruminant species. It has even been proposed that in the 
fasting condition, the contribution of ketone bodies to the feta! 
oxidative metabolism accounts for only 2 to 3% of the total 
oxygen consumption in the case of sheep.156, 174 In the rat, 
~hydroxybutyrate adequately replaces the glucose deficit in the 
placenta, feta! brain, and liver during fasting hypoglycemia. 165 

This suggests a much greater contribution of ketone bodies to 
the feta! oxidative metabolism in the fasted nonruminant. 

Key enzymes for ketone-body utilization-3-hydroxybutyrate 
dehydrogenase (EC 1.1.1.30), 3-oxoacid-CoA transferase (EC 
2.8.3.5), and acetyl-CoA acetyltransferase (EC 2.3.1.9)-have 
been found in the brain and other tissues in both the human and 
the rat fetus. 162, 163, 175, 176 Both the human 164 and the rat brain 163 

oxidize ~-hydroxybutyrate in vitro in a form that is dependent 
on substrate concentration and not on the maternal nutritional 
state. Other feta! tissue types known to oxidize ketone bodies are 
kidney, heart, liver, and placenta. 163, 176 Some tissues are even 
known to use ketone bodies as substrates for FA and cholesterol 
synthesis, as has been shown in the rat brain, liver, placenta, and 
lung after in vivo administration of 14C-~hydroxybutyrate to 
pregnant animals. 177 The activity of ketone-body metabolizing 
enzymes in fetal tissues (brain, liver, and kidney) can be 
increased by conditions that result in maternal hyperketonemia, 
such as starvation during the last days of gestation178 or high fat 
feeding. 179 Such a change is especially evident in the feta! brains 
from starved late pregnant rats178 and may represent an impor
tant fetal adaptation to guarantee brain development under these 
conditions because fetal brain weight is better preserved than 
other feta! organ weights. 

In conclusion, there is evidence in nonruminant species for 
efficient placental ketone body transfer and for the feta! use of 
these materials as substrates for both oxidation and lipogenesis, 
even in preference to other substrates (glucose, lactate, and amino 
acids). Because both the placental transfer and the use of ketone 
bodies are concentration dependent, the quantitative contribution 
to feta! metabolism is important only under conditions of mater
nal hyperketonemia (e.g., starvation, high-fat diet, diabetes). 

CHOLESTEROL IN THE FETUS 

Role of Cholesterol and Related Compounds 
in Development 
Cholesterol plays an important role in feta! development as well 
as in the general physiology of the organism. First, it is an essen-



tial component of cell membranes. By interacting with phos
pholipids and sphingolipids, cholesterol contributes to the char
acteristic physicochemical properties of membranes, mainly 
fluidity and passive permeability. 180 Cholesterol is not homoge
neously distributed in the membrane, rather it is concentrated in 
structures such as rafts and caveolae, where it modulates the 
function of different integral proteins and receptors. Cholesterol 
is the precursor of both bile acids and steroid hormones; in the 
fetus, glucocorticoids are intensely synthesized by the adrenal 
gland in the last part of development, which represents an 
important time of cholesterol need. Cholesterol and its oxidized 
derivatives-oxysterols-are key regulators of different meta
bolic processes, both by modulating the proteolytic activation of 
sterol response element binding protein (SREBP) or by acting as 
ligands of nuclear receptors, such as LXR (liver X receptor). 181, 182 

Active SREBP and LXR are transcription factors that regulate the 
expression of multiple genes implicated in intracellular lipid 
homeostasis and lipoprotein metabolism.181, 183 

Recently, other important actions of cholesterol have become 
apparent; these actions have special relevance for the fetus 
because they are related to development, embryogenesis, and dif
ferentiation. Cholesterol is required for cell proliferation, not 
only for membrane formation, but also for the activation of reg
ulatory proteins involved in cell cycle progression, specifically in 
the transition from the G2 phase to mitosis. 184, 185 Cholesterol 
plays important roles in differentiation and cell-to-cell communi
cation; in fact, it has recently been demonstrated as a key factor 
in synaptogenesis. 186 Finally, cholesterol is essential in embryonic 
patterning in both vertebrates and invertebrates. 187 This is 
attained mainly by activation of hedgehog proteins (i.e., Sonic 
hedgehog-Shh-in humans), which are involved in cell 
differentiation. 188 

It is conceivable, thus, that defects affecting cholesterol avail
ability will have deleterious consequences in fetal development. In 
fact, congenital defects in cholesterol biosynthesis or the reduc
tion of cholesterol synthesis with xenobiotics result in severe mal
formations and dysfunctions, mainly affecting the craniofacial 
organs and the central nervous system (CNS), respectively, alter
ations that are similar to those caused by Shh defficiency. 187,189, 190 

It has been observed in pigs that feta! weight is directly corre
lated to plasma cholesterol concentration in the fetus at late ges
tation.191 Similarly, neonatal pigs from lines with genetically low 
cholesterol levels are smaller at birth and grow more slowly, but 
the growth rate improved when they were fed with choles
terol.192, 193 An increase in neonatal survival is noted with sup
plementary dietary fat for the peripartal sow. 194Thus, cholesterol 
is essential in body growth and the development of the CNS and 
feta! requirements must be met either by efficient endogenous 
cholesterol biosynthesis or transfer from the mother. 

Cholesterol Biosynthesis and Congenital Defects 

Cholesterol biosynthesis is a multienzymatic pathway that can 
be separated into three segments according to the type of com
pounds that are synthesized in each one, that is, mevalonic acid, 
isoprenoids, and sterols, respectively. In the first, also called the 
mevalonate pathway, three molecules of acetyl-CoA are succes
sively condensed by the action of acetyl-CoA acetyltransferase 
and cytosolic 3-hydroxy-3-methylglutaryl (HMG)-CoA synthase 
to form HMG-CoA, which is then reduced with the loss of 
coenzyme A, rendering mevalonate, a 6-carbon compound195 

(Fig. 39-8). This complex reaction is catalyzed by HMG-CoA 
reductase, which is present in the endoplasmic reticulum and is 
the rate-limiting step in cholesterol biosynthesis. In the next 
series of reactions, mevalonate is converted to sqr1lene (see 
Fig. 39-8), which is the immediate precursor of st1 ,Is. The first 
sterol formed is lanosterol, which contains 30 .._ '.·bons (see 
Fig. 39-8). The transformation of lanosterol into cholesterol 
occurs in the endoplasmic reticulum and involves at least seven 
different enzymes (Fig. 39-9). 
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In humans, six different genetic defects in the cholesterol 
biosynthesis pathway have been identified. Mevalonic aciduria 
(MIM 251770) is caused by missense mutations in mevalonate 
kinase, which impair the formation of both isoprenoids and 
sterols (see Fig. 39-8).The patients show dysmorphias and failure 
to thrive. Milder mutations of the enzyme also underlie hyper
immunoglobulinemia D and periodic fever syndrome (MIM 
260920).The rest of the disorders are due to defects in the post
squalene segment of the pathway (see Fig. 39-9). Greenberg 
skeletal dysplasia (MIM 215140), which is associated with short
limb dwarfism, is probably caused by mutations of ti.14-reductase, 
but confirmation at the molecular level has yet to be observed. 
CHILD syndrome (MIM 308050) and Conradi-Hiinermann
Happle syndrome (CPDX2; MIM 302960) are caused by deficien
cies of C4-demethylase and ti.8-ti.7-isomerase, respectively; these 
two disorders are X-linked dominant inherited and carrier males 
are lethally affected, whereas females present with several skele
tal and skin abnormalities. Desmosterolosis (MIM 602398) is an 
extremely rare and probably autosomal recessive inherited dis
order due to the deficiency of ti.24-reductase; the infants affected 
died shortly after birth and suffered from multiple malformations 
and dysmorphias. The last of these disorders, and probably the 
best known and most widely studied, is Smith-Lemli-Opitz syn
drome (SLOS; MIM 270400), which is caused by mutations of 
ti.7-reductase. The phenotypic expression is highly variable; the 
most prominent anomalies are microcephalia and facial dysmor
phias. All affected patients accumulate 7-dehydrocholesterol in 
plasma and tissues, but the clinical severity of this syndrome 
correlates best with its relative level to plasma cholesterol. This 
suggests that the availability of cholesterol during development 
is one of the major determinants of the phenotypic expressions 
in SLOS. 

In general, these congenital alterations show the important 
role of cholesterol and its immediate precursors in morphogen
esis and feta! development. The reader is referred to excellent 
reviews on this subject.189, 190 

Sources of Feta/ Cholesterol 

The demands for cholesterol in the fetus are relatively high, espe
cially during the last third of gestation when feta! growth is expo
nential. In principle, the fetus may obtain cholesterol from both 
endogenous biosynthesis and from the yolk sac and placenta. By 
following the appearance of radioactivity in the fetus, early 
experiments demonstrated the placental transfer of maternal 
cholesterol to the fetus in different species, such as the rat, I% 

guinea pig, rabbit, 197 and rhesus monkey. 198 In those studies, the 
estimated contribution of maternal cholesterol to the fetus 
varied widely, likely because of methodologic reasons. A more 
accurate type of study is to compare cholesterol accretion in the 
fetus with the absolute rate of cholesterol biosynthesis. 
Measurements of (3H]water incorporation into cholesterol 
revealed that cholesterol biosynthesis in feta! tissues is highly 
active; when calculated per mass unit, the rate of cholesterol syn
thesis in feta! tissues is several times higher than in maternal 
tissues in different species. 199-203 This is especially the case for 
the fetal brain, which appears almost completely autonomous in 
cholesterol accretion, and the liver, the cholesterol biosynthesis 
of which proceeds at a rate exceeding the need for cholesterol 
accretion, an excess that is secreted into the plasma for uptake 
by other developing feta! organs. 202,203 These results are consis
tent with the near-maximal expression at the level of mRNA of 
different enzymes involved in cholesterol biosynthesis204 and the 
high activity of HMG-CoA reductase-the rate limiting enzyme 
of cholesterol biosynthesis-in feta! tissues. 205,206 

By comparing the cholesterol synthesis rate with cholesterol 
accretion in the whole fetus, an estimation of the requirement 
for exogenous cholesterol can be derived, which would either be 
directly transferred from maternal plasma or synthesized in the 
placenta or the yolk sac. In the rat, endogenously synthesized 
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Figure 39-8. Biosynthesis of lanosterol from acetyl-CoA. Aside the route leading to the formation of lanosterol, the first sterol in the 
cholesterol biosynthesis pathway, the alternative use of isopentenyl-PP for the derivation of certain t-RNA and farnesyl-PP for several 
isoprenoids is shown. Multiple arrows indicate several reactions.The name of a human inherited disorder is shown in italics beside 
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cholesterol appears to account for practically all feta! choles
terol, 202· 203 meaning that the other potential sources are 
insignificant, at least during the later stages of gestation. In fact, 
Belknap and Dietschy200 found that although the rat placenta did 
take up 125I-cellobiose-labeled lipoprotein from maternal circula
tion, none of the apolipoprotein or cholesterol was appreciably 
transferred to the fetus. These studies indicate that the rat fetus 
receives little or no cholesterol from the mother but, rather, 
satisfies its need for cholesterol during feta! development 
through local synthesis. Maneuvers directed to modify choles
terol homeostasis in the mother had no significant effects on 
cholesterol levels or cholesterol synthesis rates in the fetus.Thus, 
feeding pregnant rats with cholesterol, which resulted in an 
increase of plasma cholesterol concentration and reduced cho
lesterol synthesis in the maternal compartment, did not affect 
any of these parameters in the fetus. 199, 200,207,208 Conversely, treat
ment of pregnant rats with cholestyramine-a bile acid seques
trant that interferes with intestinal cholesterol absorption and 
consequently stimulates cholesterol biosynthesis in maternal 
tissues-did not alter cholesterol accretion in the fetus. 209 All 
these findings led to the affirmation that in the rat, fetal choles
terol originates mainly from endogenous de novo synthesis 
rather than from placental transfer. 

In the early stages of gestation in the rat, however, maternal 
cholesterol may make a significant contribution to the fetal cho
lesterol pool. For instance, it is well known that treatment of 
pregnant rats with AY 9944-an inhibitor of d7-reductase
results in feta! teratogenesis, but the simultaneous oral adminis
tration of cholesterol early in gestation completely prevents the 
characteristic holoprosencephalic brain malformations. 187, 210,211 

In contrast, the anomalies of fetal masculinization caused by AY 
9944 when administered late in gestation, are not prevented by 
the compensatory administration of cholesterol to the mother. 187 

These results firmly suggest that maternal cholesterol reaches 
the feta! compartment at least early in gestation and is of 
significant physiologic relevance in the rat. 

In other species, exogenous cholesterol may constitute an 
important, quantitative source of cholesterol for the fetus. In the 
Golden Syrian hamster, Woollett found that endogenous biosyn
thesis accounted for only 40% of the fetal cholesterol, suggest
ing that the placenta and/or the yolk sac contributed the 
remainder. 201 Actually, in hamsters fed increasing amounts of 
cholesterol, the cholesterol concentration in the fetal tissues was 
found to be linearly correlated with the maternal plasma choles
terol concentration, while cholesterol synthesis decreased in the 
reverse way.212 These studies in hamsters demonstrated that fetal 
cholesterol homeostasis is affected by maternal plasma choles
terol concentration in a gradient fashion. 212 In the guinea pig, 
feta! cholesterol homeostasis was found to be relatively insensi
tive to dietary cholesterol manipulations in the mother through
out gestation. 199 Nevertheless, feeding cholestyramine to the 
mothers, although producing the expected stimulation of 
3H-water incorporation into sterols in maternal liver, also resulted 
in a 1 .4-fold increase in feta! carcass cholesterol synthesis at 
60 days' gestation, which demonstrates that feta! cholesterol 
homeostasis may respond to induction by maternal hypocholes
terolemia during the late gestation period.199 

Data in humans are scarcer and cholesterol biosynthesis in 
fetal tissues has not been evaluated for obvious reasons. In deliv
eries at term, Parker and associates21 3 measured cholesterol 
levels in the umbilical venous and the umbilical arterial plasmas 
and found a highly significant difference between HDL-, LDL-, 
and total-cholesterol concentrations, venous levels being 7.7 to 
12.8% higher than those in arterial plasma.These data were sug
gestive of the delivery of cholesterol from the placenta to the 
fetus, which could either be synthesized in the placenta or 
derived from the maternal plasma.Those same authors, however, 
estimated that the contribution of such cholesterol to the feta! 

plasma cholesterol pool was of minimal quantitative importance 
in term newborns of women experiencing uncomplicated 
pregnancies.213 Several observational studies have addressed 
this issue by comparing maternal lipoprotein-cholesterol levels 
with those in mixed umbilical cord blood, reporting either a 
positive correlation214, 215 or no correlation between these 
values.213, 216-218 The gestational stage, however, could influence 
these results, because cholesterol plasma concentration has been 
reported as significantly higher in premature than in full-term 
newborns. 219, 220 In fact, fetal cholesterol levels show a strong 
inverse correlation with feta! age, being two-fold higher in 
5-month than in 7-month-old fetuses. 221 This has been inter
preted as an indication of the greater requirements of choles
terol in the younger, more immature fetuses. 221 Interestingly, in 
fetuses younger than 6 months, although not in older feta! 
plasma, cholesterol levels are significantly, directly correlated to 
the maternal ones.221 Therefore, available results in humans 
strongly suggest that maternal cholesterol substantially contri
butes to feta! cholesterol accretion early in gestation. 

Both the placenta and the yolk sac are able to synthesize and 
remove cholesterol from the maternal circulation. In the preg
nant rat it was determined that placenta takes up LDL at rates 
equal to about one-third of those seen in the maternal liver. 200 In 
the hamster, LDL clearance rates of the placenta and yolk sac 
were similar to those in the liver and higher than those in the 
decidua when studied at mid-gestation (day 10.5).222 In the same 
study, it was found that clearance rates for HDL-apoA-I and HDL
cholesteryl ether were similar to those of LDL in the placenta 
and decidua, whereas rates in the yolk sac were dramatically 
higher. As gestation progressed to day 14.5, LDL and HDL 
clearance rates decreased in all three tissues. 222 

Regarding the receptors responsible for the uptake of lipopro
tein cholesterol, there are multiple possibilities. Both the pla
centa223· 224 and, to a lesser extent, the yolk sac222 express LDL 
receptors in their membranes. In correlation with this, several 
authors documented the use of LDL-cholesterol for progesterone 
synthesis by trophoblastic cells in vitro. 225, 226 Interestingly, it was 
found that HD[z-cholesterol stimulated placental progesterone 
secretion to a greater extent than LDL did, by a mechanism that 
did not involve the LDL receptor.226 Further evidence on the role 
of maternal HDL as an exogenous source of feta! cholesterol 
comes from studies in apolipoprotein A-I-deficient mice. These 
animals have markedly reduced HDL-cholesterol levels in 
plasma, and cholesterol accretion in the fetus was diminished, 
although cholesterol synthesis in the fetus was not affected. 227 

These results were in line with previous observations by Knopp 
and associates, 228 describing apolipoprotein A-I concentration in 
maternal plasma as a significant positive predictor of birth 
length. It appears that HDL could potentially contribute a 
significant proportion of the cholesterol required for fetal devel
opment. 

Several lipoprotein receptors, different from the LDL receptor, 
which can mediate the uptake of HDL cholesterol, have been 
detected in placental preparations. These include SR-BI/CLA-1-
an HDL receptor, megalin/gp33O-homologue of the LDL recep
tor, and cubilin-a protein that binds HDL and acts in 
conjunction with megalin to mediate HDL endocytosis. 222,229, 230 
These receptors are highly expressed in the yolk sac as 
well. 222, 231, 232 Taken together, these data confirm the ability of 
both the placenta and the yolk sac to take up cholesterol from 
maternal lipoproteins, but the extent to which it is exported to 
the fetus and the factors that regulate this process remain to be 
clarified definitively. 

SUMMARY 
During gestation, both triglyceride and cholesterol increase in all 
lipoprotein fractions and are associated with an increase in the 



triglyceride/cholesterol ratio in LDL and HDL. The increase in 
HDL mainly corresponds to triglyceride-enriched HDL2 • The 
presence of lipoprotein receptors in the placenta ensures the 
availability of essential lipoprotein components to the fetus and 
provides a teleologic reason for maternal hyperlipoproteinemia. 

Sustained maternal hyperlipidemia during late pregnancy is of 
pivotal importance in feta! development. This is especially true 
during the stage of maximal feta! accretion. Besides using trans
ferred FAs, the fetus also benefits from two other products of 
maternal lipid metabolism, glycerol and ketone bodies.Although 
only a small proportion of maternally derived glycerol crosses 
the placenta, it is quantitatively important as a substrate for 
maternal gluconeogenesis. Because feta! oxidative metabolism is 
preferentially sustained by maternal glucose crossing the pla
centa, the use of glycerol for glucose synthesis actively con
tributes to the feta! glucose supply. 

In nonruminant species, there is an easy transfer of maternal 
ketone bodies to the fetus, where they can be efficiently used as 
carbon fuels for oxidative metabolism or as lipogenic substrates. 
Because all these processes are concentration dependent, they 
become relevant only under conditions of maternal hyperke
tonemia. Under healthy physiologic conditions, they constitute 
an important support for feta! metabolism when the availability 
of other substrates is more limited (e.g., during periods of mater
nal starvation). Under conditions of sustained maternal hyperke
tonemia, such as high-fat feeding, feta! metabolism also adapts to 
an enhanced consumption of ketone bodies. 

Although the contribution of maternal cholesterol to feta! 
cholesterol appears important during early gestation, it seems to 
be of minimal quantitative importance during late gestation.This 
is consistent with the high capacity of all feta! tissues to synthe
size cholesterol. In humans, several congenital defects in the 
cholesterol biosynthesis pathway have been identified, showing 
the important role of cholesterol in morphogenesis and feta! 
development. 
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