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Abstract 15 

Cocoa powder is a global product of great value that can be adulterated with low-cost raw 16 

materials such as carob flour without changing the characteristics of color, aroma and flavor of 17 

the product. The use of rapid methods, as a NIR technology combined with multivariate 18 

analysis, is of interest for this detection. In this work, 216 adulterated samples prepared by 19 

blending commercial cocoa powders with different alkalization levels (n = 12) with commercial 20 

carob flour (n = 6) in different proportions (0-60% of adulteration) were analyzed. The diffuse 21 

reflectance spectra of the samples were acquired from 1100 to 2500 nm using a Foss NIR 22 

spectrophotometer. A qualitative and quantitative analysis was done. For the qualitative 23 

analysis, a principal component analysis (PCA) and a partial least squares discriminant analysis 24 

(PLS-DA) was performed. The coefficient of determination (R2) of the model PLS-DA was 25 

0.969 and the coefficient of determination of the validation (R2
CV), based on a full cross-26 

validation was 0.901 indicating good calibration with good predictability. These results indicate 27 

that it is possible to distinguish between pure cocoa powders from the adulterated samples. For 28 



the quantitative analysis a partial least squares (PLS) regression analysis was performed. The 29 

most robust model of PLS prediction was obtained with 1 factors (LV) at coefficient of 30 

determination (R2) of 0.980 and a root mean square error of prediction (RMSEp) of 3.237 % for 31 

the external validation set. These data lead to the conclusion that NIR technology combined 32 

with multivariate analysis allows the identification and determination of the amount of natural 33 

cocoa powder present in a mixture adulterated with carob flour. 34 

Keywords:   Cocoa powder, adulteration, carob flour, NIR, PCA, PLS.   35 



1. Introduction 36 

 37 

Cocoa powder, due to its characteristic and pleasant flavor and aroma, is one of the 38 

most valued commodities around the world (Bonvehí, 2005). Among its applications in 39 

the food industry stands out the formulation of beverages, confectionery, bakery and 40 

pastry products (Shankar, Levitan, Prescott, & Spence, 2009). Apart from flavor and 41 

aroma, cocoa is really appreciated as a natural coloring agent, in part because of the 42 

tendency to restrict the use of artificial colors.  43 

During cocoa processing, cocoa colour and aroma can be modified through roasting 44 

and/or alkalization processes. Roasting consists of exposing cocoa beans to 45 

temperatures of 130–150 °C for 15–45 min. It is used to inactivate microorganisms and 46 

to develop the characteristic brown colour, mild aroma and texture of commercial 47 

natural beans (Bonvehí, 2005, Krysiak, 2006; Afoakwa, Budu, Mensah-Brown, Felix & 48 

Ofosu-Snsah, 2014). By its part, alcalizatization is an optional operation to reduce acity, 49 

bitterness and astringency and to darken cocoa color. This procedure involves the use of 50 

an alkali (generally potassium carbonate) in combination with oxigen, water and hight 51 

temperatures. This extreme conditions provoke, among others, Maiard reactions and 52 

polyphenol oxidations and polymerizations, ending up with flavour and colour 53 

modifications (from light brown (natural) to red, dark brown or extremly black) (Miller 54 

et al., 2008; Li, Feng, Zhu, Luo, Ma, & Zhong, 2012).  55 

During recent years, cocoa powders have experienced both, an increase in demand 56 

and a tightening of supplies, which has steadily raised the price (Fadel, Mageed, Samad, 57 

& Lotfy, 2006). In consequence, there has been a demand for the development of cocoa 58 

substitutes. Some studies suggest that cocoa-like aromas can be found in roasted carobs 59 

(Arrighi, Hartman & Ho, 1997). Carob pods are characterized for a high sugar content 60 

(around 50%), composed essentially of sucrose. This high sugar content favors the same 61 



chemical reactions that occur during roasting and alkalization of cocoa: caramelization 62 

of high sugar content and Maillard reactions between amino acids and sugars (Fadel et 63 

al., 2006). In this way, the toasted carob can provide aromas similar to cocoa. 64 

Having in mind this great aromatic and visual similarity between carob flour (natural 65 

or toasted) and cocoa (natural or alkalized), some traders have seen in the sale of carob 66 

(average price of 940 US$/tonne) as cocoa (1945 US$/tonne), omitting this substitution, 67 

a profitable option to increase their benefits (Arias and Zapata, 2017; ICCO, 2017). 68 

However, this deliberate, intentional and not declared substitution of one product for 69 

another with a lower price not only is a food fraud that affects producers and consumers, 70 

but it also affects the physico-chemical properties of the manufactured product. Some 71 

studied examples comprise milk chocolates and chocolate cakes in wich certain 72 

percentages of cocoa powder were subtituted by carob flour (Salem & Ohaad Fahad, 73 

2012 Rosa, Tessele, Prestes, Silveira, & Franco, 2015). 74 

To detect food adulteration the three most common technologies are liquid 75 

chromatography, infrared spectroscopy and gas chromatography (Moore et al., 2012).  76 

Of those, liquied and gas chromatography analysis need large times of sample 77 

preparation, the optimization of the method as well as high cost of materials and 78 

reactives. In contrast, infrared spectroscopy is fast, realiable, less expensive and a 79 

chemical-free alternative (Ellis et al., 2012). Near infrared  spectroscopy (NIR) is a type 80 

of infrared spectroscopy characterized by registering  reflectance or transmittance 81 

spectrums in the  region from 13000 cm-1 to 3300 cm-1. These spectrums act as a 82 

‘fingerprint’ characteristic of a particular molecule of sample and allows its 83 

identification. Some examples of the use of NIR and multivariant analysis in the cocoa 84 

sector comprise the prediction of basic food componets such as moisture, carbohydrate, 85 

fat, protein, teobromin and catechin as well as total polyphenol content (Veselá et al., 86 

2007; Álvarez et al., 2012; X. Y. Huang et al., 2014). In other sectors, NIR in 87 



combination with multivariant analysis has been employed to detect starch in onion 88 

powders; acid whey, starch, maltodextrin in skim powder milk;  sudan dyes in chilly 89 

powders and talcum powder in teas (Lohumi et al., 2014; Capuano, Boerrigter-Eenling, 90 

Koot, & van Ruth, 2015; Haughey, Galvin-King, Ho, Bell, & Elliott, 2015; Li, Zhang, 91 

& He, 2016). 92 

In this context, the aim of this work is to detect qualitatively and cuantitativelye the 93 

adulteration of cocoa powders (with independence of their alkalization level) with carob 94 

flours throug the aplication of NIR and multivariant analysis. 95 

 96 

2. Materials and methods 97 

 98 

2.1 Raw materials 99 

 100 

In order to analyze a good set of samples representative of the existing variability in 101 

commercial cocoa and carob flour, cocoa powders with different alkalization levels 102 

(natural cocoa -NC-, lightly alkalized cocoa -LAC-, medium alkalized cocoa –MAC- 103 

and strong alkalized cocoa -SAC-) (n=12) and carob flour powders with three different 104 

roasting degrees (light carob flour -LCF-, medium carob flour -MCF- and dark carob 105 

flour -DCF-) (n=6) were used in this study. The cocoa powders were gently donated by 106 

OLAM Food Ingredients Spain (Cheste, Spain) and the carob flour podwers were 107 

bought in a local specialised supermarket. The raw samples were placed in a glass 108 

container and stored in a dry and dark atmosphere until use.  109 

 110 

2.2 Physical and Chemical characterization of raw materials 111 

 112 

Each of the raw sample was characterized according to their extractable pH value 113 

and extrinsic colour.  114 



For extractable pH determination, 10g of cocoa powder were suspended in 90 mL of  115 

boiling distilled water and stirred. Then, temperature was reduced to 20-25 ºC in a 116 

coldwater bath (OLAM, 2017). pH was mesured with a digital pH-meter micropH 2001 117 

(Crison Instruments, S.A., Barcelona, Spain). Samples were classified according to their 118 

pH value in four different categories: natural cocoa powders (pH 5-6), light alkalized 119 

(pH 6-7.2), medium alkalized (pH 7.2-7.6) and strong alkalized powders (pH > 7.6) 120 

(Miller et al., 2008). 121 

For the determination of the extrinsic color, the sample of cocoa powder was placed in 122 

a methacrylate cuvette, unifying the degree of compaction through small successive 123 

shocks. The color was measured using a spectrocolorimeter Minolta CM 3600D 124 

(Tokyo, Japón). The reflectance spectra, between 400-700 nm was used to obtained the 125 

color coordinates L*, a* and b* for D65 illuminant and 10° observer. Hue (ℎ∗) and 126 

chroma (#∗) were estimated by the equations 1 and 2, respectively. All the 127 

measurements were performed in triplicate. 128 

 129 

ℎ∗ = %&'() *∗
+∗ (1) 130 

 131 

#∗ = ,%∗- +	0∗- (2) 132 

 133 

2.3 Preparation of adulterated samples 134 

 135 

A total of 216 adulterated samples were prepared by blending the 12 cocoa powders 136 

with the 6 different carob flours at different proportions. For each one of the 72 possible 137 

cocoa-carob combinations, three different levels of adulteration were prepared: low 138 

adulteration LA (0-20%), medium adulteration MA (20-40%) and high adulteration HA 139 

(40-60%). The upper limit (60%) was fixed on the consideration that above this 140 



concentration the adulteration is evident due to the characteristic aroma of carob 141 

(Cantalejo, 1997). The concrete adulteration percentage within a level was determined 142 

randomly from an uniform distribution (every percentage of adulteration had the same 143 

probability to be selected) following the latin hypercube strategy (LHS) (Helton & 144 

Davis, 2003). The adulterated samples, in the same way as the raw samples, were placed 145 

in a glass container and stored in a dry and dark atmosphere until use.  146 

 147 

2.4.Near-infrared spectra collection  148 

 149 

The 234 samples (12 unaltered cocoa powders, 6 carob flour and 216 adulterated 150 

samples) were scanned using a FOSS NIR 5000 System spectrophotometer (Silver 151 

Spring, MD, USA) equipped with a transport module. A round sample cup with 3.8 cm 152 

diameter x 1cm thick quartz windows were filled with each sample (about 5g) to 153 

maintain a uniform surface and thickness during spectral collection. The instrument 154 

measures the diffuse reflectance and automatically converts it to relative absorbance 155 

(log 1/R) to obtain a linear correlation with the concentration of the chemical 156 

constituents of the product according to Beer’s Law (Martens, Nielsen, & Engelsen, 157 

2003). A total of 32 successive scans with 700 points (wavelengths) from each sample 158 

were collected, between a wavelength range of 1100 and 2500 nm at 2 nm intervals. 159 

Samples were measured twice in order to mesasure the influence of environmental 160 

conditions and to ensure reproducibility. Then a total of 468 spectra were collected.  161 

 162 

2.5 Chemometric analysis 163 

 164 

Analysis of variance (ANOVA) was used to determine differences in pH and 165 

extrinsic color among samples. The data were statistically processed using Statgraphics 166 



Centurion XVI (Manugistics Inc., Rockville, MD, USA). Simultaneously the color 167 

parameters (C*, h*, L*) and the pH were used in a principal component analysis (PCA) 168 

to show the samples and their relationship.  169 

Multivariate analysis was conducted by a qualitative and a quatitative analysis using 170 

The Unscrambler v10.4 (CAMO Software AS, OSLO, Norway). For the qualitative 171 

analysis, a PCA and a partial least squares discriminant analysis (PLS-DA) was 172 

performed. The PCA was performed with the raw data while the PLS-DA (Berrueta, 173 

Alonso, & Héberger, 2007) was constructed after apply to the spectra 2nd derivative 174 

(Savitzky-Golay smoothing) (Savitzky & Golay, 1951) and orthogonal signal correction 175 

(OSC). Both pre-treatments are applied in order to extract useful information, improve 176 

the signal-to-noise ratio and remove systematic variation from the predictor matrix X 177 

unrelated, or orthogonal, to the matrix Y (Wold, Antti, Lindgren, & Öhman, 1998; 178 

Pizarro et al., 2004). For the quantitative analysis a partial least squares (PLS) 179 

regression analysis was performed. In order to evaluate and correct multiplicative and 180 

additive effects caused by different light scattering in the spectroscopic measurement 181 

(Cozzolino et al., 2011; Stohner et al., 2012), five PLS models were tested. The PLS 182 

were constructed using the raw spectrum and applying three pre-treatments to the 183 

spectrum: 2nd derivative Savitzky-Golay smoothing, orthogonal signal correction (OSC) 184 

and the combination of 2nd derivative Savitzky-Golay smoothing and orthogonal signal 185 

correction (OSC)  186 

 187 

2.5.1 Calibration models development 188 

 189 

Two databases were used for the analysis. The first database consisted of 468 spectra 190 

and 700 variables (wavelengths, nm) and was used for the PCA and PLS models. For 191 

PLS-DA classification in three categories (0=Cocoa; 1=Adulterated samples and 192 



2=Carob flour), a second database containing 135 spectra and 700 variables was created 193 

in order to balance the number of samples belonging to each category. Moreover, the 194 

spectra of each database were randomly separated into two different data sets. A set 195 

containing the 70% of the spectra was used for the creation and evaluation of the model 196 

by leave-one-out cross-validation. The other set, with 30% of the remaining samples 197 

was used for the external validation. The relative performance of the constructed models 198 

was assessed by the required number of latent variables (LVs), the coefficient of 199 

determination for calibration (R2
C), the root mean square error of calibration (RMSEC), 200 

the coefficient of determination for cross validation (R2
CV) and the root mean square 201 

error of leave-one-out cross validation (RMSECV). A model can be considered good 202 

when a low number of LVs are required and it has a low RMSEC and RMSECV and high 203 

R2
C and R2

CV. 204 

 205 

2.5.2 External validation 206 

 207 

To assess the predictive capability of the models the coefficient of determination for 208 

prediction (R2
P), the root mean square error of prediction (RMSEp), the ratio of 209 

prediction deviation (RPD = SD/SEP), where the SD was the standard deviation of the 210 

Y-variable in the prediction set) and the bias were used. RPD is more meaningful than 211 

only looking at the error of prediction. RPD value less than 2 is considered insufficient 212 

for application, between 2 and 2.5 is considered for approximate quantification, values 213 

between 2.5 and 3 as a good model, while models with RPD values more than 3 can be 214 

considered an excellent and most reliable for analytical tasks (Sunoj, Igathinathane, & 215 

Visvanathan, 2016). The bias estimates the difference between experimental value and 216 

NIR predictions and can be positive or negative. Positive values indicate that the model 217 

was overestimating, while negative values indicate otherwise. Larger bias values 218 



indicate that the NIR predictions vary significantly from the experimental values 219 

(Cantor et al., 2011), so it is better that tends to zero. The LOD which is the minimum 220 

value of adulteration that could be detected by the model, which is the result of adding 221 

the average plus 3 times the standard deviation (Haughey et al., 2015; Lerma, Ramis, 222 

Herrero, & Simó, 2010) was calculated with the optimal model. For this the adulteration 223 

level of four pure cocoa samples (blanks) of different alkalization degree was 224 

calculated. 225 

 226 

3. Results and Discussion 227 

 228 

3.1 Color and extractable pH analysis 229 

 230 

In order to classify cocoa samples in relation to their alkalization level and carob 231 

samples in line with their roasting intensity, the 12 cocoa samples and the 6 carob flour 232 

samples were characterized according to their pH value and color parameters (L*, C* 233 

and h*). 234 

Table 1 contains the color parameters and pH values of different raw matters. As 235 

observed, the pH values obtained ranged from 5.3 (NC1) to 7.9 (SAC3). pH can be used 236 

as an indicator of the degree of alkalization occurring in production because the pH 237 

value of the cocoa powder is related to the amount and type of alkali used in the process 238 

(OLAM, 2017; Pérez et al., 2016). According to previous statement, samples were 239 

classified in four categories (natural, light alkalized, medium alkalized and strong 240 

alkalized) following the classification of Miller et al., (2008) (See section 2.2). 241 

Following these values, the samples of cacao were classified in light alkalized cocoa 242 

(PH 6-7.2), medium alkalized cocoa (pH 7.2-7.6), and strong alkalized cocoa PH > 7.6). 243 



3 of the 12 samples were considered natural cocoa (NC), 3 light alkalized cocoa (LAC), 244 

3 medium alkalized cocoa (MAC) and 3 strong alkalized cocoa (SAC). 245 

The luminosity values (L*) measured in cocoa samples ranged from 31 (SAC1) to 50 246 

(NC3). The maximum value of luminosity appears in a sample of natural cocoa (NC3). 247 

The value of L* decreases progressively as a function of the degree of alkalization to 248 

the minimum value in strongly alkalized (SAC) samples with a very dark color. The 249 

observed differences in luminosity in natural cocoa samples (NC1, NC2 and NC3) 250 

could be due to a different geographical origin or to a different processing in the 251 

fermentation or roasting stages (Afoakwa, Budu, Mensah-brown, Felix, & Ofosu-ansah, 252 

2014). 253 

The chroma values, C*, oscillated between 11 (SAC1) and 22 (NC2). As can be seen 254 

in Table 1, the higher the alkalization degree the lower the purity. 255 

The hue (h*), unlike the other parameters, does not follow a linear relationship with 256 

the increase in pH value. Cocoa samples evolve from a more yellow-orange hue (h * = 257 

60) to more orange-red hue (h* = 43) in the alkaline cocoa samples.  258 

Whit respect of carob flours the pH value ranged from 4.5 to 5.1, with no trend 259 

between pH value and degree of toasting samples. Thus, carob samples could be added 260 

to natural cocoa beans in high proportions without significantly changing the pH value 261 

of the mixture. 262 

The values of the L* ranged from 34 (DCF) to 49 (LCA) in carob flours, showing 263 

that the luminosity decreases progressively as the degree of roasting increases. 264 

Comparing these values with those of cocoa, it can be confirmed that attending to the 265 

luminosity does not exist statistical differences (p<0.05) between samples of natural 266 

cocoa and natural carob meal. On the other hand, there are also no differences among 267 

luminosity of medium and strong alkali cocoa and roasted carob. These little differences 268 

in luminosity favor the adulteration of cocoa with carob meal. 269 



Regarding Chroma (C*) of the samples also decreases as the degree of roasting 270 

increases, reaching values of 21 for natural carob and reducing to 12 for strong roasted 271 

carob. Comparing the C* values between cocoa and carob can be seen that there is a 272 

similarity between the two. Thus, C* values would be equivalent between natural cocoa 273 

and natural carob meal and between medium / strong cocoa beans and roasted carob. 274 

The values of hue (h*) for the carob flours do not seem to show significant 275 

differences with the increase of the degree of roasting, only a slight decrease. The 276 

values obtained for samples of natural carob flour have an average of 61, a value that is 277 

reduced to 58 in the samples of carob with a high degree of roasting. These values 278 

coincide with those observed in samples of natural cocoa and soft alkaline cocoa. 279 

In general, the cocoa color parameters are affected by several factors including the 280 

degree of roasting and the alkalization. The strong alkalized has a dark color while the 281 

natural has lighter color. The roasting result in a darkening of the cocoa or carob 282 

because of the formation of brown pigments (Zyzelewicz, Krysiak, Nebesny, & Budryn, 283 

2014) with changes in the values of individual color parameters. 284 

 285 

Insert here Table 1 286 

 287 

In order to know the different characteristics between the cocoa and carob flour 288 

samples, a PCA was performed with the pH and color parameters, which is presented in 289 

Fig. 1. It can be seen several groups. The scores of natural cocoa (NC) and light carob 290 

flour (LCF) are very nearly which indicates that these samples are related and have 291 

similar characteristics of pH and color parameters. These scores are negative in the 292 

component 1 and positive in the component 2. The other groups correspond to the 293 

different levels of alkalization and roasting. Positive scores in the component 1 and 294 

component 2 correspond to samples with different degree of alkalization. This position 295 



and the variables values lead to the conclusion that samples with low luminosity and 296 

high pH are samples of alkaline cacao; Samples with low luminosity and low pH are 297 

samples of roasted carob flour (Dark (DCF) and medium (MCF)), the scores of these 298 

samples are positive in component 1 and negative in the component 2. This agrees with 299 

the results presented by other authors (Bulca, 2016; Yousif & Alghzawi, 2000) that 300 

indicate that the carob flour could not be visually separated of the cocoa powder, even if 301 

the other groups of alkalized and roasting samples, were blended. 302 

Insert here Figure 1 303 

  304 

3.2 Spectral differences analysis of carob and cocoa powder 305 

 306 

Spectrums of relative absorbance of cocoa powder and carob flour are represented in 307 

Figure 2 (a, b). As shown in the figure, all spectra have a similar pattern of absorbance, 308 

although this pattern is different between cocoa and carob flour.  309 

 310 

Insert here Figure 2 311 

 312 

Raw data were preprocessed by applying the 2nd derivative and OSC. Examples of 313 

the pretreated spectrums of cocoa (brown) and carob (gray) are shown in Figure 3. As 314 

observed, after this pretreatment differences among both types of spectrums are more 315 

evident than in non-treated spectrums. Moreover, it can be stated how divergence points 316 

between both types of spectrums are located especially in the magnitude of reflectance 317 

at 1438, 1728, 2312, 2324, 2350 nm. As it could be expected from composition 318 

differences among cocoa powder and carob flours, these wavelengths are associated to 319 

the vibration of functional groups typical from fatty acids (1800 and 1734 nm), from 320 

methyl that could be related with the theobromine and caffeine contain of the cocoa 321 



powder (1728 nm) (Cozzolino et al., 2011)	 and polyphenols like epicathechin (2312, 322 

2324 nm) (Esteban, González, & Pizarro, 2004; Teye & Huang, 2015). 323 

 324 

Insert here Figure 3 325 

 326 

3.2 Classification model 327 

 328 

A principal component analysis which is a non-supervised method of classification 329 

was performed with the raw spectrums data, with the aim of evaluating the relation 330 

among samples. The fig. 4 shows the score plot of the first two principal components. 331 

The first PC explains the 71% of the total variance of the NIR data. It is related to the 332 

sample processing. The most negative scores correspond to the different natural cocoa 333 

or lightly roasted carob. In contrast the most positive scores correspond to the strong 334 

alkalized cocoa powder and highly roasted carob flours. The second PC explains the 335 

20% of the variability. It is related to the percentage of cocoa powder in the sample. The 336 

most positive values correspond to pure cocoa powders, while the most negative 337 

correspond to the pure carob flours. In the middle are allocated samples containing 338 

different levels of adulteration: low (0-20%), medium (20-40%) and high (40-60%).  339 

Wavelengths corresponding to the highest loading values for PC1 were 1100, 1464, 340 

1936, 2108, 2276, 2330 and 2486 nm and for the PC2 1116, 1324 1460, 1576, 1728, 341 

1914, 1976, 2106, 2262, 2310 and 2494 nm.  Wavelengths from 971 and 1400 nm are 342 

related to the ascending part of the water first overtone absorption peak O–H stretching 343 

bonds at 1722 nm the C-H stretching is present too. Which are associated with water 344 

and sugar content (Álvarez et al., 2012; Cozzolino, Smyth, & Gishen, 2003; X. Y. 345 

Huang et al., 2014; Talens et al., 2013). Meanwhile, wavelengths at 1736 and 2319-346 

2328 nm are related to the absorption of the C–H bonds, CH3 combination and C-C 347 



stretching. These are features of fatty acids, proteins and polysaccharides in cocoa 348 

powder. It could be associated with fat content of approximately a 10-12% (Veselá et 349 

al., 2007; Westad, Schmidt, & Kermit, 2008). The absorption bands of 1728, 2108 and 350 

2494 nm approximately coincide with those that have been used to predict the total 351 

content of fat in cocoa beans by (Ribeiro, Ferreira, & Salva, 2011; Teye & Huang, 352 

2015). The variations are related to the compositional characteristics of the cocoa 353 

categories and the adulterant carob powder. The wavelengths founded are similar to the 354 

study performed in cocoa beans (Teye et al., 2015b). Therefore, the absorption in the 355 

wavelengths (product of the vibrational reactions) has chemical information which is 356 

contributing to explain the differences observed between the carob and cocoa powder 357 

pure samples and their several proportions of adulteration. Due to the generated spectra 358 

correspond to a level of adulteration on a continuous scale. It is not possible to have 359 

well separated categories (high, medium and low) in this PCA, especially for the 360 

percentages that are in the limits. For this reason, a discriminant partial least squares is 361 

necessary to generate a model with categorized spectrums. Which allow detecting gross 362 

adulterations levels. 363 

 364 

Insert here Figure 4 365 

 366 

As the PCA was unable to classify samples in different groups according to their 367 

adulteration percentage, a qualitative model using the supervised discriminant partial 368 

least squares PLS-DA was performed. Moreover, to improve the accuracy of the model, 369 

the original spectrums were pre-processed using second derivative with Savitzky-Golay 370 

smoothing (9-point window, 2nd order polynomial) and an Orthogonal Signal 371 

Correction (OSC). For PLS-DA (Figure 5), 3 latent variables (LVs) were generated with 372 

most of the variation (67%) explained by the first LV and (12%) by the second. In this 373 

way separation is mainly achieved using the first latent variable with most negative 374 



scores related to the cocoa pure samples and most positive scores related to the 375 

adulterates samples and the carob powder (pure adulterant). Visually, the scores plot 376 

differences between 100% cocoa powder, adulterated cocoa powders and 100% carob 377 

powder indicating that it may be possible to use this approach to quickly screen for 378 

adulteration. Moreover, the determination coefficient (R2) of this PLS-DA model was 379 

0.969. The cross validation determination coefficient (R2
CV) based on a full cross 380 

validation was 0.901. Those values indicate the goodness of the classification model.  381 

 382 

Insert here Figure 5 383 

 384 

In order to measure the robustness of the PLS-DA model, a validation with an 385 

external set of data was performed. Table 2 shows the capability of the model to classify 386 

100% of the samples in its corresponding group (cocoa, carob or adulterated samples). 387 

 388 

Insert here Table 2 389 

 390 

3.3 Adulterant Prediction 391 

 392 

For the prediction of the adulteration, a PLS was performed with a calibration set and 393 

after that the prediction was done with the validation set. The models were constructed 394 

applying different pre-treatments to the spectra. The statistical indicators of goodness of 395 

fit of each of these models are presented in the Table 3. Good models were obtained 396 

with high values for the correlation coefficients (R2) between 0.951 and 0.980. Low 397 

values for the root mean square error of calibration (RMSEC) and root mean square 398 

error of prediction (RMSEp) between 4.397 and 3.237 depending on the processing of 399 

the spectral data. The ratio prediction deviation RPD of the models obtained were 400 



between 4.66 and 6.41. All of these values are greater than 3 which means that all these 401 

models, even the model whit out the preprocessing data, can be considered as excellent 402 

and most reliable for analytical tasks. This indicates that the multiplicative and additive 403 

effects in this type of samples and with the equipment used for the measurement in this 404 

study is minimal. Although have an optimal model with a lower error of prediction is 405 

always better.  406 

In Fig. 6 are presented observed (x-axis) versus predicted (y-axis) values. Predicted 407 

values were obtained with a model using 2nd Derivative algorithm with Sawitzky-Golay 408 

smoothing (9-point window and 2nd order polynomial) and orthogonal signal correction 409 

is presented. It can be observed that PLS algorithm gave a very good prediction with a 410 

correlation coefficient (R2 ) of 0.980 and RMSEC of 2.856. The root mean square error 411 

of cross validation (RMSECV) was 2.897 %. The prediction of the external group of 412 

validation gave a low root mean square error of prediction (RMSEP) 3.237 %. The 413 

similarity among RMSEC, RMSECV and RMSEP, shows that the possibility of over-414 

fitting the model is very low and it confirms its good capacity of prediction.  415 

 416 

Insert here Table 3 417 

 418 

The results indicated that PLS model with 2nd Derivative algorithm with Sawitzky-419 

Golay and orthogonal signal correction showed low values of RMSEC and RMSECV and 420 

high values of coefficients of determination (R2). Which indicate good performance of 421 

the predict model with an improve in the ratio prediction deviation (RPD), which is 422 

37.55 % higher respect the PLS model with the raw data, and with only 1 latent 423 

variables, other studies have found good models with 1 LV with the use of orthogonal 424 

signal correction (Esteban, González, & Pizarro, 2004). 425 

 426 

 Insert here Figure 6 427 



 428 

The relative notorious improve of the RPD of the pretreated model could be because 429 

of NIR signal can be affected by the moisture, particle size distribution of the product. 430 

Those phisical properterties can produce significant differences because of the light 431 

scatter effects. These factors varying the effective sample pathlength and result in 432 

aditive, multiplicative and wavelenght dependent effects. The baseline shifts, tilt or a 433 

curvature scaling variation in some instances are related with the wavelength-dependent 434 

scattering . The spectra variations could mask any subtle chemical variations it can lead 435 

to inaccurate results, so the pretreatment is effective decreasing the mentioned effects 436 

(Huang et al., 2010). 437 

The LOD (mean + 3 standard deviations) was calculated from four pure cocoa 438 

powder samples between alkalized and natural and it was 6.073 %. As with the NIR 439 

based calibration models, future work should include more variation by using cocoa 440 

powders and carob powder from more different sources. 441 

 442 

4. Conclusions  443 

Near infrared spectroscopy (NIR) in combination with the discriminant partial least 444 

squares (PLS-DA) and partial least squares (PLS) statistical models has been shown to 445 

be a rapid and effective method to identify adulterations of cocoa powder with Carob 446 

flour regardless of the alkalization or roasting level. In contrast, these adulterations 447 

would not be readily detectable by routine techniques such as determination of pH 448 

analysis and color measurement. 449 

Through the PLS-DA analysis, 100% of the samples were correctly classified into 450 

three groups: cocoa, carob flour and mixtures. On the other hand, by means of a PLS 451 

analysis it was possible to quantify the percentage of adulteration of the samples. The 452 

PLS model was obtained with 1 factor at R2 of 0.980 and 0.974 and a mean squared 453 

error of 2.856 and 3.237 for the calibration and validation sets, respectively. 454 



This technology is therefore an important tool for cocoa merchants, who will be able 455 

to obtain a better control of the quality of the product, avoiding the use of destructive 456 

techniques that require a complex preparation of the sample or techniques that imply an 457 

important expense for the company. Due to the excellent results achieved, we can 458 

expect that this method will become increasingly important in the cocoa industry, 459 

contributing to the reduction of food fraud. 460 
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Figure captions 605 

 606 

Fig 1. Score plot of the first and the second principal components of PCA model using 607 

the color parameters L*, C*, h* and pH of pure carob and cocoa powder samples (n = 608 

18 by triplicate). 609 

 610 

Fig 2. Spectra with raw data in the range of 1100 to 2500 nm (a) Cocoa. (b) Carob flour. 611 

 612 

Fig 3. Second derivative, Savitzky Golay smoothing and orthogonal signal correction 613 

pretreated cocoa (brown) and carob (grey) spectra in the range of 1100 to 2500 nm. 614 

 615 

Fig 4. (a) NIR PCA score plot for the separation of pure cocoa powder and different 616 

levels of adulteration with carob flour (high adulteration HA (40-60%), low adulteration 617 

LA (0-20%) and medium adulteration MA (20-40%)).  618 

 619 

Fig 5. NIR PLS-DA score plot from latent variable 1 and 2, pure cocoa blue, carob 620 

powder grey and adulterations brown. 621 

 622 

Fig 6. Predicted versus observed values of adulterant percentage (n = 140) since the 623 

pure cocoa, carob powder to different levels of adulterated samples. 624 

 625 
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Table 1. Color parameters and pH (mean and standard deviation) values for the carob and cocoa pure 

samples.  

Product 
Color Parameters 

pH ± sd 
L* ± sd C* ± sd h* ± sd 

LCF1 48.6±0.4de 23.6±0.3e 61.0±0.3b 5.033±0.012a 

LCF2 47.70±0.06de 24.1±0.2e 60.98±0.11b 5.123±0.006a 

LCF3 46.1±0.2de 26.3±0.7e 61.5±0.3b 4.667±0.006a 

LCF4 44.17±0.3de 20.7±0.2e 61.1±0.3b 4.913±0.006a 

MCF 37.6± 0.4ab 16.9±0.7bc 60.2±0.5a 4.850±0.010a 

DCF 34.5±1.5a  12.9±0.9a 60±2a 4.867±0.006a 

NC1 48.7±0.2e   20.1±0.5de 58.8±0.4c 5.390±0.010a 

NC2 48.33±0.13e 22.3±0.4de 59.5±0.3c 5.457±0.006b 

NC3 50.3±0.6e 22.19±1.02de 60.0±0.4c 5.703±0.006b 

LAC1 42.3±0.6c 22.4±0.7cd 54.3±0.4c 6.903±0.015c 

LAC2 44.2±0.5c 18.63±1.02cd 55.0±0.9c 6.963±0.021c 

LAC3 41.7±0.5b 19.80±0.13bc 54.5±0.5c 6.987±0.006d 

MAC1 44.9±1.5c 18±2cd 55.7±0.6c 7.243±0.006c 

MAC2 41.9±0.7b 18.0±0.6bc 54.2±0.5c 7.340±0.026d 

MAC3 35.85±1.05b 16.0±0.8bc 43.0±0.6c 7.430±0.010d 

SAC1 32.1±0.8a 11.6±0.9b 46.5±0.6c 7.810±0.010e 

SAC2 39.4±0.5a 19.76±0.99b 51.4±0.8c 7.837±0.006e 

SAC3 40.1±0.2a 17.3±0.8b 53.2±0.6c 7.923±0.012e  
 

Values in the same column followed by the same letter(s) are not significantly different according to 

ANOVA at a 95% Confidence level. For cocoas (N): Natural cocoa (NC), light alkalized cocoa (LAC), 

medium alkalized cocoa (MAC) and strong alkalized cocoa (SAC). For carob flours (A): light carob flour 

(LCF), medium carob flour (MCF) and dark carob flour (DCF). 

 

 



Table 2. Results for classification accuracy of the PLS-DA model 

  Cocoa Carob Adulterated Classification 
Cocoa 4 0 0 100% 
Carob 0 4 0 100% 

Adulterated 0 0 32 100% 
 



Table 3.  

Results of the PLS models constructed for the prediction of carob flour content in cocoa powders. 

Pre-treatment #LV Calibration Cross-validation  Validation 
    R2C RMSEC R2 RMSECV R2P RMSEP SEP Bias RPD 

Raw data 7 0.951 4.530 0.945 4.785 0.961 4.397 4.400 0.197 4.66 

2nd Der. S-G 5 0.978 3,082 0.974 3.28 0.979 3.271 3.195 0.749 6.39 

OSC 1 0.975 3.165 0.975 3.214 0.974 3.555 3.537 0.474 5.75 

2nd  Der. (S-G)+OSC 1 0.980 2.856 0.979 2.897 0.974 3.237 3.187 0.626 6.41 

 

 

2nd Der. S-G = Second derivative-Savitzky Golay; OSC = Orthogonal signal correction; #LV = latent variables; R2
C = coefficient of determination 

for calibration; RMSEC = root mean square error of calibration; R2
CV = coefficient of determination for cross-validation; RMSECV = root mean 

square error of cross-validation; R2
P = coefficient of determination for prediction; RMSEP = root mean square error of prediction; SEP = standard 

error of prediction; RPD = ratio of prediction deviation. 

 


